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ALDOSTERONE ACTION IN EPITHELIA:
REGULATED GENE PRODUCTS

Regulation of the epithelial Na1 channel by aldosterone:
Open questions and emerging answers
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Regulation of the epithelial Na1 channel by aldosterone: Open aldosterone, and it reaches a maximal value several hours
questions and emerging answers. Aldosterone is the principal later. It is primarily caused by an increase in the number
adrenal steroid controlling Na1 retention in amphibians and of “electrically detectable” Na1 channels in the apicalmammalians. It acts primarily by increasing the apical Na1

surface (N), with no change in their open probabilitypermeability through activation of the epithelial Na1 channel
(P0) or single channel current (i) [5–9]. Thus, the hor-(ENaC). The cellular events mediating the hormonal action

are mostly unknown. Early studies have provided evidence that mone acts either by translocating new channels to the
the hormone functions to activate or translocate pre-existing apical surface or by activating a pool of “silent” apical
channels by a yet undefined mechanism. In addition, enhanced channels that do not contribute to P0. This response isde novo channel synthesis appears to take place as well. The

fully blocked by transcription or translation inhibitors,molecular cloning of the three ENaC subunits has provided
suggesting that it is mediated by a “classic” steroid mech-new powerful tools for testing and confirming this hypothesis,

as well as for characterizing mechanisms by which ENaC is anism through alterations in gene expression. Nongeno-
regulated. Another important development is the recent identi- mic effects of aldosterone have been described as well
fication of several cDNAs corresponding to aldosterone-induced and may, in principle, contribute to its natriferic actionand suppressed mRNAs. The study of these genes and their

[10, 11].putative interactions with ENaC is likely to provide important
Early studies have provided substantial evidence thatclues to the mechanisms by which aldosterone controls the

apical Na1 permeability of tight epithelia. This article reviews the apical action of aldosterone is not likely to represent
recent developments in the field that may lead to the elucida- enhanced transcription/translation of the channel pro-
tion of the mechanisms by which the hormone controls Na1

tein [reviewed in 1, 2, 12, 13]. Later, it was realized that
transport.

the hormonal stimulation of Na1 channel activity is a
more complex response and may involve both the activa-
tion (or translocation) of pre-existing channels and theThe mineralocorticoid aldosterone is the major hor-
enhanced transcription/translation of channel subunitsmone controlling Na1 retention in vertebrates. It acts by
[2, 3, 14–16]. The first response is thought to provideenhancing Na1 reabsorption across tight epithelia such as
a major contribution to the initial increase in channel

kidney collecting duct and distal colon. Early studies have
activity, whereas the second seems to be important dur-

established that the hormone functions to increase both
ing chronic exposure to the hormone. A key unresolved

the passive luminal entry of Na1 into epithelial cells and
issue is the identity of aldosterone-induced (or sup-

its active extrusion into the blood [reviewed in 1–4]. pressed) proteins and the nature of events relating them
These take place in different time scales and are medi- to an increase in the apical Na1 permeability.
ated by different cellular events. Under most conditions, The molecular cloning of ENaC and its identification
Na1 transport in distal nephron is limited by the rate as the luminal amiloride-blockable conductance in tight
of Na1 entry through the amiloride-blockable epithelial epithelia mark a turning point in the field [17–20]. This
Na1 channel (ENaC). Hence, the luminal action of aldo- channel is composed of three homologous subunits de-
sterone is considered to be the major one. noted a, b, and gENaC and defines a new gene family,

An increase in the apical, amiloride-blockable Na1

which includes several other epithelial and neuroneal
permeability is apparent 30 to 90 minutes after applying cationic channels, as well as C. elegans genes mediating

mechanical stress [21–23]. The expressional cloning of
ENaC has enabled the development of new powerfulKey words: aldosterone, ENaC, epithelial transport, sgk, K-Ras2,

CHIF. tools to study its modulation by aldosterone. These include
specific antibodies, cDNA probes, and useful expression 2000 by the International Society of Nephrology
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systems in which interactions between ENaC and puta- that the biophysical properties of channels composed of
only two subunits differ from those recorded from nativetive aldosterone-induced effectors can be assessed. In

addition, it has provided clear-cut proof for the central epithelia or cells expressing all three components [46].
Additional support for the crucial role of each subunitrole of this channel (and its mineralocorticoid regula-

tion) in whole-body electrolyte homeostasis. This is ap- is provided by studies generating ENaC knockout mice.
Disrupting the gene coding for any ENaC subunit wasparent from the study of genetic diseases caused by muta-

tions in ENaC subunits, as well as the phenotypic analysis shown to cause an early death caused by hyperkalemia
and salt wasting [47–49]. aENaC knockout mice, how-of ENaC knockout mice [reviewed in 21, 23–26].

