
Supporting Function Calls within PELCR

Antonio Cosentino1

Dipartimento di Informatica, Sistemi e Produzione,
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Abstract

In [10,11], PELCR has been introduced as an implementation derived from the Geometry of Inter-
action in order to perform virtual reduction on parallel/distributed computing systems.
In this paper we provide an extension of PELCR with computational effects based on directed
virtual reduction [2], namely a restriction of virtual reduction [3], which is a particular way to com-
pute the Geometry of Interaction [5] in analogy with Lamping’s optimal reduction [6]. Moreover,
the proposed solution preserves scalability of the parallelism arising from local and asynchronous
reduction as studied in [11].
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1 Introduction

PELCR (Parallel Environment for optimal Lambda Calculus Reduction) is
a software package supporting optimal lambda calculus reduction on paral-
lel/distributed computing systems. It is devised as an interpreter for pure
lambda calculus (complete) reduction, whose development relies on the Ge-
ometry of Interaction [5] and successive results in the field of functional pro-
gramming and linear logic [3], which have shown that the reduction of lambda
terms can be mapped onto a graph rewriting technique known as Directed
Virtual Reduction (DVR), see [2]. Specifically, PELCR implements a particu-
lar strategy for DVR, referred to as Half Combustion (HC), see [10,11], which
permits great exploitation of parallelism by allowing the composition between
two edges coincident on a same node of the graph as soon as these edges be-
come available to the processor hosting that node. A set of optimisations are
also implemented within PELCR allowing a reduction of the communication
overhead, and a fair policy for distributing dynamically originated load (i.e.
new nodes and edges generated during the reduction) among processors.

Although pure lambda calculus has a variety of applications, many func-
tional programming languages tend to deviate from it in order to become
more attractive and effective for programmers, and to enrol the use of non-
functional constructs. With respect to this point, let us cite the most diffused
examples of functional languages, namely ocaml and haskell, both having ad-
ditional base types and facilities for explicit interactions with the underlying
operating system.

In this paper we show how it is possible to support similar extensions in
PELCR, without preventing the possibility to exploit parallelism (and hence
to achieve run-time effectiveness) arising from Geometry of Interaction. Our
starting point is Mackie’s work on the implementation of the Geometry of
Interaction where the author extends Girard’s algebra with extra generators
for natural numbers and for the successor function. The new generators form
an equational theory which defines a particular abstract data type.

By generalising Mackie’s approach, we extend the applicability of PELCR
as an environment for the execution of functional and imperative languages
through automatic and adaptive distribution, where the functional parts take
into account functional dependencies and where external functions, let say
x-functions for short, make calls to imperative code implementing parts less
prone to be specified in a functional language. Also, compared to Mackie’s
original proposal, which deals with functions with a single parameter, we
address the case of functions with multiple parameters.

The rest of this paper is structured as follows. In Section 2, we provide the
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theoretical framework for the previously mentioned extension. In Section 3,
we present the interpretation of extended lambda calculus in dynamic graphs
with x-functions to be executed on top of directed virtual reduction. How to
support the extension within PELCR is described in Section 4. In Section 5,
we give an example of code using x-functions and report experimental data
related to the run-time behaviour while varying the number of used processors.

2 Geometry of Interaction and Extended L�

The extension we provide is obtained following the approach introduced by
Mackie in [7] and then expanded by Pinto in [13]. This technique can be
summarised with the addition of generators in L� with computational effects
consisting of data to be manipulated and executables to be evaluated when
interactions occur. This work explores this direction, and in fact we map those
generators onto data structures and functions defined in external libraries
implemented in C language.

Let us recall Pinto’s example, we consider a new generator S representing
the successor function S : N → N and a generator n for every integer n ∈ N.
Then a pair of specific interaction equations are given

S�n = (n + 1)S�, (1)

S�S = 1, (2)

and added to the algebra L�. Note that, while the evaluation of Equation (1)
is presented as a rewriting, it has attached a computational task to compute
the result S(n). In fact, these rules are better understood in the following
terms: we add to L� a generator S for the function and a generator N which
stands for a ground type object, a natural number in this case. Any generator
added to the algebra has a corresponding allocated memory space:

• to store its state n in the case of an object of type N, denoted by N : n,

• to store a program address p in the case of a function, denoted by S : p.

