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Abstract

This paper presents a mixed finite volume element scheme based on rectangular partition for solving bi-
harmonic equations. It also gives a kind of adaptive Uzawa iteration method for the scheme. It is rigorously
proved that the scheme has first-order accuracy in /' semi-norm and L? norm according to the characteristics
of the scheme. Finally, two numerical examples illustrate the effectiveness of the method.
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1. Introduction

Finite volume element method (FVEM) [4,10,14] or its generalized form, finite volume method
[5,9], uses a volume integral formulation of the differential equation with a finite partitioning set of
volume to discretize the equation. As far as the method is concerned, it is identical to the special
case of the generalized difference method (GDM) proposed by Professor Ronghua Li [6,8,11,13,16],
that is, linear or bilinear finite element space is used as trial or admissible finite element space and
piecewise constant space is used as test function space. As for theoretical analysis, there are some
differences in FVEM and GDM. For example, FVEM conventionally estimates the error by discrete
energy norm, whereas, GDM absorbs more ideas from finite element method. Because these methods
keep conservation law of mass or energy, they are widely used in computational fluid mechanics.

In this paper, we are concerned about biharmonic equations. Because of their importance, lot of
methods have been developed to treat biharmonic equations, for instance, 13-point finite difference
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scheme, higher-order finite element methods and more commonly used, mixed finite element methods
[2,3,7,12,15]. As for generalized difference methods, Wei Wu [11] presented a kind of Ciarlet—Raviart
mixed generalized difference method by triangulation and circumcenter dual partition. Zhongying
Chen [16] proposed another method by other variational principle. Still based on Ciarlet—Raviart
mixed variational principle, we present a kind of mixed FVEM by rectangular partition in Section
2. In Section 3, first-order error estimate is derived strictly in accordance with the characteristics
of the FVEM. We note that the method of error estimate in this paper is somewhat different from
the method in [8,11]. We do not introduce the so-called Neumann projection and the method in
this paper is more concise. Because the linear system of algebraic equations derived by mixed finite
volume element scheme is indefinite, classical iteration methods such as Gauss—Seidel and SOR are
not valid for the scheme. In Section 4, we construct a class of adaptive Uzawa iteration method.
To verify the method in this paper, we compute some typical numerical examples and the results
are very satisfactory. Compared with 13-point finite difference scheme, the method in this paper has
higher computation accuracy and can be used to solve more general problems.

2. Mixed FVEM

Consider the following two-dimensional biharmonic equation on domain D:

A =f(x,y), (x,y)ED, (2.1a)

Y= j =0, (x,y)€0D, (2.1b)

Q)

where f(x,y) is sufficiently smooth and n denotes the unit outward normal vector of 0D. For
convenience, assume D = [0, 1]>.
By introducing vorticity Q = —Ay, (2.1a) is equivalent to

~AQ=f, —-Ay=Q. (2.2)

Denote H"(D) by the standard Sobolev space of order m. Also denote by Hé'")(D) =H}(D)N
H"™(D). Let V C D be any control volume with piecewise smooth boundary 0V. Integrate (2.2) over
control volume V', then by Green’s formula, the conservative integral form of (2.2) reads, finding
(U Q) eHéz)(D) x H*(D), such that

— ds-/fdxdy vV C D, (2.3a)
o a”l
oY -
—/ qu:/ Qdxdy VV CD. (2.3b)
or\op On Jv

It is easy to prove that (2.3) is equivalent to (2.1) for (4 Q) € (C*(D)NCH(D))x C*(D) and f € C(D).
In fact, from (2.3a) and by Green’s formula, we have f,, (—AQ— f)Ydxdy=0 VV C D. From the
continuity of —AQ — f and the arbitrariness of V' C D, we can derive —AQ = f in D. Restricting
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V' C D for (2.3b), we know —Ay = Q in D, then fanaD(at///an)ds =0 for arbitrary ¥ € D. In a
imi = 0. Hence, (2.1) holds.

The FVE approach of (2.3) consists of replacing Héz)(D)(HZ(D)) by finite-dimensional space of
piecewise smooth functions and using a finite set of volumes. In this paper, we consider rectangular
partition of D and piecewise bilinear interpolations for € and .

