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a b s t r a c t

Based on the classical Hermite spline interpolant H2n−1, which is the piecewise
interpolation polynomial of class Cn−1 and degree 2n − 1, a piecewise interpolation
polynomial H2n of degree 2n is given. The formulas for computing H2n by H2n−1 and
computingH2n+1 byH2n are shown. Thus a simple recursivemethod for the construction of
the piecewise interpolation polynomial set {Hj} is presented. The piecewise interpolation
polynomial H2n satisfies the same interpolation conditions as the interpolant H2n−1, and is
an optimal approximation of the interpolant H2n+1. Some interesting properties are also
proved.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given a bounded interval [a, b] of R, and a partition ∆ : a = x1 < x2 < · · · < xm = b of the interval [a, b], and let
n ≥ 1, f (r)i = f

(r)(xi), r = 0, 1, . . . , n− 1, be the corresponding values and the first n− 1 derivatives of the function f (x). It
is well known (see, e.g. [1–3]) that the classical Hermite spline interpolant H2n−1 ∈ Cn−1([a, b]) and satisfies the following
interpolation conditions:

H(r)2n−1(xi) = f
(r)
i , i = 1, 2, . . . ,m; r = 0, 1, . . . , n− 1.

When f is of class C2n([a, b]), the approximation of f by H2n−1 leads to an error estimate ‖f −H2n−1‖∞ = O(h2n), where

‖f ‖∞ := max
x∈[a,b]

|f (x)|, h = max
1≤k≤m−1

hk, hk = xk+1 − xk.

In [4,5], it was shown that the first n derivatives of H2n−1 are good approximations to the corresponding derivatives of f :

|f (r)(x)− H(r)2n−1(x)| ≤
|(x− xk)(x− xk+1)|n−r

r!(2n− 2r)!
hrk max

ξ∈[xk,xk+1]
|f (2n)(ξ)| (1)

for all x ∈ [xk, xk+1], r = 0, 1, . . . , n, k = 1, 2, . . . ,m− 1, and therefore

‖f (r) − H(r)2n−1‖∞ ≤
h2n−r

22n−2r r!(2n− 2r)!
‖f (2n)‖∞. (2)

Usually, H2n−1 is expressed by the Hermite basis, which makes the use of formula H2n−1 rather complicated. In order
to remedy this problem, a recursive method for the construction of H2n−1 was presented in [6]. The method allows us to
compute H2n+1 by H2n−1 recursively. It was described in [6], that the decomposition of H2n+1 has several advantages, and
can be used for some applications in numerical approximation fields. In [7], a new method for smoothing functions and
compressing Hermite data was developed. This method is based on hierarchical bases. The hierarchical bases are useful in
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several areas of mathematics. For example, they are used in [8] for compressing surfaces and in [9–11] for solving some
boundary-value problems. The recursive computation of bivariate Hermite spline interpolants is given in [12].
The aim of this paper is to give piecewise interpolation polynomials H2n of even degree which make the recursive

computation of H2n+1 rather simple, and have interesting interpolation properties. The piecewise interpolation polynomial
H2n satisfies the same interpolation conditions as the interpolant H2n−1, and is an optimal approximation of the interpolant
H2n+1. When the accuracy of H2n is enough, we need not compute H2n+1.
The present paper is organized as follows. In Section 2, a piecewise interpolant of even degree is given, and the recursive

construction of the Hermite spline interpolants is shown. In Section 3, the estimates for the correction terms are givenwhen
f is of class Cn or C2n. In Section 4, the error estimates for the piecewise interpolants of even degree are given and a numerical
example is shown.

