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Abstract

In this paper, an efficient and fast numerical method is studied and implemented for a simplified two-phase mixed-

domain model of polymer exchange membrane fuel cell (PEMFC), which fully incorporates both the anode and

cathode sides, including the conservation equations of mass, momentum, water vapor concentration, liquid water

saturation and water content. The proposed numerical algorithm is based on the two-grid discretization technique, the

combined finite element-upwind finite volume method and some other appropriate linearization schemes. The original

nonlinear partial differential equations are only solved on the coarse grid while the fine grid approximation solution

is obtained linearly. Therefore the computational time can be reduced tremendously compared with the traditional

one-grid method. Numerical experiments of the two-grid method and conventional method for a two-phase mixed-

domain fuel cell model are carried out, showing that the presented method is effective and accurate for the numerical

simulation of PEMFC.
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1. Introduction

Numerical modeling and simulation have been an important tool for the design and optimization of polymer

exchange membrane fuel cell (PEMFC). Water management is a key issue in PEMFCs, and is a significant technical

challenge. Sufficient water are needed in the membrane to maintain high proton conductivity, however, excess liquid

water in the electrode can cause water flooding, and hinder the transport of the reactant from the gas channels to the

catalyst layers. To optimize water management, many approaches are used to simulate the multi-phase phenomenon

occurring in fuel cell, for which the multi-phase mixture (M2) model [1, 2, 3, 4, 5] and multi-fluid model [6, 7, 8, 9, 10]

are mainly developed. Recently, a mixed-domain model, which maintains a consistent treatment of water transport in

the membrane electrode assembly (MEA), has been developed in [11] based on the traditional two-fluid model.

A fundamental fuel cell model consists of five principles of conservation: mass, momentum, species, charge,

and thermal energy. These complex nonlinear partial differential equations (PDEs) are formed by coupled nonlinear
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relationship among the common Navier-Stokes equations and convection-diffusion-reaction equations. There is no

doubt that it is a huge challenge to solve this complex system of nonlinear PDEs in an efficient and robust manner.

Comparing to the relatively plentiful literature on modeling and experimental study of fuel cells, there are less study

contributing to the numerical method of two-phase transport PEMFC model. P. Sun et al [12, 13, 14, 15, 16] lead

the field in numerical studies for PEMFC due to their cutting edge work on the efficient numerical methods for the

M2 model of PEMFC. In [13], the streamline-diffusion and Galerkin-least-squares finite element methods are applied

to a 2D steady-state two-phase model in the cathode of PEMFC to get accurate physical solutions with fast conver-

gence. Using Kirchhoff transformation in [14], the numerical instability due to the discontinuous and degenerate

water diffusivity arising from M2 model is overcome by a well developed Dirichlet-Neumann alternating iterative

domain decomposition method. The combined finite element-upwind finite volume method [13, 17, 16] is also used

in the numerical simulation to stabilize the dominant convection term in gas channels. However, the effective nu-

merical method for the multi-fluid model of PEMFC is still far from satisfactory. The conventional method, such as

finite volume method, is commonly used in the numerical simulation for the multi-fluid model [10, 11] based on the

commercial computational fluid dynamic (CFD) software.

Two-grid method was originally developed by J. Xu in the literature [18, 19] to solve the nonsymmetric and

nonlinear elliptic boundary value problems. The algorithm gives the approximate solution of the original problem

on a coarse mesh first, then the symmetric and linear part of the equation are modified on a fine mesh. Theoretical

analysis also shows that the approximate solutions of the two-grid method have the same convergence rate with that

of one-grid method by directly solving differential equations on the fine grid. Meanwhile, the computational cost is

greatly reduced [20, 21, 22]. The two-grid method has been successfully used for solving linear elliptic boundary value

problems, Stokes equation [23], the steady-state Navier-Stokes equations [24] and other partial differential equations.