First, give a nonuniform rectangular partition Oy, for D and the nodes are (x;, y;) (i=0,1,...,N,j=
0,1,...,M). Let Dy={(x;, »;),0 <i < N,0 < j < M} and denote all the interior nodes by Dj. Further
let hy =x; —x;—; (i=12,...,N), kj =Y — YVj-1 (j=12,....M), Xi—1/2 = X; — hi/2, Xit12 =X +
hiv1/2, yic12=y; —kj/2, yjs1p=y; +kj11/2, then Vi =[xi_12,Xiy12] X [Vj—1/2, ¥j+1)2] is a control
volume or dual element of node (x;,y;). For boundary nodes, their control volumes should be
modified correspondingly. For instance, Voo = [xo,x1/2] X [ Vo, y1/2], Vio = [Xi—1/2, Xi+1/2] X [ Vo, y1,2] for
i=1,2,...,N — 1. All the control volumes constitute the dual partition Q; of domain D.

Second, let H, C H'(D) and Hy, C HJ(D) be both the piecewise bilinear finite element sub-
spaces over partition O, then the mixed finite volume element scheme of (2.3) reads, finding
(Y, Q1) € Hop, X Hy, such that

—/ %d —/ fdxdy, i(j)=12,....N—1(M —1), (2.4a)
0¥
o o
— ds = Q,dxdy, i(j)=0,1,....,N(M). (2.4b)
ov;\oD on Vi

Eq. (2.4) can be further written as difference equations. Denote by Q;; = Qu(x;, ¥;), Vi = Wn(xi, y;).
For a uniform partition with M =N and h; = k; = h, (2.4) can be written as

T12Q0 — (i1 1 + Qi jm1 + Qi + Qim1j41)

—2(Qi +Qi+1,j+9i,j+1+Qi_1,,)]_/ fdxdy, ij=12,...,N—1L (2.5)
VI..

%[12%‘ — (Yim1j—1 + Vi1 j—1 + Y1 F Yim1 1)
=20 j—1 + Vi1 F Wi + Yim1)]
hZ
26*4[36917 F(Qim1jm1 + Qi1 j—1 + Qi1 j1 + Qi1 1)
+6(Qi,]’_] +Qi+1,j+Qi,j+1 +Qi—l,j)]a i,j:1,2,...,N— 1 (26)

Bottom boundary (y =0):

h2
E[9QOO +3Q10 +3Q01 + 211] = 3o — (Y10 + Yo1 + Y1),

2

h
16[18910+3Ql 1,0 F3Qi10+ Qi1 + 685 + Qi1
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=— Y10+ W0 — Vir10 — Y11 — 251 — Yigr1, i=1,2,...,N — 1,
2

h
E[9QNO + 31,0+ 321 + Qy_1,1] = —Yw—1,0 + 3¥Yno — Yn—1,1 — Yn1. (2.7)

Top boundary (y = 1):

h2
T6[990N +3Q0n—1 +3Qv + Qi nv—1]1=3%on — Won—1 + Vv +¥1n—1),

hZ
R[ISQW +3Qi N +3Qin + Qi n—1 F6Q v+ Qipiv—1]
= — YN+ Yy — Vs Ny — Viciv—1 — 2¥in—1 — Yiin—1, i=1,2,...,N —1,
h2
E[gQNN +3Qu_ v +32un—1 + Qv_1n-1]

= —Yn—1n + 3w — Un—1N—1 — YnN—1- (2.8)
Left boundary (x = 0):
h2
16
== -1+ 6% — Vo1 — Y1 -1 — 2, — VY41, j=1,2,...,N—1. (2.9)

Right boundary (x =1):

[18Q0; + 30, ;—1 + 30 j41 + Q11 +68; + Q1 ;1]

2

h
T6[189Nj +3Qn ;1 + 32 41 + n—1j—1 621 + Q1 j11]

= —n,—1 +OUn; — Y1 — N1 — N1 — Yn—1je, J=1,2,...,N —1. (2.10)

Obviously, the linear system of equations (2.5)—(2.10) is simpler than that formed by mixed bilinear
finite element method. It can be solved by Uzawa iteration method, see Section 4 for detail.

