A degree by degree recursive construction of Hermite spline interpolants

Xuli Han
School of Mathematics and Computing Technology, Central South University, Changsha, 410083, PR China

A R TICLE INFO

Article history:

Received 4 July 2006
Received in revised form 15 June 2008

Keywords:

Interpolation
Hermite spline
Decomposition

Abstract

Based on the classical Hermite spline interpolant $H_{2 n-1}$, which is the piecewise interpolation polynomial of class C^{n-1} and degree $2 n-1$, a piecewise interpolation polynomial $H_{2 n}$ of degree $2 n$ is given. The formulas for computing $H_{2 n}$ by $H_{2 n-1}$ and computing $H_{2 n+1}$ by $H_{2 n}$ are shown. Thus a simple recursive method for the construction of the piecewise interpolation polynomial set $\left\{H_{j}\right\}$ is presented. The piecewise interpolation polynomial $H_{2 n}$ satisfies the same interpolation conditions as the interpolant $H_{2 n-1}$, and is an optimal approximation of the interpolant $\mathrm{H}_{2 n+1}$. Some interesting properties are also proved.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given a bounded interval [a, b] of \mathbb{R}, and a partition $\Delta: a=x_{1}<x_{2}<\cdots<x_{m}=b$ of the interval [a, b], and let $n \geq 1, f_{i}^{(r)}=f^{(r)}\left(x_{i}\right), r=0,1, \ldots, n-1$, be the corresponding values and the first $n-1$ derivatives of the function $f(x)$. It is well known (see, e.g. [1-3]) that the classical Hermite spline interpolant $H_{2 n-1} \in C^{n-1}([a, b])$ and satisfies the following interpolation conditions:

$$
H_{2 n-1}^{(r)}\left(x_{i}\right)=f_{i}^{(r)}, \quad i=1,2, \ldots, m ; r=0,1, \ldots, n-1
$$

When f is of class $C^{2 n}([a, b])$, the approximation of f by $H_{2 n-1}$ leads to an error estimate $\left\|f-H_{2 n-1}\right\|_{\infty}=O\left(h^{2 n}\right)$, where

$$
\|f\|_{\infty}:=\max _{x \in[a, b]}|f(x)|, \quad h=\max _{1 \leq k \leq m-1} h_{k}, \quad h_{k}=x_{k+1}-x_{k} .
$$

In [4,5], it was shown that the first n derivatives of $H_{2 n-1}$ are good approximations to the corresponding derivatives of f :

$$
\begin{equation*}
\left|f^{(r)}(x)-H_{2 n-1}^{(r)}(x)\right| \leq \frac{\left|\left(x-x_{k}\right)\left(x-x_{k+1}\right)\right|^{n-r}}{r!(2 n-2 r)!} h_{k}^{r} \max _{\xi \in\left[x_{k}, x_{k+1}\right]}\left|f^{(2 n)}(\xi)\right| \tag{1}
\end{equation*}
$$

for all $x \in\left[x_{k}, x_{k+1}\right], r=0,1, \ldots, n, k=1,2, \ldots, m-1$, and therefore

$$
\begin{equation*}
\left\|f^{(r)}-H_{2 n-1}^{(r)}\right\|_{\infty} \leq \frac{h^{2 n-r}}{2^{2 n-2 r} r!(2 n-2 r)!}\left\|f^{(2 n)}\right\|_{\infty} \tag{2}
\end{equation*}
$$

Usually, $H_{2 n-1}$ is expressed by the Hermite basis, which makes the use of formula $H_{2 n-1}$ rather complicated. In order to remedy this problem, a recursive method for the construction of $H_{2 n-1}$ was presented in [6]. The method allows us to compute $H_{2 n+1}$ by $H_{2 n-1}$ recursively. It was described in [6], that the decomposition of $H_{2 n+1}$ has several advantages, and can be used for some applications in numerical approximation fields. In [7], a new method for smoothing functions and compressing Hermite data was developed. This method is based on hierarchical bases. The hierarchical bases are useful in

[^0]several areas of mathematics. For example, they are used in [8] for compressing surfaces and in [9-11] for solving some boundary-value problems. The recursive computation of bivariate Hermite spline interpolants is given in [12].

The aim of this paper is to give piecewise interpolation polynomials $H_{2 n}$ of even degree which make the recursive computation of $H_{2 n+1}$ rather simple, and have interesting interpolation properties. The piecewise interpolation polynomial $\mathrm{H}_{2 n}$ satisfies the same interpolation conditions as the interpolant $\mathrm{H}_{2 n-1}$, and is an optimal approximation of the interpolant $H_{2 n+1}$. When the accuracy of $H_{2 n}$ is enough, we need not compute $H_{2 n+1}$.

The present paper is organized as follows. In Section 2, a piecewise interpolant of even degree is given, and the recursive construction of the Hermite spline interpolants is shown. In Section 3, the estimates for the correction terms are given when f is of class C^{n} or $C^{2 n}$. In Section 4, the error estimates for the piecewise interpolants of even degree are given and a numerical example is shown.

2. Recursive construction of Hermite interpolant

In this section, we give a recursive construction of Hermite spline interpolants, by constructing piecewise interpolation polynomials of even degree.

Let $\mathbb{F}_{2 n}^{n-1}([a, b], \Delta)=\left\{S: S^{(r)}\left(x_{i}\right)=f_{i}^{(r)}, 1 \leq i \leq m, 0 \leq r \leq n-1,\left.S\right|_{\left[x_{k}, x_{k+1}\right]} \in \mathbb{P}_{2 n}, 1 \leq k \leq m-1\right\}$, where $\mathbb{P}_{2 n}$ denotes the space of polynomials of degree at most $2 n$. We want to construct a piecewise interpolation polynomial set $\left\{H_{2 n}\right\}$ so that $H_{2 n} \in \mathbb{F}_{2 n}^{n-1}([a, b], \Delta)$ and

$$
\begin{equation*}
\int_{a}^{b}\left[H_{2 n+1}(x)-H_{2 n}(x)\right]^{2} \mathrm{~d} x=\min _{P \in \mathbb{F}_{2 n}^{n-1}([a, b], \Delta)} \int_{a}^{b}\left[H_{2 n+1}(x)-P(x)\right]^{2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

The condition $H_{2 n} \in \mathbb{F}_{2 n}^{n-1}([a, b], \Delta)$ implies that $H_{2 n}$ satisfies the same interpolation conditions as the interpolant $H_{2 n-1}$. For constructing $H_{2 n}$, it is convenient to express $H_{2 n-1}$ by the Bernstein basis functions $B_{2 n-1, i}$. We can easily deduce the following lemma.

