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Abstract 

Quality prediction model, as the key to realize the real-time online quality monitoring process, has been developed using 
various data mining techniques. However, most of quality prediction models are developed in single-stage manufacturing 
system, where the relationship between manufacturing operation and quality variables is straightforward. Previous studies 
show that single-stage quality system cannot solve quality problem in multi-stage manufacturing system due to the 
complex variable relationships. This study is intended to propose a data mining method to develop quality prediction 
model which is able to deal with the complex variable relationships in multi-stage manufacturing system. This method, 
named Cascade Quality Prediction Method (CQPM), is developed by considering the complex variables relationships in 
multi-stage manufacturing system. CQPM employs the combination of multiple Principal Component Analysis and 
Iterative Dichotomiser 3 algorithm. A case study in semiconductor manufacturing shows that the prediction model that has 
been developed using CQPM is performed better in predicting both positive and negative classes compared to others.  
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1. Introduction 

Multi-stage Manufacturing System (MMS) refers to the system that involves more than one workstation to 
finish all required operation to manufacture the final product [1]. MMS is employed to produce complex 
products where raw materials are transformed into final product in a series of processing stages. Various data 
mining techniques have been implemented to develop quality prediction model for MMS in order to achieve 
faultless manufacturing operations. Quality prediction model is a formulation that explains the relationship 
between manufacturing operation and product quality level. It is the key to enable the ability in estimating 
product quality level during the manufacturing operation.  

In every workstation within MMS there are two types of quality: partial and total quality [2]. Partial quality 
is the specific result from current operation, while the total quality is the result of current and preceding 
operation. The existence of partial quality and total quality in every workstation in MMS denotes that variable 
relationship in MMS is more complex than in Single-stage Manufacturing System (SMS). Considering the 
complex variable relationships in MMS, this study is intended to propose a data mining method, named 
Cascade Quality Prediction Method (CQPM), for developing quality prediction model in MMS.  

2. Related Works 

Previous studies explained that basically there are two different approaches in developing quality 
prediction model in MMS; single-point and multi-point approaches. Using single-point approach, one quality 
prediction model is developed for the whole manufacturing lines as illustrated in Fig. 1(a). On the other hand, 
using multi-point approach, one quality prediction model is developed for every workstation as illustrated in 
Fig. 1(b). Several studies show that various techniques have been applied to develop quality prediction model 
using single-point approach. Multi-PCA model [3], Multi-way Partial Least Square control chart [4], 
Directional Multivariate Exponential Weighted Moving Average [5], clustering [6], classification [7], and 
association rules [8-9] have been used to develop quality prediction in MMS using single-point approach.  

Single-point approach assumed that each manufacturing workstation has an independent effect to the 
product quality level. It is ignoring the fact that each workstation has its own operation condition and 
behaviour [10]. Therefore, this model has difficulty to reveal the correlation between manufacturing 
operations from workstation to workstation. From the point of view of partial and total quality as explained by 
[3], this approach can only explain the partial quality at the last workstation. 

Instead of using the single-point approach, some scholars developed quality prediction model for every 
workstation individually as illustrated in Fig. 1(b). Multi-point approach is applied by [11], [12] in 
fermentation process, and [10], [13] in injection moulding process. This approach produced the model that is 
able to explain the relationship among manufacturing operation variables in a workstation. However, [5] 
pointed out that this approach can be misleading and ineffective considering that the measurement of a 
workstation is probably confounded by the cumulative effect from the previous workstation. 

 

 

Fig. 1. (a) Single-Point Prediction Method; (b) Multi-Point Prediction Method 

(a)                                                                                                       (b) 
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3. Framework of CQPM 

Based on the concept of partial and total quality as described by [3], the characteristics of the output from a 
workstation are influenced by the manufacturing operation in that particular workstation and all preceding 
workstations. This concept can be illustrated in two-workstation MMS as shown in Fig. 2 (a). Considering the 
partial and total quality in a workstation as shown in Fig. 2 (a), the relationship among variables in MMS can 
be illustrated as shown in Fig. 2 (b).  