3. Error estimate

In Section 2, we derived a kind of finite volume element scheme. In this section, we further
analyze the error of the scheme. Because the theory about the generalized difference method [8,11]
has been established completely, we embed the scheme in Section 2 into the theoretical framework
of GDM. Suppose P(x;, y;) is an arbitrary node in D;,. Denote Vp = V;j by the corresponding dual
element of node P and yp by characteristic function over Vp. Let

Oion= > eu(P)rp Vou€Hy, 3.1)
PED_;,
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. 0w
a(o, Do) ==Y ou(P) 5 s w € HX(D) (H{ (D)), @€ Hy(Ho),
pPeb, arp\op on
(@ o= ou(P) / wdxdy, @n€ Hy(Ho). (32)
= 173
PeDy,

By restricting the arbitrary control volume V' to special Vp, (2.3) can be written as, finding (4 Q)
e H(D) x H*(D), such that

a(Q, I ¢n) = (f, 1T, 1) Vi € Hon, (3.3a)

a( T 0n) = (2, 15¢01) Vi € Hy. (3.3b)
Analogously, (2.4) equals to finding (Y, Q) € Ho, X Hj, such that

a(Qp, ) = (f, T, 1) Vpi € Hop, (3.4a)

a(yn, I, n) = (2, I 1) Yo € Hy,. (3.4b)

Remark 1. For boundary node P and ¢, € Hy, ¢,(P)=0. Hence, (3.3a) and (3.4a) hold essentially
for interior nodes and they just equal to (2.3a) (V' = Vp) and (2.4a), respectively.

Suppose O, is a quasi-uniformly regular partition, i.e., there exist constants oy, o, o3, 04 > 0, sat-
isfying

oymax h; < mink;, opmaxk; < mink;, osk; < h < ask;. (3.5)
i i J J

Let & = max(max h;, max k;). Depicted as in Fig. 1, we convert the integral on the edge of dual
partition to the related elements, then

4
a(on i) == > > [¢n(P1) = $u(Pri1)] /MQ %ds Vi € Hon, o1 € Hi, (3.6a)

E€Qy I=1
4 8(;5
a(i i) == D [0u(P) = @u(Pri)] | =0 ds Vs € Hon o1 € Hy, (3.6b)
EEQ, I=1 MiQ

where Ps = P;.

Remark 2. It is easy to see that (3.6a) also holds for ¢, € H*(D) and (3.6b) holds for ¢, eHéz)(D).

Denote || - ||s and |- | by continuous norm and continuous semi-norm of order s in Sobolev space,
respectively. Define discrete H' semi-norm and discrete L? norm, respectively, by
12 12
AIVES Z |<Ph\ih,5 o Nlenllon= Z ||€Dh|’%,h,5 Vi € Hy (Hon), (3.7)

EE€Qy Ee€Qy
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Fig. 1. Illustration for an element and its nodes.

where E :P1P2P3P4 = [xi—1,xi] X [¥j—1, y;], shown as in Fig. 1 and

Palt hp = 2h Z(@h(PlJrl)_(Ph(Pl))2+7Z(¢h(Pl+l)_€0h(P1))2
=13 11 24

hik;
lnllg e = 4j Z on(Pr).
=1

Lemma 1. For Yo, € H, (Ho,), |@nl1.n is equivalent to |@,ly and || @pllo.n is equivalent to ||op|lo,
that is, the following inequalities hold.
ol < loalt < loulin 2 lonllon < lloallo < ll@nllons (3.8)

Proof. Suppose O is the center of element E. Let & =2(x — xp)/h;, 1 =2(y — yo)/k;, then E is
transformed to £ = [ — 1,1]%. Construct bilinear interpolating base functions on £, which are

=31 = =n), Na= (1 + (1 —n), N3 =31+ )1 +n), Na=3(1 =1 +1n).

Then @), = ZLI ou(P)Ni(E,17). According to the definition of |@,|1 £, we have
ki (3on ' hi (g’
o=, [ (%)% (%

k.
= T;H[(@h(PZ)_(Ph(Pl))2+((Ph(P3)_(Ph(P4))2+((Ph(P2)_(/’h(P1))((Ph(PS)_(Ph(P4))]

dédn

h;
+§[(<Ph(P4) — ou(P1))* + (@i(P3) — piu(P2))

H(@n(Ps) — @n(P1))@n(P3) — @u(P2))].
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By Cauchy inequality and (3.7), the first inequality of (3.8) is proved. As for the second one, a
straightforward computing shows

4 2 1 2 on(P1)
hik; 4 2 1 on(P2)
lonlls r = =2 [@n(P1), @4(P2), 9i(P3), pi(Pa)]
36 2 4 2 on(P3)
2.1 2 4] LouPs)

The eigenvalues of the matrix of the right-hand side of the above formula are 4, = 1,3,3,9, from
which we can obtain

5 loallon < lloallg < llonllo.s

Lemma 1 is proved. O

Lemma 2.
a(on, Iy pn) = a(Qu, I 1) N € Hyy Vi € Hy, (3.9)
a(dn IT; ¢n) = 510al1 5 = 510nlt Vi € Hop (3.10)