2. Recursive construction of Hermite interpolant

In this section, we give a recursive construction of Hermite spline interpolants, by constructing piecewise interpolation
polynomials of even degree.
Let Fn−12n ([a, b],∆) = {S : S

(r)(xi) = f
(r)
i , 1 ≤ i ≤ m, 0 ≤ r ≤ n−1, S|[xk,xk+1] ∈ P2n, 1 ≤ k ≤ m−1}, where P2n denotes

the space of polynomials of degree at most 2n. We want to construct a piecewise interpolation polynomial set {H2n} so that
H2n ∈ Fn−12n ([a, b],∆) and∫ b

a
[H2n+1(x)− H2n(x)]2 dx = min

P∈Fn−12n ([a,b],∆)

∫ b

a
[H2n+1(x)− P(x)]2 dx. (3)

The condition H2n ∈ Fn−12n ([a, b],∆) implies that H2n satisfies the same interpolation conditions as the interpolant H2n−1.
For constructing H2n, it is convenient to express H2n−1 by the Bernstein basis functions B2n−1,i. We can easily deduce the
following lemma.

Lemma 1. The interpolant H2n−1 is given for x ∈ [xk, xk+1] in term of f
(r)
k , f (r)k+1 by

H2n−1(x) =
2n−1∑
i=0

B2n−1,i(u)p2n−1,i, (4)

where

B2n−1,i(u) =
(
2n− 1
i

)
(1− u)2n−1−iui, i = 0, 1, . . . , 2n− 1,

p2n−1,i =
1

(2n− 1)!

i∑
j=0

(2n− 1− j)!
(
i
j

)
hjkf

(j)
k , i = 0, 1, . . . , n− 1, (5)

p2n−1,2n−1−i =
1

(2n− 1)!

i∑
j=0

(−1)j(2n− 1− j)!
(
i
j

)
hjkf

(j)
k+1, i = 0, 1, . . . , n− 1, (6)

hk = xk+1 − xk, u = (x− xk)/hk, 1 ≤ k ≤ m− 1.

Lemma 2. For (4), we have

H2n−1(x) =
2n+1∑
i=0

B2n+1,i(u)qi, (7)

where

qn =
n

(2n+ 1)!

n−1∑
j=0

(2n− 1− j)!
(
n− 1
j

)
hjk
[
(3n+ 1− j)f (j)k + (−1)

j(n+ 1)f (j)k+1
]
, (8)

qn+1 =
n

(2n+ 1)!

n−1∑
j=0

(2n− 1− j)!
(
n− 1
j

)
hjk
[
(n+ 1)f (j)k + (−1)

j(3n+ 1− j)f (j)k+1
]
, (9)

qi = p2n+1,i, q2n+1−i = p2n+1,2n+1−i (10)

for i = 0, 1, . . . , n− 1.



X. Han / Journal of Computational and Applied Mathematics 225 (2009) 113–123 115

Proof. By Lemma 1 and the degree elevation (see, e.g. [13]), we have

H2n−1(x) =
2n∑
i=0

B2n,i(u)ai,

where

ai =
(
1−

i
2n

)
p2n−1,i +

i
2n
p2n−1,i−1

for i = 0, 1, . . . , 2n, and p2n−1,−1 = p2n−1,2n = 0. From (5) and (6), and these, we get

an =
1

2(2n− 1)!

n−1∑
j=0

(2n− 1− j)!
(
n− 1
j

)
hjk
[
f (j)k + (−1)

jf (j)k+1
]
,

ai =
1

(2n)!

i∑
j=0

(2n− j)!
(
i
j

)
hjkf

(j)
k ,

a2n−i =
1

(2n)!

i∑
j=0

(−1)j(2n− j)!
(
i
j

)
hjkf

(j)
k+1

for i = 0, 1, . . . , n− 1.
In the same way, we have

H2n−1(x) =
2n+1∑
i=0

B2n+1,i(u)qi,

where

qi =
(
1−

i
2n+ 1

)
ai +

i
2n+ 1

ai−1

for i = 0, 1, . . . , 2n+ 1, and a−1 = a2n+1 = 0. From these, we get (8)–(10). �

Theorem 1. For x ∈ [xk, xk+1], k = 1, 2, . . . ,m− 1, we have

H2n(x) = H2n−1(x)+ λn,k(1− u)nun, (11)

where u = (x− xk)/hk,

λn,k =
1
n!2

n∑
j=1

(2n− j− 1)!
(j− 1)!(n− j)!

