
In the present study, the clinician decided
whether the CNS isolate represented a true
bacteraemic episode. This did not change treat-
ment decisions, or disrupt patient care. There was
no evidence for increased resistance trends, nor
did vancomycin utilisation increase more than
would be expected, since there were also more
patients with central venous catheters, more
foreign body-related infections, and more infec-
tions overall caused by CNS, Enterococcus spp.
and methicillin-resistant Staphylococcus aureus.
Increased vancomycin use cannot, therefore,
result solely from the absence of routine AST of
blood culture CNS isolates. Ongoing review has
validated this practice and it is now laboratory
policy. The laboratory is now also performing AST
only upon request for CNS isolates from central
venous catheters in the same patient populations.
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RESEARCH NOTE

Activity of five quinolones, three macrolides
and telithromycin against 12 Haemophilus
influenzae strains with different resistance
phenotypes
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ABSTRACT

Gemifloxacin MICs for 12 Haemophilus influenzae
strains with different resistance phenotypes were
0.001–0.015 mg ⁄L. Gemifloxacin was bactericidal
against all 12 strains after 24 h at 2 · MIC.
Ciprofloxacin, levofloxacin, gatifloxacin and
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moxifloxacin had MICs of 0.008–0.03 mg ⁄L and
similar kill kinetics. Macrolides and telithromycin
had unimodal MICs (1.0–8.0 mg ⁄L), except for
two strains without efflux systems (0.0125–
0.5 mg ⁄L) and two with efflux systems and
ribosomal protein mutations (> 64.0 mg ⁄L), and
were bactericidal against eight to ten strains
tested at 2 · MIC after 24 h.

Keywords Haemophilus influenzae, kill kinetics,

macrolides, quinolones, resistance, telithromycin
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Haemophilus influenzae, together with Streptococcus
pneumoniae and Moraxella catarrhalis, is a major
cause of community-acquired respiratory infec-
tions in children and adults, including pneu-
monia, acute exacerbations of chronic bronchitis,
sinusitis and otitis media [1–6]. In countries
where the H. influenzae type b vaccine is used
widely, such as the USA, H. influenzae type b has
been replaced in many infections by untypeable
H. influenzae strains [2–4,7].

The major resistance mechanism inH. influenzae
in the USA and Europe is b-lactamase production
(TEM-1, ROB-1). The incidence of b-lactamase-
negative ampicillin-resistant strains in the USA is
< 1%, but is higher in Japan [8] and France [9]. Of
the b-lactams available for treatment of H. influen-
zae infections, cefixime and cefpodoxime are the
most active from both an MIC and pharmacoki-
netic ⁄pharmacodynamic viewpoint, followed by
amoxycillin–clavulanate and cefuroxime. Among
macrolides and azalides, azithromycin has the
lowest MIC for H. influenzae, followed by erythro-
mycin and clarithromycin [3,4,10]. However, the
pharmacokinetic and pharmacodynamic proper-
ties of these compounds, and the results of double-
tap otitis media studies, cast doubt on their clinical
efficacy against H. influenzae [3–6]; additionally, a
macrolide efflux mechanism has been described in
‘baseline’H. influenzae strains, and added ribosom-
al protein mutations in macrolide-hyper-resistant
strains [11–13]. Quinolone resistance in H. influen-
zae is still very rare [7,10,14].

To cast further light on the utility of quinolones
vs. macrolides and ketolides for the treatment of
community-acquired respiratory tract infections,
macrobroth and time-kill methodology was used

to examine the activities of ciprofloxacin, levo-
floxacin, gatifloxacin, moxifloxacin, gemifloxacin,
erythromycin, azithromycin, clarithromycin and
telithromycin against 12 H. influenzae strains with
different b-lactam and macrolide resistance phe-
notypes. Of the 12 strains tested, two each were
b-lactamase-positive, b-lactamase-negative, b-lac-
tamase-negative and ampicillin-resistant with
mutations in PBP3 [8], b-lactamase positive and
amoxycillin–clavulanate-resistant (PBP3 muta-
tions plus TEM-1 production) [8], macrolide-
hyper-susceptible without a carbonyl cyanide
m-chlorophenylhydrazone-dependent macrolide
efflux mechanism, and macrolide-hyper-resistant
with an efflux mechanism plus one or more
ribosomal protein mutations [11–13]. m-Chloro-
phenylhydrazone is amitochondrial protonophore
that uncouples oxidative phosphorylation, and
thus inhibits efflux [11–13]. Strains were stored
frozen in double strength skimmed milk (Difco,
Detroit, MI, USA) before testing. Drugs were
obtained from their respective manufacturers.

