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A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to
mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from
Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP
from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural proper-
ties, biological activities and membrane selectivity were investigated. It adopts an a-helical structure in contact
with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species

Keywords:
An}g/:nicrobial peptide (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic
EST database activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial ac-

tivity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows
high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low af-
finity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for
bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for de-
velopment of broad-spectrum antibacterial drugs.
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1. Introduction molecules [6-11]. AMPs have been reported in all groups of living or-

ganisms, ranging from bacteria and fungi to plants and animals as

Membrane selective peptides are a large and diverse group of
membrane-active compounds including fusogenic, cell-penetrating, cy-
totoxic, self-associating integral membrane peptides and antimicrobial
peptides, most of them exhibiting a characteristic activity spectrum
and preference for certain types of biological membranes [1-4]. Antimi-
crobial peptides (AMPs) are gene coded molecules which are an essen-
tial part of the innate immune system, the first line of host defence in
the early stages of exposure to pathogenic microorganisms [5]. AMPs
are good candidates for natural selection to continuously modify
existing sequences in response to the ever changing microbial biota.
This makes them a remarkably diverse and ubiquitous group of
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DMPG, dimyristoylphosphatidylglycerol
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parts of ancient antimicrobial defence system [12-15]. Given their mo-
lecular diversity and a mode of action different to that of conventional
antimicrobials, it is not surprising that over the years the interest in
AMPs as new potential lead compounds in drug development has con-
tinuously increased [16,17]. An added stimulus is the serious current
problem of increasing bacterial resistance, combined with a dearth of
novel molecular scaffolds for antibiotic development. In addition, it
has been reported that many AMPs have a broader therapeutic potential
as antiviral [18], antitumor [19], immunomodulating [20] or wound
healing agents [21].

As antimicrobials, AMPs are part of a host defence strategy to fight
infection based on a general disruption of the pathogen's cytoplasmic
membrane. They can in fact create pores or lesions via carpet, barrel-
stave or toroidal mechanisms [22]. This mode of action can be rapid
and broad-spectrum, and is likely to be difficult for microorganisms to
overcome. Indeed, for most AMPs there does not appear to be a single
molecular target that could easily be modified as for conventional anti-
biotics, and the membrane modifications required to render AMPs inef-
fective are metabolically expensive for the pathogen. For this reason,
AMPs may have a low propensity in inducing long-term resistance [23].


https://core.ac.uk/display/82327017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2014.02.003&domain=pdf
http://dx.doi.org/10.1016/j.bbamem.2014.02.003
mailto:juretic@pmfst.hr
http://dx.doi.org/10.1016/j.bbamem.2014.02.003
http://www.sciencedirect.com/science/journal/00052736

J. Simunic et al. / Biochimica et Biophysica Acta 1838 (2014) 1430-1438 1431

One of the principal difficulties in developing AMPs as antibiotics is
their toxicity. This is often expressed as an insufficient selectivity
when permeabilizing eukaryotic and prokaryotic cell membranes, mak-
ing them too cytotoxic. Low selectivity is often reported as a high lytic
activity towards erythrocytes in standard haemolytic assays. A range
of theoretical and experimental methods has been developed in order
to understand how to improve the membrane selectivity of natural oc-
curring AMPs [24,25]. At the same time, the increasing abundance of
new genetic information provided by genomic and expressed sequence
tag (EST) sequencing could prove to be a rich source for identifying new
peptides that natural selection has already shaped into therapeutically
interesting candidates. The remarkable diversity of AMP sequences,
even in closely related species, makes the direct mining of these rather
difficult. On the other hand, the signal peptide regions in their precur-
sors are well conserved [26-28], so that using these as query sequences
has proven to be a valuable method for identifying new AMPs [29].

In this article we report a new, membrane-selective antimicrobial
peptide that we named trichoplaxin. Its cDNA was identified in the
EST database belonging to the placozoan Trichoplax adhaerens.
Trichoplaxin-like sequences were not present in the UniProt data base.
The peptide was chemically synthesized and its antimicrobial and
haemolytic properties were established. Using model membrane sys-
tems we also studied its affinity for different membrane types in order
to explain its biological properties that make this peptide potentially in-
teresting for pharmacological applications.

2. Materials and methods
2.1. In silico analysis of sequences

Trichoplaxin precursor was first identified in the EST database by
using a general method directed to finding novel AMPs by using signal
peptides (SP) and propeptides of known AMPs developed by Petrov
et al. (manuscript in preparation). A sequence similarity search was per-
formed using the TBLASTN algorithm on the EST database with the sig-
nal peptide sequence (MKCATLFLVLSMVVLMAEPGDA) from the
moronecidin (piscidin-1) precursor as query (GenBank Accession No.
Q8UUGO). Although we have used many other AMP-associated SP as
queries, the moronecidin SP proved to be a good choice before for
finding novel AMPs with no homologues in the UniProt ([29] and
Petrov et al. manuscript in preparation). We focused on one of the
search results, namely the Trc_N-9_C14.t.scf T. adhaerens EST Library
cDNA, with the code GI:295905054 and GenBank link gb|GR416833.1|.
The following sequence was found in the 3’ 5’ Frame 1:
MKCAMIFLVLTLVVLMAEPGECFFGRLKSVWSAVKHGWKAAKSRWRES
KQSEQGEQAGQGGPPADQGQAPPNVAWR, with easily recognized sig-
nal peptide (italic letters) determined both by homology and using the
SignalP server [30] (http://www.cbs.dtu.dk/services/SignalP/), a puta-
tive 22 residue long mature AMP (bold letters) determined by analogy
to the antimicrobial peptide sequence of mature moronecidin (also 22
residues long), and a negatively charged propeptide at the C-terminus.
Putative mature AMP was named trichoplaxin according to its annota-
tion in the EST database.