hjk
[
f (j)k + (−1)

jf (j)k+1
]
. (12)

Proof. Based on the condition H2n ∈ Fn−12n ([a, b],∆), we can deduce that H2n is of the following form:

H2n(x) = H2n−1(x)+ λn,k(1− u)nun,

for x ∈ [xk, xk+1], k = 1, 2, . . . ,m− 1. Thus, by Lemma 2, we have

H2n+1(x)− H2n(x) = H2n+1(x)− H2n−1(x)− λn,k(1− u)nun,
= B2n+1,n(u)(p2n+1,n − qn)+ B2n+1,n+1(u)(p2n+1,n+1 − qn+1)− λn,k(1− u)nun.

For the condition (3), we let

d
dλn,k

∫ xk+1

xk

[H2n+1(x)− H2n(x)]2 dx = 0.

From this we have

λn,k

∫ xk+1

xk
(1− u)2nu2ndx =

(
2n+ 1
n

)∫ xk+1

xk

[
(p2n+1,n − qn)(1− u)2n+1u2n

+ (p2n+1,n+1 − qn+1)(1− u)2nu2n+1
]
dx,
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and then we get

λn,k =
1
2

(
2n+ 1
n

)
(p2n+1,n + p2n+1,n+1 − qn − qn+1). (13)

From this and (5), (6), (8) and (9), a straightforward computation gives (12). �

The expression (11) shows that we can get H2n recursively by H2n−1. The piecewise interpolant H2n ∈ Fn−12n ([a, b],∆) is
an optimal approximation of the interpolant H2n+1. In the following, we will show that H2n+1 can be obtained recursively
by H2n.

Theorem 2. For x ∈ [xk, xk+1], k = 1, 2, . . . ,m− 1, we have

H2n+1(x) = H2n(x)+ σn,k(1− u)nun(1− 2u), (14)

where u = (x− xk)/hk,

σn,k =
1
n!2

n∑
j=0

(2n− j)!
(j)!(n− j)!

hjk
[
f (j)k − (−1)

jf (j)k+1
]
. (15)

Proof. For x ∈ [xk, xk+1], k = 1, 2, . . . ,m− 1, by (13) we have

H2n+1(x)− H2n(x) =
{(
2n+ 1
n

) [
(1− u)(p2n+1,n − qn)+ u(p2n+1,n+1 − qn+1)

]
− λn,k

}
(1− u)nun

=
1
2

(
2n+ 1
n

)
(p2n+1,n − p2n+1,n+1 − qn + qn+1)(1− u)nun(1− 2u).

From (5), (6), (8) and (9), we have

p2n+1,n − p2n+1,n+1 =
n!

(2n+ 1)!

n∑
j=0

(2n− j+ 1)!
(j)!(n− j)!

hjk
[
f (j)k − (−1)

jf (j)k+1
]

qn+1 − qn = −
n!

(2n+ 1)!

n−1∑
j=0

(2n− j)!
(j)!(n− j− 1)!

hjk
[
f (j)k − (−1)

jf (j)k+1
]
.

Thus, we obtain

H2n+1(x)− H2n(x) = σn,k(1− u)nun(1− 2u),

where σn,k is given by (15). �

The piecewise interpolation polynomial set {H2n} brings a perfect piecewise interpolation polynomial set {Hj}. Based on
Theorems 1 and 2, we can provide a recursive construction of the piecewise interpolation polynomial set {Hj}. Let H1 ∈
F01([a, b],∆) be the piecewise linear interpolant to f at the knots xi, i = 1, 2, . . . ,m. For x ∈ [xk, xk+1], k = 1, 2, . . . ,m−1,
let u = (x− xk)/hk, bn(x) = (1− u)nun and

w2n(x) = λn,kbn(x), w2n+1(x) = σn,kbn(x)(1− 2u). (16)

Then b0(x) = 1, bn(x) = (1− u)ubn−1(x),Hj(x) = Hj−1(x)+ wj(x). By repeating this decomposition, we finally obtain

Hj = H1 + w2 + w3 + · · · + wj. (17)

It is clear that the decomposition (17) allows us to determineH2n+1 step by step,without computing all the corresponding
classical Hermite basis functions. The quantities wj, j = 2, 3, . . . , 2n + 1, added to H1, are expressed in terms of bi(x) or
bi(x)(1− 2u)which have simpler expressions than the φii,k or φ̄

i
i,k given in [6] since

φii,k =
hik
i!
(1− u)i+1ui, φ

i
i,k =

hik
i!
(1− u)iui+1.