Our goal in this paper is to explore and develop a two-grid algorithm for efficiently solving the coupled nonlinear

PDEs of the two-phase mixed-domain PEMFC model proposed by H. Meng in [11]. The rest of this paper is organized

as follows. Governing equations for a simplified two-phase mixed-domain model of PEMFC are introduced in Section

2. In Section 3, combining finite element method, upwind finite volume method and two-grid method, a new numerical

algorithm is designed to solve the proposed model. Numerical experiments of several practical cases are presented in

Section 4, showing that our developed numerical schemes significantly improve the computational performance in the

senses of efficiency and lossless accuracy.

2. A two-phase mixed-domain model of PEMFC

Without considering the current collectors, a fuel cell is typically divided into seven subregions: the anode gas

channel (GC), anode gas diffusion layer (GDL), anode catalyst layer (CL), ionomeric membrane, cathode GC, cathode

GDL and cathode CL. On the basis of the traditional two-fluid model, a 2D non-isothermal, mixed-domain, two-

phase model of PEMFC was first studied in [11]. In this paper we restrict our model to isothermal case, investigate

the interactions among the principle physical solutions arising from the existing models, and reformulate the water

species equations to become a suitable strong PDE form for the purpose of finite element discretization.

2.1. Governing equations
Water management is critical to achieve high performance for PEMFC. As it is referred to as balancing membrane

hydration with flooding avoidance, there are two conflicting needs: to hydrate the polymer electrolyte and to avoid

flooding in porous electrodes and GDL for reactant/product transport [2]. Therefore, in order to focus on water

management topics, without loss of generality, we typically consider water as the only component in the following

simplified species concentration equation.

First, the conservation equations of mass, momentum and water species concentrations in the gaseous phase are

established as [2, 11].

Mass and momentum conservation. The generic mass and momentum conservation equations, valid for all fuel

cell components except current collectors and membrane, can be written for water vapor flow as

∇ · (ρg�ug) = 0, (1)
ρg

ε2(1 − s)2
∇ · (�ug�ug) = −∇pg + μg��ug + S u, (2)
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where the additional source term S u is added in the porous materials based on the Darcy’s law considering the liquid

water effect

S u = −
μg

KrgK
�ug, (3)

where Krg is the relative permeability for gaseous phase and K the absolute permeability, defined in Table 1 and 2.

Water vapor species conservation. Water concentration equation in gaseous phase is defined as follows with

respect to concentration Cw,

∇ · (�ugCw) = ∇ · (De f f
w ∇Cw) + S w, (4)

considering the liquid water effect, De f f
w , the effective gaseous species diffusion coefficients, namely the constant

diffusivity in gaseous water region, is further defined as De f f
w = Dw(1 − s)1.5. In the catalyst layers, the water phase is

assumed to be in thermodynamic phase equilibrium with water vapor, and its transport process is considered based on

the ”fictitious water concentration” treatment [25, 26] using the following water diffusivity [11]

Dw =

{
ε1.5cl Dgas + ε

1.5
m Dλ RT

psat
dλ
da CLs

ε1.5Dgas otherwise.
(5)

where εcl and εm represent porosity in catalyst layers and membrane, respectively.

Table 1: Physical relationships

Description Expression

Relative permeability for liquid phase Krl = s3

Relative permeability for gaseous phase Krg = (1 − s)3

Water content diffusivity Dλ =
ρm
EW Dm

w

Membrane water diffusivity Dm
w =

⎧⎪⎪⎨⎪⎪⎩ 3.1 × 10−7λ
(
e0.28λ − 1

)
e−

2346
T 0 < λ ≤ 3

4.17 × 10−8λ
(
1 + 161e−λ

)
e−

2346
T otherwise

Water saturation pressure
log10(psat) = −2.1794 + 0.02953(T − 273.17)

−9.1837 × 10−5(T − 273.17)2 + 1.4454 × 10−7(T − 273.17)3

Water activity a = CwRT
psat

Water content of the membrane λ =

{
0.043 + 17.18a − 39.85a2 + 36a3 0 < a ≤ 1

14 + 1.4(a − 1) 1 < a ≤ 3

Condensation/evaporation parameter hpc =
kcε(1−s)Cw

2p

(
1 +
|pv−psat |
pv−psat

)
+

keεsρl
2Wl

(
1 − |p

v−psat |
pv−psat

)
Partial pressure of water vapor pv = CwRT

Capillary pressure pc =
(
ε
K

)0.5
σCOS θc J(s)

Leverett’s function J(s) =
{

1.417(1 − s) − 2.120(1 − s)2 + 1.263(1 − s)s3 θc < 90o

1.417s − 2.120s2 + 1.263s3 θc > 90o

In the present two-phase model, water produced in the cathode catalyst layer is assumed to be in vapor phase as

in [11, 27]. So the source term S w is given as follows.