Lemma 1. The interpolant $H_{2 n-1}$ is given for $x \in\left[x_{k}, x_{k+1}\right]$ in term of $f_{k}^{(r)}, f_{k+1}^{(r)}$ by

$$
\begin{equation*}
H_{2 n-1}(x)=\sum_{i=0}^{2 n-1} B_{2 n-1, i}(u) p_{2 n-1, i}, \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{2 n-1, i}(u)=\binom{2 n-1}{i}(1-u)^{2 n-1-i} u^{i}, \quad i=0,1, \ldots, 2 n-1, \\
& p_{2 n-1, i}=\frac{1}{(2 n-1)!} \sum_{j=0}^{i}(2 n-1-j)!\binom{i}{j} h_{k}^{j} f_{k}^{(j)}, \quad i=0,1, \ldots, n-1, \tag{5}\\
& p_{2 n-1,2 n-1-i}=\frac{1}{(2 n-1)!} \sum_{j=0}^{i}(-1)^{j}(2 n-1-j)!\binom{i}{j} h_{k}^{j} f_{k+1}^{(j)}, \quad i=0,1, \ldots, n-1, \tag{6}\\
& h_{k}=x_{k+1}-x_{k}, u=\left(x-x_{k}\right) / h_{k}, 1 \leq k \leq m-1 .
\end{align*}
$$

Lemma 2. For (4), we have

$$
\begin{equation*}
H_{2 n-1}(x)=\sum_{i=0}^{2 n+1} B_{2 n+1, i}(u) q_{i} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& q_{n}=\frac{n}{(2 n+1)!} \sum_{j=0}^{n-1}(2 n-1-j)!\binom{n-1}{j} h_{k}^{j}\left[(3 n+1-j) f_{k}^{(j)}+(-1)^{j}(n+1) f_{k+1}^{(j)}\right], \tag{8}\\
& q_{n+1}=\frac{n}{(2 n+1)!} \sum_{j=0}^{n-1}(2 n-1-j)!\binom{n-1}{j} h_{k}^{j}\left[(n+1) f_{k}^{(j)}+(-1)^{j}(3 n+1-j) f_{k+1}^{(j)}\right], \tag{9}\\
& q_{i}=p_{2 n+1, i}, \quad q_{2 n+1-i}=p_{2 n+1,2 n+1-i} \tag{10}\\
& \text { for } i=0,1, \ldots, n-1 .
\end{align*}
$$

Proof. By Lemma 1 and the degree elevation (see, e.g. [13]), we have

$$
H_{2 n-1}(x)=\sum_{i=0}^{2 n} B_{2 n, i}(u) a_{i}
$$

where

$$
a_{i}=\left(1-\frac{i}{2 n}\right) p_{2 n-1, i}+\frac{i}{2 n} p_{2 n-1, i-1}
$$

for $i=0,1, \ldots, 2 n$, and $p_{2 n-1,-1}=p_{2 n-1,2 n}=0$. From (5) and (6), and these, we get

$$
\begin{aligned}
& a_{n}=\frac{1}{2(2 n-1)!} \sum_{j=0}^{n-1}(2 n-1-j)!\binom{n-1}{j} h_{k}^{j}\left[f_{k}^{(j)}+(-1)^{j} f_{k+1}^{(j)}\right] \\
& a_{i}=\frac{1}{(2 n)!} \sum_{j=0}^{i}(2 n-j)!\binom{i}{j} h_{k}^{j} f_{k}^{(j)}, \\
& a_{2 n-i}=\frac{1}{(2 n)!} \sum_{j=0}^{i}(-1)^{j}(2 n-j)!\binom{i}{j} h_{k}^{j} f_{k+1}^{(j)}
\end{aligned}
$$

for $i=0,1, \ldots, n-1$.
In the same way, we have

$$
H_{2 n-1}(x)=\sum_{i=0}^{2 n+1} B_{2 n+1, i}(u) q_{i}
$$

where

$$
q_{i}=\left(1-\frac{i}{2 n+1}\right) a_{i}+\frac{i}{2 n+1} a_{i-1}
$$

for $i=0,1, \ldots, 2 n+1$, and $a_{-1}=a_{2 n+1}=0$. From these, we get (8)-(10).
Theorem 1. For $x \in\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, m-1$, we have

$$
\begin{equation*}
H_{2 n}(x)=H_{2 n-1}(x)+\lambda_{n, k}(1-u)^{n} u^{n} \tag{11}
\end{equation*}
$$

where $u=\left(x-x_{k}\right) / h_{k}$,

$$
\begin{equation*}
\lambda_{n, k}=\frac{1}{n!2} \sum_{j=1}^{n} \frac{(2 n-j-1)!}{(j-1)!(n-j)!} h_{k}^{j}\left[f_{k}^{(j)}+(-1)^{j} f_{k+1}^{(j)}\right] \tag{12}
\end{equation*}
$$

Proof. Based on the condition $H_{2 n} \in \mathbb{F}_{2 n}^{n-1}([a, b], \Delta)$, we can deduce that $H_{2 n}$ is of the following form:

$$
H_{2 n}(x)=H_{2 n-1}(x)+\lambda_{n, k}(1-u)^{n} u^{n}
$$

for $x \in\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, m-1$. Thus, by Lemma 2 , we have

$$
\begin{aligned}
H_{2 n+1}(x)-H_{2 n}(x) & =H_{2 n+1}(x)-H_{2 n-1}(x)-\lambda_{n, k}(1-u)^{n} u^{n} \\
& =B_{2 n+1, n}(u)\left(p_{2 n+1, n}-q_{n}\right)+B_{2 n+1, n+1}(u)\left(p_{2 n+1, n+1}-q_{n+1}\right)-\lambda_{n, k}(1-u)^{n} u^{n} .
\end{aligned}
$$

For the condition (3), we let

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda_{n, k}} \int_{x_{k}}^{x_{k+1}}\left[H_{2 n+1}(x)-H_{2 n}(x)\right]^{2} \mathrm{~d} x=0
$$