Moreover, for λi,k and σi,k, the absolute values of the coefficients of f
(j)
k and f

(j)
k+1 are the same. For the δ

i
k or δ

i
k given in [6],

the coefficients of f (j)k and f
(j)
k+1 are different. Therefore, the λi,k or σi,k has a simpler expression than the δ

i
k or δ̄

i
k given in [6].

The above arguments mean that the proposed method for computing H2n+1 is very simple and easy.
The following theorem shows the derivative property of H2n(x).
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Theorem 3. For k = 1, 2, . . . ,m− 1, we have∫ xk+1

xk

[
H(n)2n−1(x)

]2
dx ≤

∫ xk+1

xk

[
H(n)2n (x)

]2
dx ≤

∫ xk+1

xk

[
H(n)2n+1(x)

]2
dx. (18)

Proof. For i = 0, 1, . . . , 2n− 1, integration by parts yields∫ xk+1

xk

[
(1− u)2n−1−iui

](n) [
(1− u)nun

](n) dx = − ∫ xk+1

xk

[
(1− u)2n−1−iui

](n+1) [
(1− u)nun

](n−1) dx
= · · ·

= (−1)n−1
∫ xk+1

xk

[
(1− u)2n−1−iui

](2n−1) [
(1− u)nun

](1) dx = 0.
Therefore, from (11) we have∫ xk+1

xk

[
H(n)2n (x)

]2
dx =

∫ xk+1

xk

[
H(n)2n−1(x)

]2
dx+ 2λn,k

∫ xk+1

xk
H(n)2n−1(x)

[
(1− u)nun

](n) dx
+ λ2n,k

∫ xk+1

xk

{[
(1− u)nun

](n)}2 dx
=

∫ xk+1

xk

[
H(n)2n−1(x)

]2
dx+ λ2n,k

∫ xk+1

xk

{[
(1− u)nun

](n)}2 dx.
Thus, we get the first inequality of (18).
For i = 0, 1, . . . , 2n− 1, since∫ xk+1

xk

[
(1− u)2n−1−iui

](n) [
(1− u)nun(1− 2u)

](n) dx = 0,∫ xk+1

xk

[
(1− u)nun

](n) [
(1− u)nun(1− 2u)

](n) dx = 0,
we have∫ xk+1

xk
H(n)2n (x)

[
(1− u)nun(1− 2u)

](n) dx = ∫ xk+1

xk

[
H2n−1(x)+ λn,k(1− u)nun

](n) [
(1− u)nun(1− 2u)

](n) dx = 0.
Therefore, from (14) we get∫ xk+1

xk

[
H(n)2n+1(x)

]2
dx =

∫ xk+1

xk

[
H(n)2n (x)

]2
dx+ σ 2n

∫ xk+1

xk

{[
(1− u)nun(1− 2u)

](n)}2 dx.
This means that the second inequality of (18) holds. �

3. The estimates of ‖wj‖∞

According to the structure of the decomposition of Hj, the piecewise linear interpolant H1 can be considered as a coarse
approximation of a function f , and wi (2 ≤ i ≤ j) are the correction terms which we add to H1 in order to improve the
approximation. In this section, we give the estimates of ‖wj‖∞. To do this, we need the following lemmas.

Lemma 3 (See [14]). Let l, i, r be nonnegative integers, s = min{i, r}, then
s∑
j=0

(−1)j
(l+ r − j)!

j!(i− j)!(r − j)!
=
l!
i!r!

r∏
j=1

(l+ j− i).