S w =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ · ( nd

F
�ie) − j

2F − S vl in cathode CL

−∇ · ( nd
F
�ie) in anode CL

0 otherwise,

(6)

where nd, the electro-osmotic drag coefficient, is a constant value due to the isothermal assumption. ∇ ·�ie = − j,
is derived from the continuity equation of proton potential. �ie is the current density vector and j the volumetric

transfer current of the reaction (or transfer current density), defined by a linear function [13] j = j1 − ( j1 − j2) x
lcell
,

which is a linear simplification of Butler-Volmer equation. This is an approximation of transfer current density for

a simplified single-phase PEMFC model due to the absence of proton and electron potentials. S vl is the volumetric

condensation/evaporation rate, and it represents the interfacial mass-transfer rate of water between the gas and liquid

phases, defined as

S vl = hpc(pv − psat), (7)
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where the condensation/evaporation parameter hpc and partial pressure of water vapor pv are determined in Table 1.

In this two-phase model, the liquid water transport is taken into account using the traditional two-fluid method to

add the flexibility for studying the finite-rate condensation/evaporation processes [11]. In the following, the conser-

vation equations of liquid water are presented.

Liquid mass conservation. In order to derive the governing equation for the liquid water saturation, the mass

conservation equation of liquid water is needed and defined as [11]

∇ · (ρl�ul) = S vlWw, (8)

where an expression for the condensation/evaporation rate S vl can be found in (7), Ww is water molecular weight.

In the porous medium region, the general momentum of liquid and water vapor conservation equation are reduced

to the following expressions of Darcy’s law

�ul = −
KrlK
μl
∇pl, (9)

�ug = −
KrgK
μg
∇pg. (10)

The so-called capillary pressure pc, also expressed in Table 1, is defined as the difference of the pressure between

the gas and the liquid, leading to

pl = pg − pc. (11)

Combing the equations (8)-(11), we obtain a conservation equation for the liquid water saturation, given as

−∇ · (
ρlKs3

μl

∂pc

∂s
∇s) − ∇ · (

ρlμg

μl

s3

(1 − s)3
�ug) = −S vlWw. (12)

Since our numerical studies in this paper only focus on two-phase transport phenomena in porous materials, the

liquid water transport in the gas channel is neglected.

Table 2: Physical coefficients and parameters

Parameter Value Parameter Value

Water vapor diffusivity (Dgas) 2.6 × 10−5m2/s Porosity of GDL and CL (ε) 0.6

Porosity of membrane (ε) 0.26 Effective vapor viscosity (μg) 3.1664 × 10−5kg/m/s
Vapor density (ρg) 0.882 kg/m3 Liquid water density (ρl) 1000kg/m3

equivalent weight of the membrane (EW) 1.1 kg/mol Dry membrane density (ρm) 1980 kg/m3

Condensation rate coefficient (kc) 5000s−1 Evaporation rate coefficient (ke) 10−4s−1 pa−1

Liquid water viscosity (μl) 3.5 × 10−4kg/m/s Surface tension (σ) 6.25 × 10−2N/m
Contact angle in GDL (θc) 110o Contact angle in CL (θc) 95o

hydraulic permeability of GDL and CL (K) 2 × 10−12m2 Electro-osmotic drag coefficient(nd) 1.5

Faraday constant(F) 96485C/mol Operation temperature (T ) 353K
Water molecular weight(Ww) 0.018kg/mol Universal gas constant (R) 8.31J/mol/K

Transfer current density at the left end ( j1) 20000 A/m2 Transfer current density at the right end ( j2) 10000 A/m2

Water concentration in membrane. Water content conservation inside the membrane is defined as follows [25]

∇ · (Dλ∇λ) + S λ = 0, (13)

where the source term S λ reads

S λ = −∇ · (
nd

F
�ie). (14)

Governing equations (1), (2), (4), (12) and (13), together with the definitions of physical coefficients and param-

eters in Table 1 and Table 2, constitute a simplified 2D two-phase mixed-domain transport model of PEMFC. This

model can depict the distribution of water along the channel direction.
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2.2. Computational domain and boundary conditions
The computational domain and its geometric sizes are schematically shown in Fig. 1, where the horizontal x-axis

represents the flow direction and the vertical y-axis points to the through-plane direction.