From this we have

$$
\begin{aligned}
\lambda_{n, k} \int_{x_{k}}^{x_{k+1}}(1-u)^{2 n} u^{2 n} \mathrm{~d} x= & \binom{2 n+1}{n} \int_{x_{k}}^{x_{k+1}}\left[\left(p_{2 n+1, n}-q_{n}\right)(1-u)^{2 n+1} u^{2 n}\right. \\
& \left.+\left(p_{2 n+1, n+1}-q_{n+1}\right)(1-u)^{2 n} u^{2 n+1}\right] \mathrm{d} x
\end{aligned}
$$

and then we get

$$
\begin{equation*}
\lambda_{n, k}=\frac{1}{2}\binom{2 n+1}{n}\left(p_{2 n+1, n}+p_{2 n+1, n+1}-q_{n}-q_{n+1}\right) . \tag{13}
\end{equation*}
$$

From this and (5), (6), (8) and (9), a straightforward computation gives (12).
The expression (11) shows that we can get $H_{2 n}$ recursively by $H_{2 n-1}$. The piecewise interpolant $H_{2 n} \in \mathbb{F}_{2 n}^{n-1}([a, b], \Delta)$ is an optimal approximation of the interpolant $H_{2 n+1}$. In the following, we will show that $H_{2 n+1}$ can be obtained recursively by $H_{2 n}$.

Theorem 2. For $x \in\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, m-1$, we have

$$
\begin{equation*}
H_{2 n+1}(x)=H_{2 n}(x)+\sigma_{n, k}(1-u)^{n} u^{n}(1-2 u), \tag{14}
\end{equation*}
$$

where $u=\left(x-x_{k}\right) / h_{k}$,

$$
\begin{equation*}
\sigma_{n, k}=\frac{1}{n!2} \sum_{j=0}^{n} \frac{(2 n-j)!}{(j)!(n-j)!} h_{k}^{j}\left[f_{k}^{(j)}-(-1)^{j} f_{k+1}^{(j)}\right] \tag{15}
\end{equation*}
$$

Proof. For $x \in\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, m-1$, by (13) we have

$$
\begin{aligned}
H_{2 n+1}(x)-H_{2 n}(x) & =\left\{\binom{2 n+1}{n}\left[(1-u)\left(p_{2 n+1, n}-q_{n}\right)+u\left(p_{2 n+1, n+1}-q_{n+1}\right)\right]-\lambda_{n, k}\right\}(1-u)^{n} u^{n} \\
& =\frac{1}{2}\binom{2 n+1}{n}\left(p_{2 n+1, n}-p_{2 n+1, n+1}-q_{n}+q_{n+1}\right)(1-u)^{n} u^{n}(1-2 u) .
\end{aligned}
$$

From (5), (6), (8) and (9), we have

$$
\begin{aligned}
& p_{2 n+1, n}-p_{2 n+1, n+1}=\frac{n!}{(2 n+1)!} \sum_{j=0}^{n} \frac{(2 n-j+1)!}{(j)!(n-j)!} h_{k}^{j}\left[f_{k}^{(j)}-(-1)^{j} f_{k+1}^{(j)}\right] \\
& q_{n+1}-q_{n}=-\frac{n!}{(2 n+1)!} \sum_{j=0}^{n-1} \frac{(2 n-j)!}{(j)!(n-j-1)!} h_{k}^{j}\left[f_{k}^{(j)}-(-1)^{j} f_{k+1}^{(j)}\right] .
\end{aligned}
$$

Thus, we obtain

$$
H_{2 n+1}(x)-H_{2 n}(x)=\sigma_{n, k}(1-u)^{n} u^{n}(1-2 u)
$$

where $\sigma_{n, k}$ is given by (15).
The piecewise interpolation polynomial set $\left\{H_{2 n}\right\}$ brings a perfect piecewise interpolation polynomial set $\left\{H_{j}\right\}$. Based on Theorems 1 and 2, we can provide a recursive construction of the piecewise interpolation polynomial set $\left\{H_{j}\right\}$. Let $H_{1} \in$ $\mathbb{F}_{1}^{0}([a, b], \Delta)$ be the piecewise linear interpolant to f at the knots $x_{i}, i=1,2, \ldots, m$. For $x \in\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, m-1$, let $u=\left(x-x_{k}\right) / h_{k}, b_{n}(x)=(1-u)^{n} u^{n}$ and

$$
\begin{equation*}
w_{2 n}(x)=\lambda_{n, k} b_{n}(x), \quad w_{2 n+1}(x)=\sigma_{n, k} b_{n}(x)(1-2 u) \tag{16}
\end{equation*}
$$

Then $b_{0}(x)=1, b_{n}(x)=(1-u) u b_{n-1}(x), H_{j}(x)=H_{j-1}(x)+w_{j}(x)$. By repeating this decomposition, we finally obtain

$$
\begin{equation*}
H_{j}=H_{1}+w_{2}+w_{3}+\cdots+w_{j} \tag{17}
\end{equation*}
$$

It is clear that the decomposition (17) allows us to determine $H_{2 n+1}$ step by step, without computing all the corresponding classical Hermite basis functions. The quantities $w_{j}, j=2,3, \ldots, 2 n+1$, added to H_{1}, are expressed in terms of $b_{i}(x)$ or $b_{i}(x)(1-2 u)$ which have simpler expressions than the $\phi_{i, k}^{i}$ or $\bar{\phi}_{i, k}^{i}$ given in [6] since

$$
\phi_{i, k}^{i}=\frac{h_{k}^{i}}{i!}(1-u)^{i+1} u^{i}, \quad \bar{\phi}_{i, k}^{i}=\frac{h_{k}^{i}}{i!}(1-u)^{i} u^{i+1} .
$$

Moreover, for $\lambda_{i, k}$ and $\sigma_{i, k}$, the absolute values of the coefficients of $f_{k}^{(j)}$ and $f_{k+1}^{(j)}$ are the same. For the δ_{k}^{i} or $\bar{\delta}_{k}^{i}$ given in [6], the coefficients of $f_{k}^{(j)}$ and $f_{k+1}^{(j)}$ are different. Therefore, the $\lambda_{i, k}$ or $\sigma_{i, k}$ has a simpler expression than the δ_{k}^{i} or $\bar{\delta}_{k}^{i}$ given in [6]. The above arguments mean that the proposed method for computing $H_{2 n+1}$ is very simple and easy.