Lemma 4. For u ∈ [0, 1], let

δr(u) = [(1− u)nun(1− 2u)](r),

and the rth derivatives in δr(u) be with respect to u. Then

|δr(u)| ≤


[

n
2(2n+ 1)

]n √2n+ 1
2n+ 1

, r = 0,

(2n+ 1)!
(2n+ 1− r)!22n−r

, 1 ≤ r ≤ 2n+ 1.
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Proof. A straightforward computation gives that δ0(u) has a maximum value at (1− u)u = n/[2(2n+ 1)] and then

|δ0(u)| ≤
[

n
2(2n+ 1)

]n √2n+ 1
2n+ 1

<
1
22n+1

.

Since δ0(u) has 2n+ 1 zeros in the interval [0, 1], we can deduce that δr(u) has 2n+ 1− r zeros in the interval [0, 1] for
r = 0, 1, . . . , 2n+ 1, and

δr(u) = (−1)n+1
2(2n+ 1)!
(2n+ 1− r)!

2n+1−r∏
i=1

(u− ξr,i)

for some ξr,i ∈ [0, 1].
Let 0 ≤ ξr,1 ≤ ξr,2 ≤ · · · ≤ ξr,2n+1−r ≤ 1. Since δr(u) = (−1)r+1δr(v) for v = 1 − u, we can set ξr,i = 1 − ξr,2n+2−r−i,

and then

|(x− ξri)(x− ξr,2n+2−r−i)| ≤
1
4

for i = 1, 2, . . . , 2n+ 1− r . Therefore

|δr(u)| ≤
(2n+ 1)!

(2n+ 1− r)!22n−r
,

for r = 1, 2, . . . , 2n+ 1. �

Theorem 4. If f ∈ C2n([a, b]), then

λn,k =
(−1)n

(2n)!
h2nk f

(2n)(ξk), (19)

for some ξk ∈ (xk, xk+1) and

‖w2n‖∞ ≤
h2n

(2n)!4n
‖f (2n)‖∞. (20)

Proof. From (12), we have

λn,k =
1
n!2

n∑
j=1

(2n− j− 1)!
(j− 1)!(n− j)!

hjk

{
f (j)k + (−1)

j

[
2n−1∑
i=j

hi−jk
(i− j)!

f (i)k +
1

(2n− j− 1)!

∫ xk+1

xk
(xk+1 − t)2n−j−1f (2n)(t)dt

]}

=
1
n!2

n∑
j=1

(2n− j− 1)!
(j− 1)!(n− j)!

hjkf
(j)
k +

1
n!2

2n−1∑
i=1

s∑
j=1

(−1)j(2n− j− 1)!
(j− 1)!(n− j)!(i− j)!

hikf
(i)
k

+
1
n!2

n∑
j=1

(−1)jhjk
(j− 1)!(n− j)!

∫ xk+1

xk
(xk+1 − t)2n−j−1f (2n)(t)dt,

where s = min{i, n}. By Lemma 3, we have
2n−1∑
i=1

s∑
j=1

(−1)j(2n− j− 1)!
(j− 1)!(n− j)!(i− j)!

=

2n−1∑
i=1

s−1∑
j=0

(−1)j+1(2n− j− 2)!
j!(n− j− 1)!(i− j− 1)!

= −

2n−1∑
i=1

1
(i− 1)!

n−1∏
j=1

(n− i+ j) = −
n∑
i=1

(2n− i− 1)!
(i− 1)!(n− i)!

.

Thus, we have

λn,k =
1
n!2

n−1∑
j=0

(−1)j+1hj+1k
j!(n− j− 1)!