Proof. By (3.6), further computing the integrals, we have

/ ? ds= ﬁB(‘ﬁh(PZ) = Ou(P1)) + (Pn(P3) — Pu(Pa))]
Mo on 8h;

/?Z ds = _%[(Cbh(f’z) = On(P1)) + 3(Pu(P3) — pn(P4))],

M50
/ ? ds = 2L {((Ps) — $a(P1)) + 3 Bu(Py) — du(P)),
Mo on 8kj

0 h;
/ % ds =~ P — Gu(PD) + ($1(P) — bu(P)]
M0 0N j

The integrals about ¢, can be obtained analogously. A straightforward verification shows

Z[d)h(Pl) — pn(Pr1)] a—qih ds = Z[(ph(Pz) — on(Prs1 )]/ % ds.

=13 M0 0 =13 M0
Similar formula can also be obtained for / =2,4. Thus, (3.9) holds. As for (3.10), we have
1 k; h;
IT; dp) = ~ el Pii1) — (P + - Pri1) — ¢u(P))?
a(gn. 11}, ) 4%{ hilzjj(qsh( ) = $u(PD) + kj%(qsh( re) = i 1))}

= 2 1ulin = 3 |dnli

The proof is completed. [J
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Lemma 3.
(on 1) = 5 llonll s = 3 llonlls  Vou € Hy, (3.11a)
(o, I 01)| < l|lloll@allon < 3llloll@alle Vo e H'(D) Vo, € H,. (3.11b)
Proof.
(oI5 n) = > (Ph(P)/ ppdxdy =) Z(Ph(Pl)/ ppdxdy,

PED, EcQ, [=1

where for example
hik;
/ ppdxdy = 764] [O0n(P1) + 30n(P2) + @n(P3) + 30n(Ps)]-
Vo, NE

Analogously, we can get the other integrals. Add these integrals, then

Pn(Pr)
hik; @n(P2)
Z on(Pr) | gndxdy="ZLlon(P1). ou(P2). o4(Ps). @4(Pa)IM
Vp,NE on(P3)
On(Ps)
where
9 3 1 3
39 3 1
M =
1 3 9 3
31 3 9

A simple computation shows the eigenvalues of matrix M are A; =4,8,8,16, from which we can
get (3.11a). As for (3.11b), denote Sy, by the area of the dual element Vp, then
1/2 1/2

.00l < | S oerse| |5 o ([ oar) | <ol
P Ve

PED, PED,

By (3.8) we know (3.11b) holds. Lemma 3 is proved. [J

From Lemmas 2 and 3, we know that scheme (3.4) has a unique solution. In fact, without loss
of generality, assume f =0 in (3.4a). Let ¢, =, in (3.42) and ¢, = Q, in (3.4b), then by (3.9),
we have (£, 11;Q;,)=0. By (3.11a), we can derive €, = 0. In particular, taking ¢, =, in (3.4b)
and by (3.10), we know 1, = 0. That is, the solution of (3.4) is unique.

Let I1,Q:H'(D) — Hy, and II,y:H} (D) — Hp, be two piecewise bilinear interpolation projects.
By the interpolation theory in Sobolev space, we have

1Q — 1,Q]lg < CR*|Q)2,  |¥ — |1 < Chly). (3.12)
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Lemma 4. Assume y € H3(D) N H3(D) and Q€ H*(D), then there exists a positive constant C,
independent of the mesh size h, such that

laGy — I IT 1) < CR*Wls|@alt,  a(y — I I p)| < ChlYlo|@uli Vou € Hy,  (3.13)
0@ — 1,0, TT; 8| < ChIOL|duls Yoby € Ho (3.14)

Proof. From (3.6b) and Remark 2, noting Fig. 1, we have

: oy — 11
o~ Mk i) == 3 S ou(P) — qupro) [ SV a (3.15)
EcQ, I=1 !
W) k[ [ O )
[ e = [ L — e + ()~ v}
s 1)

As a linear functional of € H*(D), I,(y) satisfies |[;(¥)| < C||Y]|, o 4- In addition, H3(E) —
CY(E). Hence, |I,()] < C|lyl5 5 A straightforward calculation shows /(i) = 0 for y = 1,&,, &,
én,n?. By Bramble—Hilbert Lemma [1], we know |/;(/)| < C |5 - By an integral transformation,
we have |I;(})| < Ch*|Y|5 £. Thus,

/M ds| < C& P |35

h;