Time-kill studies were performed as described
previously [10,15–17]. Glass tubes containing
5 mL of freshly made Haemophilus test medium
containing doubling antibiotic concentrations
were inoculated with c. 5 · 105 to 5 · 106 CFU/
mL and incubated at 35�C in a shaking water
bath. Viability counts of antibiotic-containing
suspensions were performed at 0, 3, 6, 12 and
24 h by plating ten-fold dilutions of 0.1-mL
aliquots from each tube in sterile Haemophilus test
medium on to chocolate agar plates (BBL Micro-
biology Systems, Cockeysville, MD, USA). Recov-
ery plates were incubated for up to 48 h. Colony
counts were performed on plates yielding 30–300
colonies [10,15–17]. The lower limit of sensitivity
of colony counts was 300 CFU ⁄mL. Results were
analysed by determining the number of strains
that yielded a D log10 CFU ⁄mL of )1, )2 and )3
dilutions at each of the time-points, compared
with counts at 0 h. Antibacterial agents were
considered bactericidal at the lowest concentra-
tion that reduced the original inoculum by
‡ 3 · log10 CFU ⁄mL (99.9%) at each of the time-
points, and were considered bacteriostatic if the
inoculum was reduced by < 3 · CFU ⁄mL [10,15–
17]. MICs were determined by the macrobroth
method [18]. Erythromycin, azithromycin, clarith-
romycin and telithromycin kill kinetics were not
determined for the two strains with efflux sys-
tems plus ribosomal protein mutations.

Research Notes 1041

� 2005 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 11, 1035–1047



MICs for the strains tested are listed in Table 1,
and results of the time-kill experiments are shown
in Table 2. All quinoloneswere active against all 12
strains tested. Gemifloxacin MICs were 0.001–
0.015 mg ⁄L, while ciprofloxacin, levofloxacin, ga-
tifloxacin and moxifloxacin MICs were 0.008–
0.03 mg ⁄L. Macrolides and telithromycin gave
unimodal MICs (1.0–8.0 mg ⁄L), except for two
strains without efflux systems (0.0125–0.5 mg ⁄L)

and two strains with efflux systems and ribosomal
protein mutations (> 64.0 mg ⁄L).

All quinolones showed similar kill kinetics,
with bactericidal activity after 12 h at 2 · MIC for
seven to ten strains, and at 2 · MIC after 24 h for
all 12 strains. In comparison, erythromycin, azith-
romycin and clarithromycin were bactericidal
against eight to ten strains (excluding the two
strains with ribosomal protein mutations) at

Table 1. MICs (mg ⁄L) of 12 strains of Haemophilus influenzae

Drug

Phenotype

1 b-lac+,
MBL

2 b-lac+,
MBL

3 b-lac–,
MBL

4 b-lac–,
MBL

5 BLNAR,

MBL

6 BLNAR

MBL

7 BLPACR,

MBL

8 BLPACR,

MBL 9 MHS 10 MHS 11 MHR 12 MHR

Ciprofloxacin 0.015 0.015 0.008 0.015 0.015 0.015 0.008 0.015 0.008 0.008 0.008 0.008
Levofloxacin 0.03 0.03 0.008 0.03 0.015 0.03 0.015 0.03 0.015 0.008 0.015 0.015
Gatifloxacin 0.015 0.03 0.015 0.03 0.015 0.015 0.015 0.015 0.004 0.008 0.008 0.008
Moxifloxacin 0.03 0.015 0.015 0.06 0.015 0.03 0.03 0.015 0.008 0.008 0.008 0.015
Gemifloxacin 0.015 0.015 0.004 0.008 0.002 0.002 0.004 0.008 0.004 0.001 0.002 0.002
Erythromycin 8.0 8.0 4.0 8.0 4.0 4.0 4.0 4.0 0.5 0.25 > 64 > 64
Azithromycin 2.0 2.0 1.0 2.0 2.0 1.0 1.0 1.0 0.12 0.25 > 64 > 64
Clarithromycin 8.0 8.0 8.0 8.0 8.0 4.0 4.0 8.0 0.25 0.25 > 64 > 64
Telithromycin 2.0 2.0 1.0 1.0 2.0 4.0 1.0 2.0 0.12 0.12 > 64 > 64