∫ xk+1

xk
(xk+1 − t)2n−j−2f (2n)(t)dt

= −
hk

n!(n− 1)!2

∫ xk+1

xk
(xk − t)n−1(xk+1 − t)n−1f (2n)(t)dt

=
(−1)n

(2n)!
h2nk f

(2n)(ξk)

for some ξk ∈ (xk, xk+1). From this we obtain (20) immediately. �
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Theorem 5. If f ∈ C2n+1([a, b]), then

σn,k =
(−1)n+1

(2n+ 1)!2
h2n+1k f (2n+1)(ηk), (21)

for some ηk ∈ (xk, xk+1) and

‖w2n+1‖∞ ≤
h2n+1

(2n+ 1)!4n+1
‖f (2n+1)‖∞. (22)

Proof. From (15), we have

σn,k =
1
n!2

n∑
j=0

(2n− j)!
j!(n− j)!

hjk

{
f (j)k − (−1)

j

[
2n∑
i=j

hi−jk
(i− j)!

f (i)k +
1

(2n− j)!

∫ xk+1

xk
(xk+1 − t)2n−jf (2n+1)(t)dt

]}

=
1
n!2

n∑
j=0

(2n− j)!
j!(n− j)!

hjkf
(j)
k −

1
n!2

2n∑
i=0

s∑
j=0

(−1)j(2n− j)!
j!(n− j)!(i− j)!

hikf
(i)
k

−
1
n!2

n∑
j=0

(−1)jhjk
j!(n− j)!

∫ xk+1

xk
(xk+1 − t)2n−jf (2n+1)(t)dt,

where s = min{i, n}. By Lemma 3, we have
2n∑
i=0

s∑
j=0

(−1)j(2n− j)!
j!(n− j)!(i− j)!

=

2n∑
i=0

1
i!

n∏
j=1

(n− i+ j)

=

n∑
i=0

(2n− i)!
i!(n− i)!

.

Thus, we have

σn,k = −
1
n!2

n∑
j=0

(−1)jhjk
j!(n− j)!

∫ xk+1

xk
(xk+1 − t)2n−jf (2n+1)(t)dt

= −
1
n!n!2

∫ xk+1

xk
(xk − t)n(xk+1 − t)nf (2n+1)(t)dt

=
(−1)n+1

(2n+ 1)!2
h2n+1k f (2n+1)(ηk)

for some ηk ∈ (xk, xk+1).
From Lemma 4 we have

|(1− u)nun(1− 2u)| ≤
[

n
2(2n+ 1)

]n √2n+ 1
2n+ 1

<
1
22n+1

.

From this we obtain (22) immediately. �

In [6], the bound of ‖H2n+1 − H2n−1‖∞ was estimated. Here we give the exact expression of H2n+1 − H2n−1 as follows.

Theorem 6. If f ∈ C2n([a, b]), then for x ∈ [xk, xk+1],

H2n+1(x)− H2n−1(x) =
(−1)n

(2n)!
(1− u)nunh2nk f

(2n)(ζk), (23)

where u = (x− xk)/hk, ζk ∈ (xk, xk+1), and

‖H2n+1 − H2n−1‖∞ ≤
h2n

(2n)!4n
‖f (2n)‖∞. (24)

Proof. From (11) and (14), we have

H2n+1(x)− H2n−1(x) = w2n(x)+ w2n+1(x)

= (1− u)nun
[
(1− u)(λn,k + σn,k)+ u(λn,k − σn,k)

]
. (25)
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In the same way as the proof in Theorems 4 and 5, by Lemma 3, we have

λn,k + σn,k =
1
n!

n∑
j=0

(2n− j− 1)!
j!(n− j)!

hjk
[
nf (j)k − (−1)

j(n− j)f (j)k+1
]

=
(−1)n

n!(n− 1)!

∫ xk+1

xk
(t − xk)n−1(xk+1 − t)nf (2n)(t)dt,

λn,k − σn,k =
1
n!

n∑
j=0

(2n− j− 1)!
j!(n− j)!

hjk
[
(j− n)f (j)k + (−1)

jnf (j)k+1
]

=
(−1)n

n!(n− 1)!

∫ xk+1

xk
(t − xk)n(xk+1 − t)n−1f (2n)(t)dt.

Therefore, we obtain

H2n+1(x)− H2n−1(x) =
(−1)n

n!(n− 1)!
(1− u)nunf (2n)(ζk)

×

∫ xk+1

xk
(t − xk)n−1(xk+1 − t)n−1 [(1− u)(xk+1 − t)+ u(t − xk)] dt

=
(−1)n

(2n)!
(1− u)nunh2nk f

(2n)(ζk)

for some ζk ∈ (xk, xk+1). From this we obtain (24) immediately. �

If we weaken the condition on f , then the following results hold.