The other integrals in (3.15) have similar estimates. Using the inequality

12 1 12
Z a;b;| < (Z Pia?) <Z pb?> ,

noting (3.5), we get
4

oy — Iyy)
;?wwo—w@mﬂﬂw&lds

M0 on

< CR*Y)5.6|@nl1nk-

Again from (3.15), by Cauchy inequality and Lemma 1, we obtain the first inequality of (3.13).
Now we prove the second one of (3.13). I;(y) is still defined as above. Using trace theorem, we
further have

Wl < CW oz + 1Vl co.2)-
Because H>(E) < C(E), thus, |I,()| < Cll¥|l, z- Again by Bramble—Hilbert Lemma, we can prove
the second inequality of (3.13). As for (3.14), from (3.6a), a formula analogous to (3.15) can be
derived. Thus, (3.14) holds. Lemma 4 is proved. [
Lemma 5 (Ciarlet [1]). For Yo, € Hy, Y, € Hop, we have

loalt < Ch M nllo, [l dallo < Clepuls. (3.16)
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Subtracting (3.4) from (3.3), we obtain the following error equations:

a(Q — Q, IT;¢,) =0 Vo, € Hy,

a(y — Y, I, 1) = ( — Q4 IT; ) Ve € Hy.

Now we state the main result of this section.

(3.172)

(3.17b)

Theorem. Assume (Y Q)€ (H{(D) N H*(D)) x HX(D) is the solution of (2.3) and Qy is a quasi-
uniformly rectangular partition of domain D, then the approximate solution (\,, 2;,) of mixed finite
volume element scheme (2.4) converges to the true solution (Y4 2) with the following estimate:

W — Wl + 1|2 — Qullo < Ch(Y|5 + [W]2 + Q]2 + 2]2]5).
Proof. From Lemmas 2 to 5 and by e-Cauchy inequality, we have
1,2 — @ul§ < 4012 — @, I 2 — Q1))
=4la(y — My IT,(11,Q2 — ) + a(l1y — i, 11T, Q2 — 2y))
—(Q — 1,2, IT;, (11,2 — Q)]
=4la(y — M IT,(11,Q2 — ) — a(Q — 11,2, IT, (11 — i)
—(Q2 — 11,2, IT, (11,2 — 2,))]
< CR2 W[5 T3 Q — @uly + CIQLTTW — Yl + CH QL[| T2 — 4o
< ChWY (T2 — ullo + ChIQLIT — ynly + Ch?| Q1|12 — Qo
< CR YIS + C|QI5 + Ch*|Q5 + Cel Ty — i + 3 1142 — il
Hence,
11,2 — 45 < CR?|W[3 + Ch?|QJ3 + ChH Q3 + Cel Iy — yuli.
Because Hy, C Hy, (3.17b) also holds for V¢ € Hy,, thus
[T — Yl T < 2a(ITy — o, I (I — i)
=2[(Q — 1L, (1Y — ) + (11, Q2 — @, I, (1T — i)
—a(y — M I — i)

< CR|QL| T — Ynllo + CTRQ2 — Qullol Ty — Vllo + Chlys 2| Ty — iy

By Lemma 5, we obtain

Ty — Y|y < CITQ — Qullo + CH|R> + ChlYl,.

(3.18)

(3.19)

(3.20)
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Substituting (3.20) into (3.19) and taking Ce = %, we have

11,2 — Qullo < Ch(|]s + W]z + [Q]2 + A|€2]2). (3.21)
Further substitute (3.21) into (3.20), then
[Ty — Y|y < Ch(Y15 + [la + Q]2 + AQ2). (3.22)

Error estimate (3.18) now follows directly from interpolating error estimate (3.12). The proof is
complete. O

4. Adaptive Uzawa iteration algorithm and numerical experiment

Because the linear system of equations derived by (2.4) is a typical indefinite one, we must adopt
the methods which are suitable for this problem. Here we use Uzawa iteration method [1] to solve
(2.4). Denote Ny by the number of boundary nodes of Oy, and y; (i=1,2,...,Ny), the piecewise bilin-
ear interpolating base functions corresponding to the boundary nodes. Let M), =span{u,, 1, .., iy, }»
then Hj, = Hy, ® M. For Vo, € M, define their inner product by

No No No
(P = > oubs [ ey where =Y o, 6= o (4.1)
k=1 Ve k=1 k=1

Then the adaptive Uzawa iteration algorithm can be stated as follows:

1. Given arbitrary A) € M, and p > 0. Let norm = 10%,
2. Assume 2,11 € Mj, is known, find Q,ﬂ, such that

Q) — 7y € Hon,  a(Q4 ;1) = (f, i) Vbi € Hop. (42)
3. Find | € Hyp,, such that

a(Wy, I n) = (24, i) Yy € Hop. (4.3)
4. Solve 2™, which satisfies

G = A s, = plaps ) = (R p)] - Vit € My, (4.4)
5. Compute norm; = (A, — AL 201 — 21)12 If norm; > norm, then set p/2 = p.