The following theorem shows the derivative property of $H_{2 n}(x)$.

Theorem 3. For $k=1,2, \ldots, m-1$, we have

$$
\begin{equation*}
\int_{x_{k}}^{x_{k+1}}\left[H_{2 n-1}^{(n)}(x)\right]^{2} \mathrm{~d} x \leq \int_{x_{k}}^{x_{k+1}}\left[H_{2 n}^{(n)}(x)\right]^{2} \mathrm{~d} x \leq \int_{x_{k}}^{x_{k+1}}\left[H_{2 n+1}^{(n)}(x)\right]^{2} \mathrm{~d} x . \tag{18}
\end{equation*}
$$

Proof. For $i=0,1, \ldots, 2 n-1$, integration by parts yields

$$
\begin{aligned}
\int_{x_{k}}^{x_{k+1}}\left[(1-u)^{2 n-1-i} u^{i}\right]^{(n)}\left[(1-u)^{n} u^{n}\right]^{(n)} \mathrm{d} x & =-\int_{x_{k}}^{x_{k+1}}\left[(1-u)^{2 n-1-i} u^{i}\right]^{(n+1)}\left[(1-u)^{n} u^{n}\right]^{(n-1)} \mathrm{d} x \\
& =\cdots \\
& =(-1)^{n-1} \int_{x_{k}}^{x_{k+1}}\left[(1-u)^{2 n-1-i} u^{i}\right]^{(2 n-1)}\left[(1-u)^{n} u^{n}\right]^{(1)} \mathrm{d} x=0
\end{aligned}
$$

Therefore, from (11) we have

$$
\begin{aligned}
\int_{x_{k}}^{x_{k+1}}\left[H_{2 n}^{(n)}(x)\right]^{2} \mathrm{~d} x= & \int_{x_{k}}^{x_{k+1}}\left[H_{2 n-1}^{(n)}(x)\right]^{2} \mathrm{~d} x+2 \lambda_{n, k} \int_{x_{k}}^{x_{k+1}} H_{2 n-1}^{(n)}(x)\left[(1-u)^{n} u^{n}\right]^{(n)} \mathrm{d} x \\
& +\lambda_{n, k}^{2} \int_{x_{k}}^{x_{k+1}}\left\{\left[(1-u)^{n} u^{n}\right]^{(n)}\right\}^{2} \mathrm{~d} x \\
= & \int_{x_{k}}^{x_{k+1}}\left[H_{2 n-1}^{(n)}(x)\right]^{2} \mathrm{~d} x+\lambda_{n, k}^{2} \int_{x_{k}}^{x_{k+1}}\left\{\left[(1-u)^{n} u^{n}\right]^{(n)}\right\}^{2} \mathrm{~d} x .
\end{aligned}
$$

Thus, we get the first inequality of (18).
For $i=0,1, \ldots, 2 n-1$, since

$$
\begin{aligned}
& \int_{x_{k}}^{x_{k+1}}\left[(1-u)^{2 n-1-i} u^{i}\right]^{(n)}\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(n)} \mathrm{d} x=0, \\
& \int_{x_{k}}^{x_{k+1}}\left[(1-u)^{n} u^{n}\right]^{(n)}\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(n)} \mathrm{d} x=0,
\end{aligned}
$$

we have

$$
\int_{x_{k}}^{x_{k+1}} H_{2 n}^{(n)}(x)\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(n)} \mathrm{d} x=\int_{x_{k}}^{x_{k+1}}\left[H_{2 n-1}(x)+\lambda_{n, k}(1-u)^{n} u^{n}\right]^{(n)}\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(n)} \mathrm{d} x=0
$$

Therefore, from (14) we get

$$
\int_{x_{k}}^{x_{k+1}}\left[H_{2 n+1}^{(n)}(x)\right]^{2} \mathrm{~d} x=\int_{x_{k}}^{x_{k+1}}\left[H_{2 n}^{(n)}(x)\right]^{2} \mathrm{~d} x+\sigma_{n}^{2} \int_{x_{k}}^{x_{k+1}}\left\{\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(n)}\right\}^{2} \mathrm{~d} x
$$

This means that the second inequality of (18) holds.

3. The estimates of $\left\|w_{j}\right\|_{\infty}$

According to the structure of the decomposition of H_{j}, the piecewise linear interpolant H_{1} can be considered as a coarse approximation of a function f, and $w_{i}(2 \leq i \leq j)$ are the correction terms which we add to H_{1} in order to improve the approximation. In this section, we give the estimates of $\left\|w_{j}\right\|_{\infty}$. To do this, we need the following lemmas.
Lemma 3 (See [14]). Let l, i, r be nonnegative integers, $s=\min \{i, r\}$, then

$$
\sum_{j=0}^{s}(-1)^{j} \frac{(l+r-j)!}{j!(i-j)!(r-j)!}=\frac{l!}{i!r!} \prod_{j=1}^{r}(l+j-i)
$$

Lemma 4. For $u \in[0,1]$, let

$$
\delta_{r}(u)=\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(r)},
$$

and the r th derivatives in $\delta_{r}(u)$ be with respect to u. Then

$$
\left|\delta_{r}(u)\right| \leq \begin{cases}{\left[\frac{n}{2(2 n+1)}\right]^{n} \frac{\sqrt{2 n+1}}{2 n+1},} & r=0 \\ \frac{(2 n+1)!}{(2 n+1-r)!2^{2 n-r}}, & 1 \leq r \leq 2 n+1\end{cases}
$$

Proof. A straightforward computation gives that $\delta_{0}(u)$ has a maximum value at $(1-u) u=n /[2(2 n+1)]$ and then

$$
\left|\delta_{0}(u)\right| \leq\left[\frac{n}{2(2 n+1)}\right]^{n} \frac{\sqrt{2 n+1}}{2 n+1}<\frac{1}{2^{2 n+1}}
$$