b-lac+, b-lactamase-positive; b-lac–, b-lactamase-negative; BLNAR, b-lactamase-negative, ampicillin-resistant; BLPACR, b-lactamase-positive, amoxycillin–clavulanate-
resistant; MHS, macrolide-hyper-susceptible; MHR, macrolide-hyper-resistant; MBL, strains with ‘baseline’ macrolide MICs and efflux mechanisms.

Table 2. Number of Haemophilus influenzae strains yielding the indicated reduction in log10 CFU ⁄mL following incubation

Drug

3 h 6 h 12 h 24 h

90%

killing

99%

killing

99.9%

killing

90%

killing

99%

killing

99.9%

killing

90%

killing

99%

killing

99.9%

killing

90%

killing

99%

killing

99.9%

killing

Ciprofloxacin
4 · MIC 12 5 0 12 8 3 12 12 9 12 12 12
2 · MIC 12 2 0 12 5 1 12 12 9 12 12 12
MIC 4 1 0 12 1 1 12 12 4 12 11 11
Levofloxacin
4 · MIC 12 7 1 12 10 4 12 12 10 12 12 12
2 · MIC 11 4 0 12 9 2 12 12 9 12 12 12
MIC 9 0 0 11 4 0 11 10 5 10 10 9
Gatifloxacin
4 · MIC 12 9 2 12 12 5 12 12 12 12 12 12
2 · MIC 11 4 1 12 10 2 12 12 8 12 12 12
MIC 8 1 0 11 4 1 12 12 5 10 10 9
Moxifloxacin
4 · MIC 12 8 4 12 11 7 12 12 11 12 12 12
2 · MIC 11 4 2 12 10 3 12 12 10 12 12 12
MIC 6 3 1 9 5 2 12 10 5 11 11 10
Gemifloxacin
4 · MIC 12 2 0 12 8 2 12 12 10 12 12 12
2 · MIC 9 2 0 12 4 2 12 10 7 12 12 12
MIC 4 1 0 11 4 1 11 9 4 11 10 9
Erythromycina

4 · MIC 8 3 0 9 8 3 10 10 9 10 10 10
2 · MIC 5 0 0 9 5 2 10 8 6 10 9 8
MIC 3 0 0 7 2 0 8 6 5 9 8 7
Azithromycina

4 · MIC 9 5 1 10 9 5 10 10 10 10 10 10
2 · MIC 9 3 1 9 8 4 10 9 9 10 10 10
MIC 5 1 0 6 4 2 9 8 5 10 10 7
Clarithromycina

4 · MIC 7 2 0 9 7 2 10 10 8 10 10 10
2 · MIC 3 2 0 7 5 1 10 8 5 10 10 10
MIC 1 0 0 7 3 1 7 5 4 9 7 5
Telithromycina

4 · MIC 7 2 0 9 7 3 10 9 8 10 10 10
2 · MIC 5 1 0 9 5 0 10 9 6 10 10 10
MIC 3 0 0 6 3 0 10 6 3 9 9 8

aOnly ten of 12 strains tested.
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2 · MIC after 24 h, with bactericidal activity
against five to nine strains at 2 · MIC after 12 h.
Telithromycin was bactericidal against all ten
strains tested at 2 · MIC after 24 h, and against
six strains at 2 · MIC after 12 h.