6. If norm; < 1077, stop; otherwise, norm; = norm, repeat 2—6.

From the theory of Uzawa iteration method [1,11], there exists 0 < p < pmax such that the above
iteration procedure is convergent. It is usually difficult to compute pumax, S0, we write the above
procedure as adaptive one.

In the following we provide two numerical examples to illustrate the effectiveness of scheme
(2.4).

Example 1. Let D =[0,7]*> and f(x, y) = 16 cos(2x)cos(2y) — 4 cos(2x) — 4 cos(2y) in (2.1a), then
the true solution to (2.1) is Y =(sinx)?(sin y)?. Let h=n/31, compute this problem by mixed FVEM
(2.4) and the results are shown in Fig. 2. We also compute the maximum absolute errors of { and
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1 4
08 : 3
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o6 : g .
d : £
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02 : 1
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0 \! : 2
4 : 4
/ ’:‘o“ SR 4
200 e e S s
y 1 === 1 X
0 0

Fig. 2. The results computed by scheme (2.4) in Example 1: left: the computational surface of y; right: the computational
surface of Q.

Q, respectively, which are Ey, =1.7147 x 107 and Eq = 1.4483 x 1072, where Ey = ||}y — Y||oo and
Eo = ||Q — Q4||co. For comparison, we further compute this problem by 13-point finite difference
scheme (denote by FDS13P) and the results are £, = 6.8787 x 10~ and Eq = 2.7485 x 102, from
which we know the accuracy of the scheme in this paper is obviously higher than that of 13-point
finite difference scheme.

Example 2. Compute the deflections of the thin clamped unit square plate [12]. Consider two cases:
case A and case B. In case A, the load is uniform and we take f(x,y)=1. From [12], we know
Y(3,1) ~ 1.265 x 1073, In case B, we choose [ = d(x — 1,y — 1), where  being the Delta
function. Thus, in case B, the plate is under the action of a concentrated central load. Also from
[12], w(%, %) ~ 5.6 x 1073, In case A, we choose & = 0.05 and 0.025 and compute the problem by
scheme (2.4) and 13-point finite difference scheme (FDS13P). In case B, because d(x — %, y— %)
tends infinite at (%, %), it is impossible to use FDS13P. Only scheme (2.4) is implemented. For cases

A and B, the approximate solution of w(%, %) is shown in Table 1. We further plot the approximate
solutions of {y and Q, depicted as in Figs. 3 and 4 for cases A and B, respectively.
From Examples 1 and 2, we know that the scheme in this paper gets very satisfactory results for

different load f(x, y) and the scheme can be well applied to solve biharmonic equations.

Table 1
The approximate solution of l//(%, %) computed by some schemes in Example 2

h=0.05 h=0.025
Case A Case B Case A Case B
MFVEM (2.4) 1.2794 x 1073 57114 x 1073 1.2685 x 1073 5.6412 x 1073

FDS13P 1.2979 x 1073 1.2391 x 1073




T. Wang ! Journal of Computational and Applied Mathematics 172 (2004) 117—130 129

15

55555
AL K0998

LSRRI
2070220 5SS TN N
/’,;I/;///,,,;l,"%o‘o sefestiyrantnnn

S0 77 KPS SOCTL L MR
- SN g ° RN
o / N £ I -
o 47 5 5 -0 IS
' il \\ SLRERE0
Uy \“\\\ N 004 “‘\‘3\\\\\‘\&‘&“\\\:‘\\:‘%&
iy \ {
TR A ()
0 W\ -0.06
DRSNS N ki
1 Dttt 1
S S . )
RSS9 1
05 EZLEESIES
SSossS Sy
0 o 0 0

Fig. 3. The results computed by scheme (2.4) in Example 2 (case A, h = 0.025): left: the computational surface of ;
right: the computational surface of Q.
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Fig. 4. The results computed by scheme (2.4) in Example 2 (case B, & = 0.025): left: the computational surface of ;
right: the computational surface of Q.
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