So now Equations (1) and (2) can be rephrased as

(S : p)�(N : n) = (N : p(n))(S : p)�, (3)

(S : p)�(S : p) = 1. (4)

Note that p(n) is obtained by calling the function with address p with
argument stored in N, and by storing the result in the space allocated for N.

We have two kinds of problems with this approach. First, we need to
consider how to extend such an approach to functions with more than one
argument: f : A1 ×A2 × . . . Ak → B. Second, we have to consider generators
for partially evaluated functions since, as in currification, the generator F ∈ L�
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Fig. 1. Pinto’s reduction of a term involving successor ((λx.x)λa.S(a) 0)

associated with f , interacts with its arguments one by one.

In order to give the general form of Equations (1) and (2), we introduce a
new family of generators, let say x-generators, with identifier i and constant lift
1, denoted by xi; from the algebraic point of view xi behaves like exponential
generators of lift 1, we then specify the computational task associated with
any generator, i.e. its computational effect.

For any xi we have a type τ(i) and a state(i), the state stores information
on the type of the computational task, and on its evaluation status; essentially
we have two classes of evaluation states:

• in case of data, denoted by xi : a, xi type is a ground type and its evaluation
state is the stored value a;

• in case of functions, denoted by xi : (p, v), xi type is a functional type and
its evaluation state is given by a function pointer p and by an ordered list
of values v of length strictly less than the arity of the function, note that
the vector may possibly be the empty one.

For the sake of simplicity we suppose a unique ground type σ and the
arrow type constructor, so the set S of types is S := σ|σ → S. We denote
σ → (σ → . . . (σ → σ) . . . ) by σn → σ.

Definition 2.1 For any xi we have that state(i) = 〈τ, p, v〉 where its type
τ = σn → σ ∈ S, p is a reference to a function code, and v = (a1, a2, . . . , am)
with 0 ≤ m < n. The case of data is treated as a particular case where
state(i) = 〈σ, null, (a1)〉.

We now introduce the definition of the Geometry of Interaction algebra
extended with x-generators. Interaction rules for x-generators are defined only
for well typed data/function; all the other types of interaction are undefined.
In Definition 2.2, and in particular in Equation (6) in Definition 2.3 below, we
suppose that xi has a functional type and xj a ground data type, moreover we
denote by si (respectively by sj) its state state(xi) = 〈σn → σ, p, (a1, . . . , am)〉
(resp. state(xj) = 〈σ, null, b〉):
Definition 2.2 For any pair of x-generators xi and xj the eval function acts
on the respective states si and sj as follows:
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eval(si, sj) =

{
〈τ(i), p, ()〉 m = n − 1,

〈τ(i), p, (a1, . . . , am, b)〉 m < n − 1,

and
eval(sj, si) = 〈γ, null, p(a1, . . . an−1, b)〉,

if τ(i) = σ1, . . . , σn → γ.

The next definition extends the usual presentation of Girard’s dynamic
algebra with interactions corresponding to the evaluation of the computational
effects associated with x-generators:

Definition 2.3 The extended monoid L� of the Geometry of Interaction is
the free monoid with a morphism !(.), an involution (.)� and a zero, generated
by p, q, a family W = (wi)i of exponential generators, and a family X = (xi)i

of x-generators such that for any u ∈ L�:

a�b = δab for a, b = p, q, wi, (5)

(xi : si)
�(xj : sj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(xi : eval(si, sj))
� if i �= j and

m = n − 1,

(xj : eval(sj, si))(xi : eval(si, sj))
� if i �= j and

m < n − 1,

1 if i = j,

(6)

!(u)a = a!e(a)(u), where either a = wi either a = xi, (7)

where δab is the Kronecker operator, e(a) is an integer associated with a called
the lift of a; note that e(xi) = 1 for all i, i is called the name of wi or xi

and we will often write wi,e(i) to explicitly denote the lift of the exponential
generator.