Since $\delta_{0}(u)$ has $2 n+1$ zeros in the interval $[0,1]$, we can deduce that $\delta_{r}(u)$ has $2 n+1-r$ zeros in the interval $[0,1]$ for $r=0,1, \ldots, 2 n+1$, and

$$
\delta_{r}(u)=(-1)^{n+1} \frac{2(2 n+1)!}{(2 n+1-r)!} \prod_{i=1}^{2 n+1-r}\left(u-\xi_{r, i}\right)
$$

for some $\xi_{r, i} \in[0,1]$.
Let $0 \leq \xi_{r, 1} \leq \xi_{r, 2} \leq \cdots \leq \xi_{r, 2 n+1-r} \leq 1$. Since $\delta_{r}(u)=(-1)^{r+1} \delta_{r}(v)$ for $v=1-u$, we can set $\xi_{r, i}=1-\xi_{r, 2 n+2-r-i}$, and then

$$
\left|\left(x-\xi_{r i}\right)\left(x-\xi_{r, 2 n+2-r-i}\right)\right| \leq \frac{1}{4}
$$

for $i=1,2, \ldots, 2 n+1-r$. Therefore

$$
\left|\delta_{r}(u)\right| \leq \frac{(2 n+1)!}{(2 n+1-r)!2^{2 n-r}},
$$

for $r=1,2, \ldots, 2 n+1$.
Theorem 4. If $f \in C^{2 n}([a, b])$, then

$$
\begin{equation*}
\lambda_{n, k}=\frac{(-1)^{n}}{(2 n)!} h_{k}^{2 n} f^{(2 n)}\left(\xi_{k}\right) \tag{19}
\end{equation*}
$$

for some $\xi_{k} \in\left(x_{k}, x_{k+1}\right)$ and

$$
\begin{equation*}
\left\|w_{2 n}\right\|_{\infty} \leq \frac{h^{2 n}}{(2 n)!4^{n}}\left\|f^{(2 n)}\right\|_{\infty} \tag{20}
\end{equation*}
$$

Proof. From (12), we have

$$
\begin{aligned}
\lambda_{n, k}= & \frac{1}{n!2} \sum_{j=1}^{n} \frac{(2 n-j-1)!}{(j-1)!(n-j)!} h_{k}^{j}\left\{f_{k}^{(j)}+(-1)^{j}\left[\sum_{i=j}^{2 n-1} \frac{h_{k}^{i-j}}{(i-j)!^{(i)}}+\frac{1}{(2 n-j-1)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{2 n-j-1} f^{(2 n)}(t) \mathrm{d} t\right]\right\} \\
= & \frac{1}{n!2} \sum_{j=1}^{n} \frac{(2 n-j-1)!}{(j-1)!(n-j)!} h_{k}^{j} f_{k}^{(j)}+\frac{1}{n!2} \sum_{i=1}^{2 n-1} \sum_{j=1}^{s} \frac{(-1)^{j}(2 n-j-1)!}{(j-1)!(n-j)!(i-j)!} h_{k}^{i} f_{k}^{(i)} \\
& +\frac{1}{n!2} \sum_{j=1}^{n} \frac{(-1) h_{k}^{j}}{(j-1)!(n-j)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{2 n-j-1} f^{(2 n)}(t) \mathrm{d} t,
\end{aligned}
$$

where $s=\min \{i, n\}$. By Lemma 3, we have

$$
\begin{aligned}
\sum_{i=1}^{2 n-1} \sum_{j=1}^{s} \frac{(-1)^{j}(2 n-j-1)!}{(j-1)!(n-j)!(i-j)!} & =\sum_{i=1}^{2 n-1} \sum_{j=0}^{s-1} \frac{(-1)^{j+1}(2 n-j-2)!}{j!(n-j-1)!(i-j-1)!} \\
& =-\sum_{i=1}^{2 n-1} \frac{1}{(i-1)!} \prod_{j=1}^{n-1}(n-i+j)=-\sum_{i=1}^{n} \frac{(2 n-i-1)!}{(i-1)!(n-i)!}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\lambda_{n, k} & =\frac{1}{n!2} \sum_{j=0}^{n-1} \frac{(-1)^{j+1} h_{k}^{j+1}}{j!(n-j-1)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{2 n-j-2} f^{(2 n)}(t) \mathrm{d} t \\
& =-\frac{h_{k}}{n!(n-1)!2} \int_{x_{k}}^{x_{k+1}}\left(x_{k}-t\right)^{n-1}\left(x_{k+1}-t\right)^{n-1} f^{(2 n)}(t) \mathrm{d} t \\
& =\frac{(-1)^{n}}{(2 n)!} h_{k}^{2 n} f^{(2 n)}\left(\xi_{k}\right)
\end{aligned}
$$

for some $\xi_{k} \in\left(x_{k}, x_{k+1}\right)$. From this we obtain (20) immediately.

Theorem 5. If $f \in C^{2 n+1}([a, b])$, then

$$
\begin{equation*}
\sigma_{n, k}=\frac{(-1)^{n+1}}{(2 n+1)!2} h_{k}^{2 n+1} f^{(2 n+1)}\left(\eta_{k}\right) \tag{21}
\end{equation*}
$$

for some $\eta_{k} \in\left(x_{k}, x_{k+1}\right)$ and

$$
\begin{equation*}
\left\|w_{2 n+1}\right\|_{\infty} \leq \frac{h^{2 n+1}}{(2 n+1)!4^{n+1}}\left\|f^{(2 n+1)}\right\|_{\infty} \tag{22}
\end{equation*}
$$

Proof. From (15), we have

$$
\begin{aligned}
\sigma_{n, k}= & \frac{1}{n!2} \sum_{j=0}^{n} \frac{(2 n-j)!}{j!(n-j)!} h_{k}^{j}\left\{f_{k}^{(j)}-(-1)^{j}\left[\sum_{i=j}^{2 n} \frac{h_{k}^{i-j}}{(i-j)!} f_{k}^{(i)}+\frac{1}{(2 n-j)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{2 n-j} f^{(2 n+1)}(t) \mathrm{d} t\right]\right\} \\
= & \frac{1}{n!2} \sum_{j=0}^{n} \frac{(2 n-j)!}{j!(n-j)!} h_{k}^{j} f_{k}^{(j)}-\frac{1}{n!2} \sum_{i=0}^{2 n} \sum_{j=0}^{s} \frac{(-1)^{j}(2 n-j)!}{j!(n-j)!(i-j)!} h_{k}^{i} f_{k}^{(i)} \\
& -\frac{1}{n!2} \sum_{j=0}^{n} \frac{(-1)^{j} h_{k}^{j}}{j!(n-j)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{2 n-j} f^{(2 n+1)}(t) \mathrm{d} t,
\end{aligned}
$$