Equations (1), (2), (4), (12) and (13) form a simplified two-phase model of PEMFC with six unknowns: �ug (two

components), pg, Cw, s and λ. Table 3 indicates the simulation subdomains held for each principle unknown. Only in

the subdomains checked by ”
√

” shall the corresponding unknown be necessarily computed, otherwise, the unknown

is meaningless and specified as Dirichlet boundary condition in those subdomains.

Figure 1: Computational domain

Table 3: The occupancy status of principle unknowns in PEMFC

Unknowns Anode GC Anode GDL Anode CL Membrane Cathode CL Cathode GDL Cathode GC

(�ug, pg)
√ √ √

×
√ √ √

Cw
√ √ √

×
√ √ √

s ×
√ √

×
√ √

×
λ × × ×

√
× × ×

For flow field equation (1) and (2), the following boundary conditions are held in terms of �ug = (u1, u2) and pg:

u1 = u1|inlet, u2 = 0 on (∂Ω)1, (∂Ω)2,
(pgI − μg∇�ug) · �n = 0 on (∂Ω)3, (∂Ω)4,
u1 = 0, u2 = 0 otherwise,

(15)

where u1|inlet, specified as a parabolic-like function, is given in (25).

For water vapor concentration equation (4), the following boundary conditions are held to ensure equal water flux

at the interfaces and specify entry water vapor concentration at the inlet:

Cw = Cin on (∂Ω)1, (∂Ω)2,

(De f f
w
∂Cw
∂n )|cl = (Dλ ∂λ∂n )|m on (∂Ω)6, (∂Ω)7,

∂Cw
∂n = 0 otherwise.

(16)

For liquid water saturation equation (12), Dirichlet boundary condition is proposed on the interface of GDL and

channel shown as follows:
s = sCH,GDL on (∂Ω)5, (∂Ω)8,

(
ρlKrlK
μl

∂pc
∂s
∂s
∂n )|cl = (Dλ ∂λ∂n )|m on (∂Ω)6, (∂Ω)7,

∂s
∂n = 0 otherwise.

(17)

The Dirichlet boundary condition is proposed on the interfaces of CL and membrane for the water content equation

in membrane (13):
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λ = λcl,m on (∂Ω)6, (∂Ω)7,
∂λ
∂n = 0 otherwise,

(18)

where λcl,m is defined in Table 1.

3. Numerical simulation methods

3.1. Weak forms

To define finite element discretizations for the governing equations (1), (2), (4), (12) and (13), we shall derive their

weak forms first in terms of the corresponding boundary conditions.

Let Ω be the computational domain, shown in Fig.1, and define

V := {�v = (v1, v2)
� ∈ [H1(Ω)]2 | v1|(∂Ω)1∪(∂Ω)2 = u1|inlet, v2|(∂Ω)1∪(∂Ω)2 = 0},

Ṽ := {�v = (v1, v2)
� ∈ [H1(Ω)]2 | v1|(∂Ω)1∪(∂Ω)2 = 0, v2|(∂Ω)1∪(∂Ω)2 = 0},

P := L2(Ω),

Q := {w ∈ H1(Ω) | w|(∂Ω)1∪(∂Ω)2 = Cin}, Q̃ := {w ∈ H1(Ω) | w|(∂Ω)1∪(∂Ω)2 = 0},
X := {l ∈ H1(Ω) | l|(∂Ω)5∪(∂Ω)8 = scl,m}, X̃ := {l ∈ H1(Ω) | l|(∂Ω)5∪(∂Ω)8 = 0},
Z := {z ∈ H1(Ω) | z|(∂Ω)6∪(∂Ω)7 = λcl,m}, Z̃ := {z ∈ H1(Ω) | z|(∂Ω)6∪(∂Ω)7 = 0}.