The results demonstrate excellent activity, as
well as kill kinetics, for all quinolones tested
against all 12 H. influenzae strains tested, irres-
pective of their b-lactam or macrolide resistance
phenotype. Erythromycin, azithromycin, clarith-
romycin and telithromycin had unimodal MIC
distributions and good kill kinetics. The results
reflect those reported in previous studies of
H. influenzae strains with ‘baseline’ macrolide
susceptibility [10,15–17,19–21]. The differences of
opinion as to the clinical efficacy of this group of
drugs against H. influenzae have been mentioned
above. In addition, the propensity of fully peni-
cillin-resistant (MIC > 2.0 mg ⁄L) pneumococcal
strains to be resistant to erythromycin, azithro-
mycin and clarithromycin [4] is another reason
why this group of drugs may not be ideal first-
choice drugs for empirical therapy of community-
acquired respiratory tract infections in areas of
the world where drug-resistant pneumococci are
common. Typically, 75% of fully penicillin-resist-
ant strains are also resistant to macrolides [4].
Telithromycin, which has been licensed for use in
the USA, has lower MICs and better pharmaco-
kinetics and pharmacodynamics against macro-
lide-resistant pneumococci [15,17], but definitive
pharmacokinetic ⁄pharmacodynamic properties
and clinical efficacy against H. influenzae have
not yet been established satisfactorily (W. A.
Craig, personal communication). Efflux mecha-
nisms for telithromycin, similar to those described
previously [12,13] for erythromycin, azithromycin
and clarithromycin, have recently been identified
in our laboratory (T. Bogdanovich et al., unpub-
lished results).

Broad-spectrum quinolones, such as gemifloxa-
cin, levofloxacin, gatifloxacin and moxifloxacin,
provide a more rational alternative, especially for
5-day treatment of acute exacerbations of chronic
bronchitis in the elderly [22], in which H. influen-
zae is the major pathogen [2,22]. Gemifloxacin has
the added advantages of being very potent
against pneumococci, including many quino-
lone-resistant strains, and of targeting both pneu-
mococcal DNA gyrase and topoisomerase IV,
resulting, theoretically, in a lower likelihood of
selecting resistant mutants [22].
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ABSTRACT

Eighty isolates of Shigella spp. (37 Shigella flexneri
and 43 Shigella sonnei) from patients with travel-
lers’ diarrhoea were studied. Susceptibility tests

revealed high levels of resistance, especially to
ampicillin (65%), tetracycline (78%) and trimeth-
oprim (75%), and particularly among the
S. flexneri isolates. Dihydrofolate reductase 1
genes (dfrA1) were prevalent among the trimeth-
oprim-resistant isolates, while oxa genes predom-
inated among the ampicillin-resistant isolates.
Chloramphenicol resistance was associated with
production of chloramphenicol acetyltransferase,
while nalidixic acid-resistant isolates had a single
mutation in the gyrA gene. The results indicate a
continuing need for resistance surveillance and
rational use of antimicrobial agents.
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The increase in intercontinental travel to exotic
destinations has resulted in infection by Shigella
spp. becoming an important cause of travellers’
diarrhoea (TD). Although the incidence of TD
caused by Shigella spp. is much lower than that of
TD caused by the main aetiological agent (i.e.,
enterotoxigenic Escherichia coli), Shigella causes a
more severe disease with greater morbidity. Fur-
thermore, Shigella spp. have been progressively
acquiring resistance to most of the antibiotics used
for the treatment of infections, partly because of
their ability to acquire resistance genes located on
plasmids or transposons [1]. However, other socio-
economic and behavioural factors have also con-
tributed to this increase in resistance [2]. Increased
international travel means that the appearance of
multiresistant pathogenic strains anywhere in the
world can rapidly become a public health problem
in other countries. Thus, the treatment decision for
shigellosis in developed countries is now com-
monly influenced by the patient’s travel history
[3]. The present report describes the susceptibility
patterns and mechanisms of resistance in Shigella
spp. with various geographical origins, isolated
from patients with TD.

Shigella isolates were obtained between 1995
and 2000 from the stool samples of patients
presenting with TD at the Hospital Clinic, Barce-
lona, Spain. Isolates were identified to the genus
and species level by conventional biochemical
methods [4] and agglutination with specific

Corresponding author and reprint requests: J. Vila, Servei de Micro-
biologia, Hospital Clı́nic, Villarroel 170, 08036 Barcelona, Spain
E-mail: jvila@ub.edu

1044 Clinical Microbiology and Infection, Volume 11 Number 12, December 2005

� 2005 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 11, 1035–1047


	Activity of five quinolones, three macrolides and telithromycin against 12 Haemophilus influenzae strains with different resistance phenotypes
	ACKNOWLEDGEMENT
	REFERENCES