The current article briefly reviews the recent develop- ever, die from respiratory stress, which is less severe or
not detected in b and g knockouts [47, 48, 50]. Thus,ments in the regulation of ENaC by aldosterone, which

appears to pave the way for the elucidation of the mecha- liquid clearance in lung appears to depend more on a
than on b or g.nisms by which it controls the apical Na1 permeability.

These described effects of aldosterone on channel
mRNA lend support to the notion that enhanced tran-

EFFECTS OF ALDOSTERONE ON ENaC mRNA
scription (or inhibited degradation) of channel subunits

AND PROTEIN
cannot fully account for the aldosterone-induced in-

Cloning the three channel subunits has provided spe- crease in channel activity. First, it seems that induction
cific probes for monitoring variations in channel mRNA of ENaC subunits in the kidney is far too small to account
and protein. An obvious question addressed by many for the large increase in channel activity. Data reported
investigators is the effect of aldosterone on the abun- in [5, 32] indicate a big quantitative difference between
dance of mRNA coding for the three channel subunits the effect of aldosterone (or low Na1 intake) on the
[27–40]. Surprisingly, it turned out that the three subunits number of apical channels and the abundance of channel
are differently affected by the hormone and also that mRNA. That is, while the hormone evokes a dramatic
the same subunit can respond differently in different (.50-fold) increase in channel density, it enhances chan-
aldosterone-responsive tissues. In kidney and kidney- nel mRNA by less than fourfold. Induction of b and g
derived cell lines, aldosterone evokes a twofold to four- mRNA observed in distal colon is, in principal, large
fold increase in a mRNA but does not significantly alter enough to account for the hormonal effect in this tissue
the abundance of b or g [29, 31–33, 36–39]. A similar [29, 32, 36, 37]. However, there is a clear discrepancy be-
pattern is seen in lung, but in this case, the channel tween the time course of this induction and the hormonal
responds to glucocorticoids rather then mineralocorti- effect on channel activity measured as amiloride-block-
coids [28–30]. This response is thought to play a role in able Isc [23, 32]. The well-establish effect of aldosterone
lung maturation and fluid clearance after birth. In con- in distal colon and other model epithelia is characterized
trast to the mild effects of aldosterone on ENaC mRNA by a latent period of approximately 60 minutes, and the
observed in kidney, in the colon, b and gENaC are increase in channel activity can reach its half-maximal
strongly ($10-fold) elevated by aldosterone, while a ap- value within approximately three hours [3]. Induction of
pears to be constitutively expressed [27, 29, 32–34, 36, b and gENaC mRNA, on the other hand, is not apparent
37]. The Xenopus kidney-derived cell line A6 shows a during the first three hours of hormonal stimulation and
“kidney-like” behavior when grown on porous supports develops only after a longer incubation period. The find-
and a “colon-like” behavior when cultivated in plastic ing that induction of channel mRNA lags behind the
dishes [35]. It has been suggested that the large transcrip- transcription-dependent increase in channel activity
tional effects of aldosterone on b and g are needed during proves that enhanced transcription (or inhibited degra-
a high rate of replication (distal colon surface cells and dation) of ENaC subunits does not account for the early
A6 cells grown on plastic) but not in slowly replicating response to the hormone and may play a role only in
cells (kidney nephron and cells cultivated on filters) [35]. the more chronic response. The data agree well with

In light of the different effects of aldosterone on the previous findings using the toad bladder model epithe-
three ENaC subunits, it is of interest to examine their lium [14, 15, 51]. These studies have reported a similar
relative importance to channel function. The current no- discrepancy between the time course of aldosterone ac-
tion is that the three subunits assemble into a hetero- tion measured in the intact epithelium and in plasma
oligomer, which defines the amiloride-blockable pore membrane vesicles or in poly A1 RNA-injected oocytes.
[41–43]. Hence, it has been assumed that they are all It fits our model that aldosterone acts on the apical Na1

essential and equally important components of the chan- permeability by two different mechanisms: an early acti-
nel. This is also based on expression studies in Xenopus vation or translocation of pre-existing channels and a
oocytes and mammalian cells demonstrating a very low more chronic induction of channel protein [2, 3, 16].
or no channel activity in the absence of any one of the It is not yet clear whether these effects of aldosterone

on ENaC mRNA represent direct transcriptional regula-three subunits [19, 20, 44, 45]. It has also been shown



Garty: Regulation of ENaC by aldosterone1272

tion of the channel or are secondary to the induction of Several mechanisms that control the luminal amilor-
ide-blockable Na1 permeability of tight epithelia haveother regulatory proteins. Functional analysis of putative

promoter regions has been done for both a and gENaC been identified and characterized [reviewed in 21, 23].
These include regulation of ENaC by direct and indirect[52–56]. For a, a 59 flanking region that confers a gluco-

corticoid induction of reporter genes has been identified interactions with cell Na1 and Ca21, a carboxymethyla-
tion reaction that may also involve G proteins, activation[53, 55]. This region includes a sequence that resembles

a glucocorticoid response element, and its ability to bind of the channel by an extracellular protease termed
CAP1, and the regulation of ENaC lifetime in the apicalglucocorticoids has been confirmed by a gel shift assay.