where $s=\min \{i, n\}$. By Lemma 3, we have

$$
\begin{aligned}
\sum_{i=0}^{2 n} \sum_{j=0}^{s} \frac{(-1)^{j}(2 n-j)!}{j!(n-j)!(i-j)!} & =\sum_{i=0}^{2 n} \frac{1}{i!} \prod_{j=1}^{n}(n-i+j) \\
& =\sum_{i=0}^{n} \frac{(2 n-i)!}{i!(n-i)!}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\sigma_{n, k} & =-\frac{1}{n!2} \sum_{j=0}^{n} \frac{(-1)^{j} h_{k}^{j}}{j!(n-j)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{2 n-j} f^{(2 n+1)}(t) \mathrm{d} t \\
& =-\frac{1}{n!n!2} \int_{x_{k}}^{x_{k+1}}\left(x_{k}-t\right)^{n}\left(x_{k+1}-t\right)^{n} f^{(2 n+1)}(t) \mathrm{d} t \\
& =\frac{(-1)^{n+1}}{(2 n+1)!2} h_{k}^{2 n+1} f^{(2 n+1)}\left(\eta_{k}\right)
\end{aligned}
$$

for some $\eta_{k} \in\left(x_{k}, x_{k+1}\right)$.
From Lemma 4 we have

$$
\left|(1-u)^{n} u^{n}(1-2 u)\right| \leq\left[\frac{n}{2(2 n+1)}\right]^{n} \frac{\sqrt{2 n+1}}{2 n+1}<\frac{1}{2^{2 n+1}}
$$

From this we obtain (22) immediately.
In [6], the bound of $\left\|H_{2 n+1}-H_{2 n-1}\right\|_{\infty}$ was estimated. Here we give the exact expression of $H_{2 n+1}-H_{2 n-1}$ as follows.
Theorem 6. If $f \in C^{2 n}([a, b])$, then for $x \in\left[x_{k}, x_{k+1}\right]$,

$$
\begin{equation*}
H_{2 n+1}(x)-H_{2 n-1}(x)=\frac{(-1)^{n}}{(2 n)!}(1-u)^{n} u^{n} h_{k}^{2 n} f^{(2 n)}\left(\zeta_{k}\right) \tag{23}
\end{equation*}
$$

where $u=\left(x-x_{k}\right) / h_{k}, \zeta_{k} \in\left(x_{k}, x_{k+1}\right)$, and

$$
\begin{equation*}
\left\|H_{2 n+1}-H_{2 n-1}\right\|_{\infty} \leq \frac{h^{2 n}}{(2 n)!4^{n}}\left\|f^{(2 n)}\right\|_{\infty} \tag{24}
\end{equation*}
$$

Proof. From (11) and (14), we have

$$
\begin{align*}
H_{2 n+1}(x)-H_{2 n-1}(x) & =w_{2 n}(x)+w_{2 n+1}(x) \\
& =(1-u)^{n} u^{n}\left[(1-u)\left(\lambda_{n, k}+\sigma_{n, k}\right)+u\left(\lambda_{n, k}-\sigma_{n, k}\right)\right] . \tag{25}
\end{align*}
$$

In the same way as the proof in Theorems 4 and 5, by Lemma 3, we have

$$
\begin{aligned}
\lambda_{n, k}+\sigma_{n, k} & =\frac{1}{n!} \sum_{j=0}^{n} \frac{(2 n-j-1)!}{j!(n-j)!} h_{k}^{j}\left[n f_{k}^{(j)}-(-1)^{j}(n-j) f_{k+1}^{(j)}\right] \\
& =\frac{(-1)^{n}}{n!(n-1)!} \int_{x_{k}}^{x_{k+1}}\left(t-x_{k}\right)^{n-1}\left(x_{k+1}-t\right)^{n} f^{(2 n)}(t) \mathrm{d} t, \\
\lambda_{n, k}-\sigma_{n, k} & =\frac{1}{n!} \sum_{j=0}^{n} \frac{(2 n-j-1)!}{j!(n-j)!} h_{k}^{j}\left[(j-n) f_{k}^{(j)}+(-1)^{j} n f_{k+1}^{(j)}\right] \\
& =\frac{(-1)^{n}}{n!(n-1)!} \int_{x_{k}}^{x_{k+1}}\left(t-x_{k}\right)^{n}\left(x_{k+1}-t\right)^{n-1} f^{(2 n)}(t) \mathrm{d} t .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
H_{2 n+1}(x)-H_{2 n-1}(x)= & \frac{(-1)^{n}}{n!(n-1)!}(1-u)^{n} u^{n} f^{(2 n)}\left(\zeta_{k}\right) \\
& \times \int_{x_{k}}^{x_{k+1}}\left(t-x_{k}\right)^{n-1}\left(x_{k+1}-t\right)^{n-1}\left[(1-u)\left(x_{k+1}-t\right)+u\left(t-x_{k}\right)\right] \mathrm{d} t \\
= & \frac{(-1)^{n}}{(2 n)!}(1-u)^{n} u^{n} h_{k}^{2 n} f^{(2 n)}\left(\zeta_{k}\right)
\end{aligned}
$$

for some $\zeta_{k} \in\left(x_{k}, x_{k+1}\right)$. From this we obtain (24) immediately.
If we weaken the condition on f, then the following results hold.
Theorem 7. If $f \in C^{n}([a, b])$, then

$$
\begin{equation*}
\left|\lambda_{n, k}\right| \leq \frac{c_{n-1}}{n!2} h_{k}^{n} \omega\left(f^{(n)}, h_{k}\right) \tag{26}
\end{equation*}
$$

where $c_{n-1}=\sum_{j=0}^{n-1}\binom{n-1}{j}\binom{2 n-j-2}{n-1}, \omega\left(f^{(n)}, \cdot\right)$ is the modulus of continuity of $f^{(n)}$, and

$$
\begin{equation*}
\left\|w_{2 n}\right\|_{\infty} \leq \frac{c_{n-1}}{n!4^{n} 2} h^{n} \omega\left(f^{(n)}, h\right) . \tag{27}
\end{equation*}
$$