              
                                          (a)                                                                                                           (b) 

 

Fig. 2.  (a) Partial and Total Quality in Two-Workstation MMS; (b) Illustration of Variable Relationships in Two-Workstation MMS 

In the real world industrial setting, MMS probably consists of various numbers of workstations, every 
workstation consists of various numbers of manufacturing operation variables, and the intermediate product 
from each workstation has various numbers of characteristics. For this condition, the variables relationships in 
MMS can be expressed as follows: 

ci,k  =  f(ci-1,k, xi,j)                                                                          (1) 

q = f(cn,k)                                                                              (2) 

where: 
xi,j = jth manufacturing operation variable in ith workstation, i = 1, 2, 3, …, n and j = 1, 2, 3,…., m 
ci,k = kth characteristics of the output from ith workstation, k = 1, 2, 3,… 
q= final product quality level 
The task of revealing relationship among operation variables as expressed in Eq. (1) is the process to 

investigate how the interaction of xi,j and ci-1,k can construct ci,k. Without any underlying knowledge of the 
relationships among xi,j, the process of finding the relationships of inter-correlated variables is the same with 
extracting those variables into some sets of new dimensions. This idea is exactly the same idea with Principal 
Component Analysis (PCA) technique. PCA can be employed for its ability in extracting the important 
information of several inter-correlated variables to be expressed as a set of new orthogonal variables [14].  

Using PCA, the relationships between product characteristics and manufacturing operation variables in 
every workstation can be expressed as shown in Eq. (3). ak,,j is the amount of contribution of xi,j  to ci,k. In 
PCA, ak,,j is the eigenvector of the covariance matrix of the variables.  
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In the last workstation, relationship between manufacturing operation variables and product quality level 
can be represented by the relationships between product characteristics (cn,k) and the product quality level (q), 
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since the interaction among manufacturing operation variables has been represented by the product 
characteristics. This relationship is expressed in Eq. (2). In the real world manufacturing setting, product 
quality level (q) is usually determined by the category either it is accepted or rejected. Therefore, the process 
of revealing Eq. (2) can be approached as the classification problem. In this study, Iterative Dichotomiser 
(ID3) algorithm is employed because of it advantages such as simple, high speed computation and easy-to-
understand rules [7] which are offering more benefit in practical.  

ID3 algorithm that can only deal with categorical variable, therefore cn,k should be converted into 
categorical variables. Using the division of quality control chart area [15], cn,k is converted into categorical 
variables using its mean and standard deviation. As the result, there are 6 possible categories for cn,k:  very low 
(

, , 2n k n kc c ), low (
, , ,2n k n k n kc c c ), lower medium (

, , ,n k n k n kc c c ), upper medium 

(
, , ,n k n k n kc c c ), high (

, , , 2n k n k n kc c c ), and very high (
, , 2n k n kc c ), where ,n kc is 

the mean of cn,k  and  is it standard deviation. Hereinafter, the ID3 algorithm can be applied to extract the 
rules.  

4. Case Study of CQPM Implementation 

In order to evaluate CQPM performance, CQPM is applied into a semiconductor manufacturing dataset, 
namely SECOM dataset [16]. SECOM dataset consists of 1567 instances, and every instance has 590 
manufacturing operation data and 1 quality data. The manufacturing operation data are collected from the 
continuous monitoring process using sensors and metrology equipments along the semiconductor 
manufacturing line. The manufacturing operation variables are named based on the sensors number, hence 
there are variables S1 until S590. At the end of manufacturing operation, functional testing was performed to 
ensure that the semiconductor meets the specification for which it is designed. If the result was meeting the 
expectation, then the semiconductor was classified as accepted product, otherwise it was rejected.   

As a real life dataset, SECOM contain of some irrelevant variables and missing value data. A data 
cleansing procedure discards 452 instances with null and missing values. Regarding the irrelevant variables, 
since not all 590 sensors were used to gather quality-related data, [16] suggested the simple feature selection 
technique to select 40 variables that is highly related to the quality variables. These 40 variables are divided 
into five workstations based on the typical semiconductor manufacturing monitoring process as explained by 
[18]. The manufacturing operation variables are grouped into the each workstation as shown in Table 1. 

Based on the framework of CQPM as explained previously, the process of developing the quality 
prediction model for MMS can be summarized as follows:  

 Step 1: For i = 1 to i = n, reveal ci,k  =  f(ci-1,k, xi,j) by applying multiple PCA into the dataset 
 Step 2: Calculate the value of cn,k  for every instance then transform this value into category  
 Step 3: Using ID3, extract rules IF cn,k = a THEN q = b,  

a = category of cn,k (very low, low, lower medium, upper medium, high, very high) 
b = product quality level (accepted, rejected) 
In this study, this process is implemented to SECOM dataset using MATLAB and RapidMiner 5 on 2.20 

GHz computer with 2.00 GB memory. 
As the result of applying multiple PCA, various number ci,k for every workstation are produced as shown in 