Then for any (�v, q,w, l, z) ∈ Ṽ × P × Q̃ × X̃ × Z̃, find (�ug, pg,Cw, s, λ) ∈ V × P × Q × X × Z, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μg∇�ug,∇�v) + (
ρg

ε2(1−s)2∇ · (�ug�ug),�v) − (pg,∇ · �v) + (
μg

(1−s)3K�ug,�v) = 0

(∇ · �ug, q) = 0

(∇ · (�ugCw),w) + (De f f
w ∇Cw,∇w) −

∫
(∂Ω)6∪(∂Ω)7

De f f
w
∂Cw
∂n wdτ = (S w,w)

(
ρlKs3

μl

∂pc
∂s ∇s,∇l) + (

ρlμg s2�ug

μl(1−s)3 s,∇l) −
∫
(∂Ω)6∪(∂Ω)7

ρlKs3

μl

∂pc
∂s
∂s
∂n ldτ = (−S vlWw, l)

(Dλ∇λ,∇z) = (S λ, z),

(19)

which (·, ·) stands for the L2 inner product in Ω.

3.2. Two-grid method

LetTh be a rectangular partition ofΩwith the maximum mesh size h. S h = Vh×Ph×Qh×Xh×Zh ⊂ V×P×Q×X×Z
and S̃ h = Ṽh × Ph × Q̃h × X̃h × Z̃h ⊂ Ṽ × P × Q̃ × X̃ × Z̃ be the piecewise bilinear finite element spaces.

In comparison to the relatively small diffusion coefficients, the convection coefficients arising in momentum and

concentration equations are dominant due to large flow in the gas channel, which inevitably induces numerical instabil-

ity and oscillating solution. It is crucial to design a robust numerical scheme to efficiently solve convection-dominated

diffusion equations. To combine the advantages of both upwind finite volume scheme and finite element method, and

conquer the dominant convection effect in the framework of finite element approach, we employ a combined finite

element-upwind finite volume method [28, 29, 14] for the PEMFC model in this section, where a finite volume based

finite-difference upwind scheme is adopted to specifically deal with dominant convection term only, meanwhile, all

the other terms are still discretized by finite element method.

Without loss of generality, let us choose the convection term
ρg

ε2(1−sk
h)

2 (∇ · ((�ug)
k
h(�ug)

k+1
h ),�vh) in equation (2) to

demonstrate how the combined finite element-upwind finite method works for the PEMFC model. Based on the dual

mesh of Th, shown in Fig. 2 for example, we derive the following finite volume discretization:

n((�ug)
k
h, (�ug)

k+1
h , s

k
h,�vh) =

ρg

ε2(1 − sk
h)

2
(∇ · ((�ug)

k
h(�ug)

k+1
h ),�vh)

≈
N∑

i=1

vi

∑
Pj∈∂Λi

ρg

ε2(1 − sk
h)

2

∫
Γi j

((�ug)
k
h · �n)ds(ri j(�ug)

k+1
h,i + (1 − ri j)(�ug)

k+1
h, j ) (20)
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where ri jis the upwind parameter, automatically determined by the following formula:

ri j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Fi j > 0,
0 if Fi j < 0,
0.5 if Fi j = 0,

(21)

where Fi j =
∫
Γi j

((�ug)
k
h · �n)ds is called numerical flux, and the reader with interest can refer to [12] for more details.

Similarly, the convection term (∇ · ((�ug)
k+1
h (Cw)k+1

h ),wh ) in equation (4) can be discretized as follows:

n((�ug)
k+1
h , (Cw)k+1

h ,wh) = (∇ · ((�ug)
k+1
h (Cw)k+1

h ),wh) ≈
N∑

i=1

wi

∑
P j∈∂Λi

∫
Γi j

((�ug)
k+1
h · �n)ds(ri j(Cw)k+1

h,i + (1 − ri j)(Cw)k+1
h, j )

Figure 2: Control volume Ω1 in dual mesh encompassed by broken lines in patch Λ1.