It was also demonstrated that the Ras pathway has an surface through interaction with Nedd4. With the possi-
ble exception of carboxymethylation and G proteins, noantagonistic effect on the regulation of aENaC by gluco-

corticoids [54]. This may be a physiologically important data relating any of these mechanisms to the hormone-
induced cascade of events have been provided thus far.pathway since K-Ras2A has been found to be induced

by aldosterone [57, 58]. On the other hand, no region In particular, neither Nedd4 nor CAP-1 appear to be
affected by aldosterone [59, 60]. Some studies have sug-that confers transcriptional regulation by adrenal ste-

roids could be identified in the gENaC promoter region gest involvement of a methyl transfer reaction and/or G
proteins in the response to aldosterone, but the exact[52, 56].

In contrast to the many studies assaying variations in cascade of events is far from being understood [61–64].
Much effort has been devoted to the identification andENaC mRNA in different epithelia and epithelia-derived

cultures, little information is available on effects of aldo- cloning of cDNA corresponding to epithelial aldoste-
rone-induced or suppressed mRNAs. Early studies havesterone on the channel protein. Dijkink et al have re-

cently reported a small aldosterone-induced increase in addressed this issue at the protein level using two-dimen-
sional gel electrophoresis of metabolically labeled pro-a and b (but not g) protein in immunodissected rabbit

kidney connecting tubule (CNT) and cortical collecting teins [65]. These and subsequent studies have identified
a 65 to 70 kD aldosterone-induced glycoprotein in whichduct (CCD) cells [39]. As seen for colonic mRNA, eleva-
the function is yet unknown. Other groups have em-tion of protein synthesis appears to lag behind the in-
ployed various differential-screening protocols to searchcrease in Isc, suggesting that it does not contribute to
for aldosterone-dependent mRNAs, with special empha-the initial response. On the other hand, May et al re-
sis on genes induced or suppressed during the initialported that in A6 cells, an increase in the rate of a
phase of the hormonal action. The methods employedsynthesis is seen as early as one hour after the addition
include 1/2 screenings of epithelial cDNA librariesof aldosterone [35]. Since this effect precedes the in-
[66, 67], differential display of PCR products [57], andcrease in a mRNA, it is believed to reflect regulation of
subtractive cDNA methods [68, 69]. These studies havea translation by other aldosterone-induced proteins.
resulted in the identification of a number of “early” and
“late” aldosterone-dependent genes, some of which ap-

POSSIBLE MECHANISMS MEDIATING THE pear to provide important clues to the mechanisms of
ALDOSTERONE-INDUCED INCREASE IN the hormonal action.
APICAL Na1 PERMEABILITY One group of induced cDNAs cloned by differential

Studies summarized in the previous section confirm the screening of rat and chicken intestine cDNA libraries
notion that induction of channel subunits is not a major code for mitochondrial oxidative phosphorylation en-
factor in the transcription-dependent increase in channel zymes (for example, cytochrome c oxydase and NADH
activity. The response to the hormone must therefore dehydrogenase). Their induction by aldosterone fits well
involve other induced proteins in which the function with early findings of the activation of mitochondrial
could be to modulate activity of pre-existing apical chan- enzymes and the induction of cytrate synthase [reviewed
nels, alter trafficking of channel subunits between intra- in 1]. The induction of these enzyme is needed to increase
cellular organelles and the apical surface, or even affect mitochondrial metabolism and to prevent limitation of
translation of the channel protein. Elucidating the cellu- active transport by the cell ATP/ADP ratio. The genes
lar events mediating the hormonal response has been cloned so far are all coded by the mitochondrial rather
attempted in different laboratories using two comple- than nuclear genome. This genome also appears to be
mentary strategies: (1) the “backward approach,” in a target to adrenal steroids [70–72]. Spindler and Verrey
which processes controlling ENaC activity were charac- have reported that a two-hour incubation of A6 cells with
terized, and factors involved in them were examined for aldosterone reduces the mRNA abundance of c-myc,
aldosterone-responsiveness; and (2) the “forward ap- c-jun, c-fos, and the glucocorticoid receptor by 50 to
proach,” in which genes and proteins affected by the 80% [57, 73]. Surprisingly, the down-regulation of proto-
hormone were identified and studied for possible involve- oncogene was independent of ongoing transcription and