Table 2. In the last workstation, 22 mathematical models (c5,1 – c5,22) are produced. These models are 
representing the cumulative effect of entire manufacturing operation variables to the final product 
characteristics. These models are used to calculate the value of c5,1 – c5,22 for every instance hence the new 
dataset is produced. ID3 algorithm is then applied to this dataset after the value of c5,1 – c5,22 for every instance 
has been transformed into categories. As the result, 219 if-then rules are extracted.   
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Table 1. Semiconductor Manufacturing Operation Variables in Every Workstation 

Workstation Number of Variable Original Name of Variables Variable Name for CQPM 

1 4 S15, S27, S33, S36 x1,1 , …., x1,4 

2 9 S48, S60, S62, S64, S118, S122, S124, S125, S131 x2,1 , …., x2,9 
3 10 S134, S145, S153, S184, S201, S206, S288, S342 x3,1 , …., x3,10 
4 8 S421, S426, S427, S430, S435, S454, S461, S470 x4,1 , …., x4,8 
5 9 S478, S492, S511, S520, S525, S560, S569, S572, S574 x5,1 , …., x5,9 

Table 2.  Involved Variables in Every Workstation 

Workstation 

 

Input Variable Output Variable 

Number Name Number Name 

1 4 x1,1 until x1,4 3 c1,1 until c1,3 

2 12 c1,1 until c1,3 and x2,1 until x2,9 9 c2,1 until c2,9 

3 19 c2,1 until c2,9 and x3,1 until x3,10 13 c3,1 until c1,13

4 21 c3,1 until c1,13 and x4,1 until x4,8 17 c4,1 until c4,17

5 26 c4,1 until c4,17 and x5,1 until x5,9 22 c5,1 until c5,22

 

The implementation of CQPM to SECOM dataset produces the quality prediction model which consists of 
22 mathematical model and 219 if-then rules. In order to evaluate the performance of this model, 10-fold 
cross validation is performed. For the comparison, two single-point prediction methods are also applied. The 
first comparison model is developed using single-point approach with ID3 algorithm (SP-ID3) whereas the 
other is developed using single-point approach with PCA+ID3 (SP-PCA+ID3). The result of validation result 
is shown in Table 3. 

In Table 3, it is shown that the prediction model that has been developed using CQPM involves fewest 
numbers of variables than others. It leads to the lowest computation time to build the model. In term of 
accuracy, highest accuracy is obtained by SP-PCA+ID3 method. However, this measurement is inappropriate 
to explain the performance of decision tree algorithm which is applied in imbalanced dataset. Alternatively, 
[19] suggest the measurement of Gmean that indicates the ability of the model in classifying both positive and 
negative classes. Since CQPM achieve the highest Gmean, it can be concluded that the model that has been 
developed using CQPM is performed better in classifying both accepted and rejected classes compared to SP-
ID3 and SP-PCA+ID3.  

Table 3. Comparison of Cross Validation Result 

Prediction Method Number of Variables Computation Time Accuracy Gmean 

CQPM 22 1.045 seconds 0.9002 0.4448 

SP-ID3 40 3.884 seconds 0.8808 0.2123 

SP-PCA+ID3 26 2.374 seconds 0.9113 0.2643 

5. Discussion 

Based on the 10-fold cross validation result as explained previously, it can be concluded that the 
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implementation of CQPM in MMS are able to produce a quality prediction model with better performance 
compare to the model that are developed using SP-ID3 and SP-PCA+ID3. SP-ID3 treats all manufacturing 
operation variable as having equal contribution to the final product quality level. It assumes that every 
manufacturing operation variable has individual effect to the final product quality. As the result, final product 
quality can be directly estimated by evaluating the value of manufacturing operation variable using the 
extracted rules.  

Differently, SP-PCA+ID3 and CQPM are considering the interaction effect of the manufacturing operation 
variables to the final product quality. SP-PCA+ID3 assume that all manufacturing operation variables are 
interacted each other in the same time as in single manufacturing system. On the other hand, CQPM employ 
multiple PCA from workstation to workstation hence the cumulative effect of manufacturing operation 
variables to the final product quality can be captured.  

In this study, the model that is developed using CQPM has been proved that it performs better than others. 
However, considering the relatively high accuracy (0.9002) and the relatively low Gmean, (0.4448), it can be 
concluded that the probability of miss-classification in negative class is still high. Further improvement in 
technical level to increase the performance of this method is still possible. Additional technique might be 
combined to improve the performance of the prediction model.  
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