Proof. In a similar way as the proof in Theorem 4, we have

$$
\begin{aligned}
\lambda_{n, k}= & \frac{1}{n!2} \sum_{j=1}^{n-1} \frac{(2 n-j-1)!}{(j-1)!(n-j)!} h_{k}^{j}\left\{f_{k}^{(j)}+(-1)^{j}\left[\sum_{i=j}^{n-1} \frac{h_{k}^{i-j}}{(i-j)!} f_{k}^{(i)}+\frac{1}{(n-j-1)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{n-j-1} f^{(n)}(t) \mathrm{d} t\right]\right\} \\
& +\frac{h_{k}^{n}}{n!2}\left[f_{k}^{(n)}+(-1)^{n} f_{k+1}^{(n)}\right] \\
= & \frac{1}{n!2} \sum_{j=1}^{n-1} \frac{(-1)^{j}(2 n-j-1)!}{(j-1)!(n-j)!(n-j-1)!} h_{k}^{j} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{n-j-1} f^{(n)}(t) \mathrm{d} t+\frac{h_{k}^{n}}{n!2}\left[f_{k}^{(n)}+(-1)^{n} f_{k+1}^{(n)}\right] \\
= & \frac{1}{n!2} \sum_{j=1}^{n-1} \frac{(-1)^{j}(2 n-j-1)!}{(j-1)!(n-j)!(n-j)!} h_{k}^{n} f^{(n)}\left(\theta_{k j}\right)+\frac{h_{k}^{n}}{n!2}\left[f_{k}^{(n)}+(-1)^{n} f_{k+1}^{(n)}\right],
\end{aligned}
$$

for some $\theta_{k j} \in\left(x_{k}, x_{k+1}\right)$. By Lemma 3 ,

$$
\sum_{j=1}^{n} \frac{(-1)^{j}(2 n-j-1)!}{(j-1)!(n-j)!(n-j)!}=\sum_{j=0}^{n-1} \frac{(-1)^{j+1}(2 n-j-2)!}{j!(n-j-1)!(n-j-1)!}=-1 .
$$

Therefore, we obtain

$$
\lambda_{n, k}=\frac{h_{k}^{n}}{n!2} \sum_{j=1}^{n} \frac{(-1)^{j}(2 n-j-1)!}{(j-1)!(n-j)!(n-j)!}\left[f^{(n)}\left(\theta_{k j}\right)-f_{k}^{(n)}\right],
$$

where $\theta_{k n}=x_{k+1}$. Thus, we obtain (26) and (27) immediately.

Theorem 8. If $f \in C^{n}([a, b])$, then

$$
\begin{equation*}
\left|\sigma_{n, k}\right| \leq \frac{c_{n}}{n!2} h_{k}^{n} \omega\left(f^{(n)}, h_{k}\right) \tag{28}
\end{equation*}
$$

where $c_{n}=\sum_{j=0}^{n}\binom{n}{j}\binom{2 n-j}{n}$, and

$$
\begin{equation*}
\left\|w_{2 n+1}\right\|_{\infty} \leq \frac{c_{n}}{n!4^{n+1}} h^{n} \omega\left(f^{(n)}, h\right) \tag{29}
\end{equation*}
$$

Proof. In a similar way as the proof in Theorem 5, we have

$$
\begin{aligned}
\sigma_{n, k}= & \frac{1}{n!2} \sum_{j=0}^{n-1} \frac{(2 n-j)!}{j!(n-j)!} h_{k}^{j}\left\{f_{k}^{(j)}-(-1)^{j}\left[\sum_{i=j}^{n-1} \frac{h_{k}^{i-j}}{(i-j)!} f_{k}^{(i)}+\frac{1}{(n-j-1)!} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{n-j-1} f^{(n)}(t) \mathrm{d} t\right]\right\} \\
& +\frac{h_{k}^{n}}{n!2}\left[f_{k}^{(n)}-(-1)^{n} f_{k+1}^{(n)}\right] \\
= & -\frac{1}{n!2} \sum_{j=0}^{n-1} \frac{(-1)^{j}(2 n-j)!}{j!(n-j)!(n-j-1)!} h_{k}^{j} \int_{x_{k}}^{x_{k+1}}\left(x_{k+1}-t\right)^{n-j-1} f^{(n)}(t) \mathrm{d} t+\frac{h_{k}^{n}}{n!2}\left[f_{k}^{(n)}-(-1)^{n} f_{k+1}^{(n)}\right] \\
= & -\frac{1}{n!2} \sum_{j=0}^{n-1} \frac{(-1)^{j}(2 n-j)!}{(j-1)!(n-j)!(n-j)!} h_{k}^{n} f^{(n)}\left(\theta_{k j}\right)+\frac{h_{k}^{n}}{n!2}\left[f_{k}^{(n)}-(-1)^{n} f_{k+1}^{(n)}\right]
\end{aligned}
$$

for some $\theta_{k j} \in\left(x_{k}, x_{k+1}\right)$. By Lemma 3 ,

$$
\sum_{j=0}^{n} \frac{(-1)^{j}(2 n-j)!}{j!(n-j)!(n-j)!}=1
$$

Therefore, we obtain

$$
\sigma_{n, k}=\frac{h_{k}^{n}}{n!2} \sum_{j=0}^{n} \frac{(-1)^{j}(2 n-j)!}{j!(n-j)!(n-j)!}\left[f_{k}^{(n)}-f^{(n)}\left(\theta_{k j}\right)\right]
$$

where $\theta_{k n}=x_{k+1}$. Thus, we obtain (28) and (29) immediately.
It is to be expected that the constant $c_{n} /\left(n!4^{n}\right)$ tends to zero when n is large. In [6], it is illustrated numerically that a corresponding constant tends to zero when n is large. Now we show that $c_{n} /\left(n!4^{n}\right)$ tends to zero when n is large as follows. Since

$$
\binom{2 n-j}{n} \leq \frac{1}{2}\binom{2 n-j+1}{n} \leq \frac{1}{2^{2}}\binom{2 n-j+2}{n} \leq \cdots \leq \frac{1}{2^{j}}\binom{2 n}{n}
$$

we have

$$
c_{n}=\sum_{j=0}^{n}\binom{n}{j}\binom{2 n-j}{n} \leq\binom{ 2 n}{n} \sum_{j=0}^{n} \frac{1}{2^{j}}\binom{n}{j}=\frac{3^{n}}{2^{n}}\binom{2 n}{n} .
$$

For $i=1,2, \ldots, n$, we have $(n+i) /[i(n-i+1)] \leq 2$. Thus we have

$$
\begin{aligned}
\frac{c_{n}}{n!4^{n}} & \leq \frac{3^{n}}{4^{n} 2^{n} n!}\binom{2 n}{n}=\frac{3^{n}}{4^{n} 2^{n}} \prod_{i=1}^{n} \frac{n+i}{i(n-i+1)} \\
& \leq \frac{3^{n}}{4^{n}} \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

4. The error estimates of $\boldsymbol{H}_{2 n}$ and a numerical example

$H_{2 n}(x)$ has the same continuity as the $H_{2 n-1}(x)$. The following theorem shows that $H_{2 n}(x)$ has accuracy $O\left(h^{2 n+1}\right)$ and so has better accuracy than $H_{2 n-1}(x)$.