may reflect a nongenomic effect of the steroid.ment in channel activation.
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Another group of cDNAs identified as aldosterone in Xenopus oocytes increases the channel activity by at
induced code for new genes in which the functions are least fourfold [68, 69, 86]. It is yet unknown whether this
yet unknown. One such cDNA translates a short trans- response is mediated by an increase in ENaC cell surface
membrane protein, designated CHIF, that is specifically expression or a change in its open probability.
expressed in kidney collecting duct and distal colon [66, The mechanism by which sgk and K-Ras2A activate
74, 75]. As with b and gENaC, CHIF mRNA is strongly ENaC in Xenopus oocytes (and presumably also in epi-
induced by aldosterone in the colon but is constitutively thelial cells) is yet unknown. One possibility is that sgk
expressed in kidney [75]. Although its induction is appar- itself or some other downstream kinase directly phos-
ent only after a prolonged incubation, CHIF can be tran- phorylates the channel. Such a possibility is in agreement
scriptionally elevated by corticosteroids in a time frame with the finding that the carboxy tails of b and gENaC
of 0.5 to 4 hours [76, 77]. Its cellular role is yet unknown, undergo an aldosterone-induced phosphorylation in trans-
and some observations relate CHIF to K1 rather than fected Madin-Darby canine kidney cells [87]. Since this
Na1 transport [66, 78]. Two other new “early” aldoste- domain is crucial for the channel–Nedd4 interaction, its
rone-induced sequences cloned from A6 cells do not putative phosphorylation may affect the channel lifetime
appear to correspond to a typical mRNA [57]. in the apical membrane. Obviously, many other scenar-

Undoubtedly, the most promising “early” aldoste- ios by which a kinase signaling cascade can lead to an
rone-induced transcripts identified so far are two mem- increase in ENaC activity are possible. Irrespective of
bers of signaling pathways: the small G protein K-Ras2A various potential down stream events, the transcriptional
and the serine/threonine kinase sgk [57, 68]. Most impor- regulation of sgk and K-Ras2A would not be sufficient
tantly, both of them appear to increase ENaC activity to render them active, and they need to be activated by
substantially by coexpression in Xenopus oocytes [58, upstream effectors. For example, in other systems, sgk
68, 69]. K-Ras2A is a splice variant of K-Ras2 in which was shown to be activated (phosphorylated) by the PI-3
the C tail contains a palmitoylation site. Its mRNA and kinase pathway [88, 89]. This may also provide a link to
protein are increased several-fold by the incubation of the activation of ENaC by insulin [90]. Thus, much workA6 cells with aldosterone for two hours, and a similar

is still needed to elucidate the cellular events relating theresponse is seen in kidneys of frogs injected in vivo with
induction of K-Ras2A, sgk, and other factors to the activa-aldosterone [57, 73]. The channel activity recorded in Xen-
tion of ENaC. As in other cases, the result is likely toopus oocytes coexpressing ENaC and a constitutively ac-
be a complex network of signaling pathways that integratetive mutant of K-Ras2A is not different from that recorded
different stimuli and affect ENaC in more than one way.from oocytes expressing ENaC alone [58]. This, however,
Nevertheless, the previously described recent findingsappears to reflect compensation of the K-Ras2A–induced
now provide a real chance for elucidating the mechanismincrease in ENaC activity by a K-Ras2A–dependent mat-
by which aldosterone activates the Na1 channel.uration of the oocytes. Normalizing the data to mem-

brane capacitance or cell surface expression of epitope
tagged ENaC demonstrates a threefold increase in spe- NOTE ADDED IN PROOF
cific channel activity. The identification of K-Ras2A as Alvarez de lo Rosa et al (J Biol Chem 274:37834–
a channel-activating aldosterone-induced protein is in 37839, 1999) recently reported that sgk acts by increasing
agreement with early data suggesting an aldosterone- EnaC’s cell surface expression. The response was insensi-
induced guanosine 59-triphosphate (GTP) hydrolysis [62], tive to deletion of the carboxy termini of the channel,
GTP-induced increase in channel activity [79], and a role indicating that it is not mediated by phosphorylations
for prenylation in the response to aldosterone [80]. within this region.The other aldosterone-induced gene likely to be in-
volved in the regulation of ENaC codes for a member
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30. Tchepichev S, Ueda J, Canessa C, Rossier BC, O’Brodovich H:J Gen Physiol 102:25–42, 1993

6. Granitzer M, Mountian I, Van-Driessche W: Effect of dexa- Lung epithelial Na channel subunits are differentially regulated
during development and by steroids. Am J Physiol 269:C805–C812,methasone on sodium channel block and densities in A6 cells.
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