3.2.1. The conventional method
The conventional finite element method are carried out by discretizing the nonlinear system as follows. Provided

that ((�ug)
k
h, (pg)

k
h, (Cw)k

h, s
k
h, λ

k
h) are given, for any (�vh, qh ,wh , lh, zh ) ∈ S̃ h, find ((�ug)

k+1
h , (pg)

k+1
h , (Cw)k+1

h , s
k+1
h , λ

k+1
h ) ∈ S h,

the following discretizations of governing equations hold (k = 0, 1, 2...)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μg∇(�ug)
k+1
h ,∇�vh) + n((�ug)

k
h, (�ug)

k+1
h , s

k
h,�vh) − ((pg)

k+1
h ,∇ · �vh) + (

μg

(1−sk
h)

3K (�ug)
k+1
h ,�vh) + δ(h2)(∇(pg)

k+1
h ,∇qh ) = 0

(∇ · (�ug)
k+1
h , qh ) = 0

n((�ug)
k+1
h , (Cw)k+1

h ,wh ) + ((De f f
w )k

h∇(Cw)k+1
h ,∇wh ) −

∫
(∂Ω)6∪∂Ω)7

(Dλ ∂λ∂n )k
hwh dτ = ((S w)k

h,wh )

((
ρlKs3

μl

∂pc
∂s )k

h∇sk+1
h ,∇lh) + ((

ρlμg s2�ug

μl(1−s)3 )
k
hsk+1

h ,∇lh) −
∫
(∂Ω)6∪∂Ω)7

(Dλ ∂λ∂n )k
hlhdτ = ((−S vlWw)k

h, lh)
((Dλ)k

h∇λ
k+1
h ,∇zh) = ((S λ)h, zh),

(22)

where a pressure-stabilizing term δ(h2)(∇(pg)h,∇qh) is added to momentum equation in order to ensure that the

adopted Q1Q1 element is stable.

3.2.2. The two-grid algorithm
To compute the approximation solution of the nonlinear PDEs with less computational cost and the same optimal

order of convergence, the two-grid method plays a crucial role in the following numerical simulation of fuel cell.

Step 1. Given ((�ug)
0
H , (pg)

0
H , (Cw)0H , s

0
H , λ

0
H), solve the nonlinear problem on coarse mesh TH , i.e. iteratively solve

(22) for ((�ug)
k+1
H , (pg)

k+1
H , (Cw)k+1

H , s
k+1
H , λ

k+1
H ) ∈ S H until (k = 0, 1, 2...)

‖(�ug)
k+1
H − (�ug)

k
H‖0 + ‖(pg)

k+1
H − (pg)

k
H‖0 + ‖(Cw)k+1

H − (Cw)k
H‖0 + ‖s

k+1
H − sk

H‖0 + ‖λ
k+1
H − λk

H‖0 < tolerance. (23)

Step 2. Solve the following linear problem (24) on fine mesh Th to obtain the approximate solutions

((�ug)h, (pg)h, (Cw)h, sh, λh) ∈ S h.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μg∇(�ug)h,∇�vh) + n((�ug)H , (�ug)h, sH ,�vh) − ((pg)h,∇ · �vh) + (
μg

(1−sH )3K (�ug)h,�vh) + δ(h2)(∇(pg)h,∇qh) = 0

(∇ · (�ug)h, qh) = 0

n((�ug)h, (Cw)h,wh ) + ((De f f
w )H∇(Cw)h,∇wh) −

∫
(∂Ω)6∪∂Ω)7

(Dλ ∂λ∂n )Hwhdτ = ((S w)H ,wh)

((
ρlKs3

μl

∂pc
∂s )H∇sh ,∇lh) + ((

ρlμg s2�ug

μl(1−s)3 )H sh ,∇lh) −
∫
(∂Ω)6∪∂Ω)7

(Dλ ∂λ∂n )Hlhdτ = ((−S vlWw)H , lh)
((Dλ)H∇λh,∇zh) = (−S λ, zh),

(24)

Since the two-grid algorithm only solve the nonlinear equations on the coarse grid and solve the linear equations

on the fine grid, the computational cost of nonlinear iteration is greatly reduced, which validated by the following

numerical experiments.