Fig. 1. The piecewise interpolants and their correction terms.

Theorem 9. If $\in C^{2 n+1}([a, b])$, then

$$
\begin{align*}
& \left\|f-H_{2 n}\right\|_{\infty} \leq\left\|f-H_{2 n+1}\right\|_{\infty}+\frac{h^{2 n+1}}{(2 n+1)!4^{n+1}}\left\|f^{(2 n+1)}\right\|_{\infty} \tag{30}\\
& \left\|f^{(r)}-H_{2 n}^{(r)}\right\|_{\infty} \leq\left\|f^{(r)}-H_{2 n+1}^{(r)}\right\|_{\infty}+\frac{h^{2 n-r+1}}{(2 n-r+1)!2^{2 n-r+1}}\left\|f^{(2 n+1)}\right\|_{\infty} \tag{31}
\end{align*}
$$

with $r=1,2, \ldots, 2 n+1$.
Proof. For $x \in\left[x_{k}, x_{k+1}\right], k=1,2, \ldots, m-1, r=0,1, \ldots, 2 n+1, u=\left(x-x_{k}\right) / h_{k}$, we have

$$
\begin{aligned}
f^{(r)}(x)-H_{2 n}^{(r)}(x) & =f^{(r)}(x)-H_{2 n+1}^{(r)}(x)+H_{2 n+1}^{(r)}(x)-H_{2 n}^{(r)}(x) \\
& =f^{(r)}(x)-H_{2 n+1}^{(r)}(x)+\frac{\sigma_{n, k}}{h_{k}^{r}}\left[(1-u)^{n} u^{n}(1-2 u)\right]^{(r)}
\end{aligned}
$$

From this, Lemma 4 and Theorem 5, we obtain (30) and (31) immediately.
According to (2) and (30), $H_{2 n}$ has accuracy $O\left(h^{2 n+1}\right.$) and reproduces all polynomials of degree $\leq 2 n$. When the accuracy of $H_{2 n}$ is enough, we may not compute $H_{2 n+1}$. From (14) we can see that

$$
H_{2 n}(x)=H_{2 n+1}(x)
$$

for $x=x_{k},\left(x_{k}+x_{k+1}\right) / h_{k}, x_{k+1}$, and

$$
\int_{x_{k}}^{x_{k+1}} H_{2 n}(x) \mathrm{d} x=\int_{x_{k}}^{x_{k+1}} H_{2 n+1}(x) \mathrm{d} x
$$

$k=1,2, \ldots, m-1$. Therefore, $H_{2 n}$ approximate $H_{2 n+1}$ very well. This point can also be seen from (22).
In order to illustrate the theoretical results, we end this section by a numerical example. We describe a decomposition of the interpolants $H_{j}, j=1,2, \ldots, 6$, which interpolates the values of the function $f(x)=x \sin (x)$, and its derivatives at the

Fig. 1. (continued)
knots $x_{k}=-6.5+0.5 k, k=1,2, \ldots, 17$. The function is the same as the function given in [6], and the number of the knots is less than the number of the knots given in [6]. Fig. 1 shows the graphs of the functions $H_{j}(1 \leq j \leq 6), w_{j}(2 \leq j \leq 6)$, and the error function $f-H_{6}$. The corresponding functions of the graphs are marked in Fig. 1. From the graphs we can see that $w_{2 i}$ is near $w_{2 i-1}$, and then correction terms $w_{2 i}$ are effective. With the graphs in [6], we can see that the error bounds of $f-H_{6}$ and $f-H_{7}$ are close since the both error bounds are about 10^{-8}.

References

[1] C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.
[2] C. Chen, C.K. Chui, M.J. Lai, Construction of real-time quasi-interpolation scheme, J. Approx. Appl. 4 (1988) 61-75.
[3] T.N.T. Goodman, Refinable spline functions and Hermite interpolation, in: T. Lyche, L.L. Schumaker (Eds.), Mathematical Methods in CAGD, Vanderbilt University Press, 2001, pp. 1-13.
[4] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (R. Bartels, W. Gautschi, C. Witzgall, Trans.), second edition, Springer-Verlag, New York, 1992.
[5] P.G. Ciarlet, M.H. Schultz, R.S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems I, one dimensional problems, Numer. Math. 9 (1967) 294-430.
[6] A. Mazroui, D. Sbibih, A. Tijini, A recursive construction of Hermite spline interpolants and applications, J. Comput. Appl. Math. 183 (2005) $67-83$.
[7] A. Mazroui, D. Sbibih, A. Tijini, A simple method for smoothing functions and compressing Hermite data, Adv. Comput. Math. 23 (2005) $279-297$.
[8] D. Hong, L.L. Schumaker, Surface compression using a space of C^{1} cubic splines with a hierarchical basis, Computing 72 (2004) 79-92.
[9] W. Dahmen, P. Oswald, X.Q. Shi, C ${ }^{1}$-hierarchical basis, J. Comput. Appl. Math. 51 (1994) 37-56.
[10] P. Oswald, Hierarchical conforming finite element methods for the biharmonic equation, SIAM J. Numer. Anal. 29 (1992) $1610-1625$.
[11] H. Tserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379-412.
[12] A. Mazroui, D. Sbibih, A. Tijini, Recursive computation of bivariate Hermite spline interpolants, Appl. Numer. Math. 57 (2007) 962-973.
[13] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, New York, 1993.
[14] X. Han, Multi-node higher order expansions of a function, J. Approx. Theory 124 (2003) 242-253.

[^0]: E-mail address: xlhan@mail.csu.edu.cn.
 0377-0427/\$ - see front matter © 2008 Elsevier B.V. All rights reserved.
 doi:10.1016/j.cam.2008.07.005