Orienting Equations (5-7) from left to right, one gets a rewriting system
which is terminating and confluent, provided that x-function calls eventually
return. The non-zero normal forms, known as stable forms, are the terms ab�

where a and b are positive (i.e., written without �s).

Example 2.4 Let us consider the following interaction:

(x1 : (σ2 → σ, &ADD(), ()))�(x2 : (σ, null, 1))(x2 : (σ, null, 3)),

it implicates the functional generator x1 associated with function ADD() of
arity 2 from integers to integers, and reference &ADD(), and the generator x2
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Fig. 2. Reduction of the term corresponding to ((λx.x)λa.λb.ADD(a, b) 1 3)

of a ground type for integer; it is reduced in the following way:

(x1 : (σ2 → σ, &ADD(), ()))�(x2 : (σ, null, 1))(x2 : (σ, null, 3)) →
→ (x1 : (σ2 → σ, &ADD(), (1)))�(x2 : (σ, null, 3)) →

→ (x2 : (σ, null, 4))(x1 : (σ2 → σ, &ADD(), ()))�.

3 Encoding Extended Lambda Calculus in PELCR

In the previous section, we have introduced the extension of the dynamic alge-
bra, and illustrated how to use it while considering the evaluation of arbitrary
arity functions. In this section we sketch out how to fill the gap between the
natural extension of term interpretation in the Geometry of Interaction by
Mackie and Pinto, in Figure 1, and the analogous interpretation of an arity 2
function, see Figure 2.

We have to trade-off between apparently clashing requirements:

• to have a single execution path weighted with x-generators (see Figure 3.a);

• to map multiple arity functions to nodes with multiple links (see Figure 3.b);

• to execute interactions by using the parallel directed virtual reduction pro-
vided by PELCR (see Figure 3.d).

In fact, we have included in PELCR features allowing us to obtain all
the above mentioned requirements. The first step is obtained by using the
internalisation in DVR of a synchronisation scheme which reduces x-function
and arguments interaction to a linear path with the correct configuration, i.e.,
like in Example 2.4, F �A1 . . . An. This approach appeared in a simplified form
as a construction to accommodate the conditional term of PCF, in Mackie’s
work on interaction nets [8].

Once we have obtained a single execution path, it must be proved not
to alter global properties of directed virtual reduction, namely splitness and
square-freeness [3], which are the basic properties to prove confluence and
termination of VR.

As we show in Section 5, devoted to execution examples, although we
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Fig. 3. The reduction of (ADD 1 3)

are forced to introduce a particular sequential evaluation pattern, the good
properties on scalability and speedup of DVR are preserved, and so DVR is
capable to exploit the available parallelism coming from functional specifica-
tion of the program. Let us note that with our technique, we can exploit
parallelism emerging from the functional part of the code, but we do not enter
in x-functions which are treated as black boxes.

4 Supporting the L� Extension within PELCR

In the original version of PELCR, only dealing with pure lambda calculus, the
basic operation executed while performing the reduction is the composition
of pair of edges coincident on a same node (see Figure 3.d). This is sup-
ported through adequate data structures maintained by PELCR to represent
the weights of the edges. These data structures are mostly based on string
representation of the weights, and those strings constitute the essential part of
the payload of each application message exchanged between distinct processes
to notify each other of the existence of new edges in the graph originated by
DVR steps.

To support the L� extension with no substantial modification of the basic
mechanisms employed by PELCR for the support of parallelism (i.e., message
aggregation and load balancing mechanisms whose benefits on the run-time
behaviour have already been extensively tested in the context of pure lambda
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calculus), and with no variation in the HC strategy, which performs DVR in
a parallel effective manner, we have extended the data structures maintained
by PELCR in a way allowing a compact representation of x-functions to be
eventually evaluated. The representation is based on a structured data type,
namely function descriptor, which implements the state associated with x-
generators by maintaining: (i) a function pointer, allowing the retrieve of the
code associated with the function when the evaluation needs to be performed,
and (ii) a vector of structured entries, namely parameters, that, for each
parameter to be passed to the function, indicates whether the parameter has
already been stored and, in the positive case, stores the corresponding value.