4. Numerical results

In this section, we carry out the following numerical experiments which indicate that our methods are effective and

fast to deal with PEMFC simulation. It is well known that the flow profile is parabolic under steady flow conditions

once laminar flow is fully developed in long and straight channel. Based on this fact, in the following numerical

experiments, we assign the Dirichlet boundary condition of velocity at the inlet as follows

u1|inlet =

{
uin,csin(yπ/δCH) at cathode inlet (∂Ω)2
uin,asin((y − δca)π/δCH) at anode inlet (∂Ω)1

0 ≤ y ≤ δCH , (25)

where δca = δCH + δGDL + δCL + δmem.

Since the liquid water has a slight motion exists in channel width direction and increases along channel direction

[5], we assume the liquid water along channel has a linear change, from the minimum value to the maximum value.

sCH,GDL = 0.1(lcell − x)/lcell + 0.2x/lcell. (26)

In order to verify the correctness and efficiency of our two-grid numerical solutions, we compute the relative

error of mass balance and simulation time with the boundary condition of uin,a = 5 m/s, uin,c = 3 m/s,Cin,a =

10 mol/m3,Cin,c = 12 mol/m3 compared with the conventional finite element method in our following simulations.

And the tolerance of our stopping criteria (23) for iteration is 10−8. An example of a coarse and a fine mesh size for

the two-grid method is present in Fig.3. And Table 4 shows that our two-grid method can cut down the compute time

dramatically with non-losing accuracy.

Figure 3: An example of coarse grid (left) and fine grid (right) for two-grid method

Fig. 4 show the velocity field in anode and cathode of fuel cell produced by the two-grid method and the con-

ventional method, which shows the same numerical results completely. As expected, there is a large difference in the

velocity scale between the porous media and the open channel. The velocity in porous GDL is at least two orders of

magnitude smaller than that in the open gas channel, indicating that gas diffusion is the dominant transport mechanism

in porous GDL. Porous CL has a smaller velocity than GDL due to the inferior diffusion ability.

Fig. 5 and Fig. 6 show the contours of the vapor water concentration and liquid water saturation in cathode

respectively. Due to water production by fuel cell, a small amount of liquid water emerges downstream, i.e., liquid
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Table 4: Mass balance error and compute time

Fine mesh size
Conventional method Two-grid method

Mass balance error Time Coarse mesh size Mass balance error Time

20×36 2.166e-003 74s 10×18 2.168e-003 114s

40×72 1.680e-003 115s 20×36 1.680e-003 128s

80×144 1.110e-003 639s 40×72 1.110e-003 294s

160×288 4.111e-004 3351s 80×144 4.004e-004 1750s

Figure 4: Horizontal and vertical gas velocities in PEMFC produced by two-grid method

water saturation s > 0 there, and the flow in the diffusion layer shifts to gas water multiphase flow. Once liquid water

is being created by condensation, it is dragged into the GDL by the gas phase, the liquid water can only exit the GDL

through the build-up of a capillary pressure gradient to overcome the viscous drag. So the liquid saturation increased

inside the GDL.

Figure 5: Vapor water concentration in cathode CL, GDL

and GC

Figure 6: Liquid water saturation in cathode CL and GDL

Fig. 7 displays the water content in the membrane, which clearly shows that the water content increases from the

inlet to the outlet region in the along-channel direction, presenting a complete picture of the water content variation

inside the membrane.

Figure 7: Water content in membrane

5. Conclusions

In this paper, based on the combined finite element-upwind finite volume methods and the two-grid method, a

new discretization scheme is designed and implemented for a simplified two-phase 2D mixed-domain fuel cell model.

Numerical experiments demonstrate that our methods are able to solve the governing equations with less compute
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time, and obtain a relatively accurate numerical solution with low mass balance error. The two-grid method will

greatly decrease the computational amount, and improve the computing speed and accuracy for 3D PEMFC model,

therefore the two-grid method for 3D two-phase mixed-domain complete model will be studied in our future work.
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