Theorem 7. If f ∈ Cn([a, b]), then

|λn,k| ≤
cn−1
n!2
hnkω(f

(n), hk), (26)

where cn−1 =
∑n−1
j=0

(
n−1
j

) (
2n−j−2
n−1

)
, ω(f (n), ·) is the modulus of continuity of f (n), and

‖w2n‖∞ ≤
cn−1
n!4n2

hnω(f (n), h). (27)

Proof. In a similar way as the proof in Theorem 4, we have

λn,k =
1
n!2

n−1∑
j=1

(2n− j− 1)!
(j− 1)!(n− j)!

hjk

{
f (j)k + (−1)

j

[
n−1∑
i=j

hi−jk
(i− j)!

f (i)k +
1

(n− j− 1)!

∫ xk+1

xk
(xk+1 − t)n−j−1f (n)(t)dt

]}

+
hnk
n!2

[
f (n)k + (−1)

nf (n)k+1
]

=
1
n!2

n−1∑
j=1

(−1)j(2n− j− 1)!
(j− 1)!(n− j)!(n− j− 1)!

hjk

∫ xk+1

xk
(xk+1 − t)n−j−1f (n)(t)dt +

hnk
n!2

[
f (n)k + (−1)

nf (n)k+1
]

=
1
n!2

n−1∑
j=1

(−1)j(2n− j− 1)!
(j− 1)!(n− j)!(n− j)!

hnk f
(n)(θkj)+

hnk
n!2

[
f (n)k + (−1)

nf (n)k+1
]
,

for some θkj ∈ (xk, xk+1). By Lemma 3,

n∑
j=1

(−1)j(2n− j− 1)!
(j− 1)!(n− j)!(n− j)!

=

n−1∑
j=0

(−1)j+1(2n− j− 2)!
j!(n− j− 1)!(n− j− 1)!

= −1.

Therefore, we obtain

λn,k =
hnk
n!2

n∑
j=1

(−1)j(2n− j− 1)!
(j− 1)!(n− j)!(n− j)!

[
f (n)(θkj)− f

(n)
k

]
,

where θkn = xk+1. Thus, we obtain (26) and (27) immediately. �



X. Han / Journal of Computational and Applied Mathematics 225 (2009) 113–123 121

Theorem 8. If f ∈ Cn([a, b]), then

|σn,k| ≤
cn
n!2
hnkω(f

(n), hk), (28)

where cn =
∑n
j=0

(
n
j

) (
2n−j
n

)
, and

‖w2n+1‖∞ ≤
cn

n!4n+1
hnω(f (n), h). (29)

Proof. In a similar way as the proof in Theorem 5, we have

σn,k =
1
n!2

n−1∑
j=0

(2n− j)!
j!(n− j)!

hjk

{
f (j)k − (−1)

j

[
n−1∑
i=j

hi−jk
(i− j)!

f (i)k +
1

(n− j− 1)!

∫ xk+1

xk
(xk+1 − t)n−j−1f (n)(t)dt

]}

+
hnk
n!2

[
f (n)k − (−1)

nf (n)k+1
]

= −
1
n!2

n−1∑
j=0

(−1)j(2n− j)!
j!(n− j)!(n− j− 1)!

hjk

∫ xk+1

xk
(xk+1 − t)n−j−1f (n)(t)dt +

hnk
n!2

[
f (n)k − (−1)

nf (n)k+1
]

= −
1
n!2

n−1∑
j=0

(−1)j(2n− j)!
(j− 1)!(n− j)!(n− j)!

hnk f
(n)(θkj)+

hnk
n!2

[
f (n)k − (−1)

nf (n)k+1
]
,

for some θkj ∈ (xk, xk+1). By Lemma 3,

n∑
j=0

(−1)j(2n− j)!
j!(n− j)!(n− j)!