The structured type function descriptor has two additional fields stor-
ing the number of arguments for the function, and the number of arguments
which have already been stored within the parameters vector. Hence, the
evaluation of the function takes place as soon as the vector records the whole
set of parameters required by the function itself. In accord with Equation (6)
in Definition 2.3, this occurs when an edge carrying a function descriptor

for a function with n parameters, which already stores n− 1 of these parame-
ters, is composed through DVR with an edge carrying an additional parameter
to be passed to the function (hence the whole set of parameters for the function
gets completed).

The type of the return value for the function and the type of the pa-
rameters can be also selected by the user through a proper macro, namely
USERTYPE. However, the current implementation of PELCR cannot cope with
parameters of pointer type. This is because, while performing DVR steps, the
function descriptor and the function parameters might migrate across the
different processes, so that the function might eventually be evaluated by a
process that does not really host the buffer pointed by the parameter passed
to the function. This is the same problem appearing in standard Remote
Procedure Calls (RPCs), which require proper solutions we plan to introduce
within next releases of PELCR.

The fact that the function descriptor carries a function pointer, instead
of the whole function code, allows a reduced size for the application messages,
especially when dealing with functions having large size of the corresponding
modules. On the other hand, this approach imposes the constraint that the
function code needs to be available at all the processes so that the function
can be evaluated by any of them while performing the reduction. However,
in our implementation we allow a process to dynamically load the function
code whenever required in the form of a Dynamic Linking Library (DLL).
Beyond a better usage of memory, this approach also provides the advantage
of permitting the expansion/modification of the set of supported functions
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#uselib "./shared.so"

#def double = \l.\k.\x.((l)k)((l)k)x

#def map = \f.\l.\k.\x.((l)\y.(k)(f)y)x

#def F1 =\x.xfunction(foo)(x)

#def FF = \l.((map)F1)(double)l

#def AA = \k.\x.((k)123)((k)10)((k)3)x

#def five = \f.\x.(f)(f)(f)(f)(f)x

((five)FF)AA

#quit

Fig. 4. Benchmark code

without the need for recompiling the whole PELCR package.

5 Experimental Results

The experiments have been performed by using the code reported in Fig-
ure 4, which also gives an idea of the language that can be used within
PELCR. One of the main motivations for the use of PELCR is that parallelism
comes transparently for the end-user, which writes programs in a mixed func-
tional/imperative language, taking advantage of the parallelism emerging from
the functional structure and without having to explicitly use message passing
primitives. For this application, we have used an SMP computing system,
namely an IBM machine with 16 SP Power3 CPUs. The application works
on lists of integers. The list structure is encoded in lambda calculus, whilst
integers are 32bit unsigned integers, natively supported by the C compiler.
The library (shared.so) provides the x-function and contains the definition
of the numerical function foo programmed in C language. The functional
program takes a list as input, and iterates, by means of an opportune Church
numeral, the application of the function FF to the initial list AA. The lambda
term FF gets a list l, builds a list obtained by concatenating l with itself and
maps the x-function foo to the list.

Note that at each iteration the list doubles in size and so the application of
the function may rise a good degree of parallelism as proved by the scalability
shown in Figure 5. The reported data are very encouraging and essentially
confirm good scalability for the execution parallelism achievable by PELCR
even when using the computational effects hereby presented.
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[14] L. Regnier. Lambda-Calcul et réseaux. PhD thesis, Université Paris VII, 1992.

A. Cosentino et al. / Electronic Notes in Theoretical Computer Science 135 (2006) 107–117 117


	Introduction
	Geometry of Interaction and Extended L
	Encoding Extended Lambda Calculus in PELCR
	Supporting the L Extension within PELCR
	Experimental Results
	References