= 1.

Therefore, we obtain

σn,k =
hnk
n!2

n∑
j=0

(−1)j(2n− j)!
j!(n− j)!(n− j)!

[
f (n)k − f

(n)(θkj)
]
,

where θkn = xk+1. Thus, we obtain (28) and (29) immediately. �

It is to be expected that the constant cn/(n!4n) tends to zero when n is large. In [6], it is illustrated numerically that a
corresponding constant tends to zero when n is large. Now we show that cn/(n!4n) tends to zero when n is large as follows.
Since (

2n− j
n

)
≤
1
2

(
2n− j+ 1

n

)
≤
1
22

(
2n− j+ 2

n

)
≤ · · · ≤

1
2j

(
2n
n

)
,

we have

cn =
n∑
j=0

(
n
j

)(
2n− j
n

)
≤

(
2n
n

) n∑
j=0

1
2j

(
n
j

)
=
3n

2n

(
2n
n

)
.

For i = 1, 2, . . . , n, we have (n+ i)/[i(n− i+ 1)] ≤ 2. Thus we have

cn
n!4n
≤

3n

4n2nn!

(
2n
n

)
=
3n

4n2n

n∏
i=1

n+ i
i(n− i+ 1)

≤
3n

4n
→ 0 (n→∞).

4. The error estimates of H2n and a numerical example

H2n(x) has the same continuity as the H2n−1(x). The following theorem shows that H2n(x) has accuracy O(h2n+1) and so
has better accuracy than H2n−1(x).
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Fig. 1. The piecewise interpolants and their correction terms.

Theorem 9. If ∈ C2n+1([a, b]), then

‖f − H2n‖∞ ≤ ‖f − H2n+1‖∞ +
h2n+1

(2n+ 1)!4n+1
‖f (2n+1)‖∞, (30)

‖f (r) − H(r)2n ‖∞ ≤ ‖f
(r)
− H(r)2n+1‖∞ +

h2n−r+1

(2n− r + 1)!22n−r+1
‖f (2n+1)‖∞ (31)

with r = 1, 2, . . . , 2n+ 1.

Proof. For x ∈ [xk, xk+1], k = 1, 2, . . . ,m− 1, r = 0, 1, . . . , 2n+ 1, u = (x− xk)/hk, we have

f (r)(x)− H(r)2n (x) = f
(r)(x)− H(r)2n+1(x)+ H

(r)
2n+1(x)− H

(r)
2n (x)

= f (r)(x)− H(r)2n+1(x)+
σn,k

hrk
[(1− u)nun(1− 2u)](r).

From this, Lemma 4 and Theorem 5, we obtain (30) and (31) immediately. �

According to (2) and (30), H2n has accuracy O(h2n+1) and reproduces all polynomials of degree≤ 2n. When the accuracy
of H2n is enough, we may not compute H2n+1. From (14) we can see that

H2n(x) = H2n+1(x)

for x = xk, (xk + xk+1)/hk, xk+1, and∫ xk+1

xk
H2n(x)dx =

∫ xk+1

xk
H2n+1(x)dx,

k = 1, 2, . . . ,m− 1. Therefore, H2n approximate H2n+1 very well. This point can also be seen from (22).
In order to illustrate the theoretical results, we end this section by a numerical example. We describe a decomposition of

the interpolants Hj, j = 1, 2, . . . , 6, which interpolates the values of the function f (x) = x sin(x), and its derivatives at the
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Fig. 1. (continued)

knots xk = −6.5+0.5k, k = 1, 2, . . . , 17. The function is the same as the function given in [6], and the number of the knots
is less than the number of the knots given in [6]. Fig. 1 shows the graphs of the functions Hj (1 ≤ j ≤ 6), wj (2 ≤ j ≤ 6),
and the error function f − H6. The corresponding functions of the graphs are marked in Fig. 1. From the graphs we can see
that w2i is near w2i−1, and then correction terms w2i are effective. With the graphs in [6], we can see that the error bounds
of f − H6 and f − H7 are close since the both error bounds are about 10−8.
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