All sequence alignments were done with ClustalW. Prediction of tri-
dimensional structure was performed using the I-Tasser server [31]
(http://zhanglab.ccmb.med.umich.edu/I-TASSER/) with default settings
and visualized by YASARA View software (http://www.yasara.org/
index.html). Prediction of molecular hydrophobicity potential was per-
formed using the PLATINUM server [32] (http://model.nmr.ru/
platinum/), while amphipathicity profile and preferences for membrane
buried helical conformation were examined using SPLIT 4.0 server [33]
(http://split4d.pmfst.hr/split/4/). Helical wheel and wenxiang projec-
tions were performed with RZLab (http://rzlab.ucr.edu/scripts/wheel/
wheel.cgi) and Wenxiang (http://www.jci-bioinfo.cn/wenxiang2)
servers respectively.

2.2. Peptide synthesis and purification

The in silico predicted antimicrobial part of the trichoplaxin precur-
sor sequence was synthesized using the solid phase FastMoc chemistry
procedure on an Applied Biosystems 433A automated peptide synthe-
sizer (Life technologies, Cergy-Pontoise, France) as described previously
[24]. Resin and Fmoc-protected amino acids were purchased from Iris
Biotech GMBH (Marktredwitz, Germany), and solvents from SDS-Carlo
Erba (Vitry, France). Carboxamidated peptides were prepared on 4-
methylbenzhydrylamine polystyrene resin (Fmoc-426 Rink Amide
PEG MBHA PS resin) substituted at 0.51 mmol/g. Synthesis product
was cleaved from the resin by a mixture of 95% trifluoracetic acid
(TFA), 2.5% H,0 and 2.5% Triisopropylsilan, precipitated in ether, centri-
fuged, and then lyophilized. The lyophilized crude peptides were
purified by reversed-phase HPLC (RP-HPLC) on a Luna C18(2) column
(10 pm, 10 x 250 mm from Phenomenex, Le Pecq, France), eluted at
5 ml/min with a 35-70% linear gradient of acetonitrile (ACN) 0.07%
TFA in 0.1% TFA/water over 35 min. The homogeneity and identity of
the synthetic peptides were assessed by MALDI-TOF mass spectrometry
(Voyager DE-Pro, Applied Biosystems, Life technologies, Cergy-
Pontoise, France) and analytical RP-HPLC on a Luna C18(2) column
(5 pm, 4.6 x 250 mm) eluted at a flow rate of 0.75 ml/min by a 0-60%
linear gradient of ACN 0.07% TFA in 0.1% TFA/water (1%/min).

2.3. Antimicrobial activity

Minimum inhibitory concentration (MIC) of trichoplaxin was deter-
mined by a standard microdilution method using 96-well microtiter
cell culture plates. The tests were performed against Gram-positive
and Gram-negative bacteria and yeasts (Gram-positive strains:
Staphylococcus aureus ATCC 25923, S. aureus multiresistant ATCC BAA-
44, Enterococcus faecalis ATCC 29212, Listeria ivanovii; Gram-negative
strains: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC
27853, Acinetobacter baumanii ATCC 19606, Klebsiella pneumoniae
ATCC 13883; yeast strains: Candida albicans ATCC 90028, Candida
parapsilosis ATCC 22019). All bacteria except L. ivanovii, which was cul-
tured in BHI medium, were cultured in LB medium and yeasts were cul-
tured in YPD medium. Serial dilution of the peptide (50 pl) was
incubated with 50 pl of 10° cfu/ml of bacteria and yeasts, determined
by absorbance at 600 nm and diluted in an appropriate liquid medium
(Mueller-Hinton for all bacteria except L. ivanovii which was diluted in
BHI broth; yeasts were diluted in YPD broth). Incubation of bacteria
and yeasts was performed overnight (16 h) at 37 °C and 30 °C respec-
tively. After incubation, the absorbance at 630 nm of each well was de-
termined using a microplate reader (UVM340 ASYS, Eugendorf,
Austria). The MIC was expressed as the lowest concentration of the pep-
tide that completely inhibited bacterial growth and as the average value
from three independent experiments, each performed in triplicate. Pos-
itive (0.7% formaldehyde) and negative (H,0) inhibition controls and
sterility control (H,0) were also performed. Tests for bactericidal activ-
ity were performed by plating the bacterial suspension at MIC on solid
medium and incubating overnight.

Bacterial membrane permeabilization was determined by flow cy-
tometry, measuring the propidium iodide (PI) uptake by bacterial
cells, as described in [34]. Analyses were performed with a Cytomics
FC 5000 instrument (Beckman-Coulter, Inc., Fullerton, CA) equipped
with an argon laser (488 nm, 5 mW) and using a photomultiplier tube
fluorescence detector for orange filtered light (620 nm). All detectors
were set on logarithmic amplification. Optical and electronic noises
were eliminated by setting an electronic gating threshold on forward
scattering detector, while the flow rate was kept at a data rate below
300 events/s to avoid cell coincidence. For each sample, at least
10,000 events were acquired and stored as list mode files. For the
analyses, samples of 1 x 108 cells/ml were incubated in MH broth
with the peptides at 37 °C for different times. PI (Sigma-Aldrich) was
then added to the peptide-treated bacteria at a final concentration of
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10 pg/ml, and the cells were analysed in the flow cytometer after 4 min
incubation at 37 °C.

24. Cytotoxicity assays

Haemolytic activity: Peptide was diluted in a concentration range
1-800 uM and incubated in 96-well microtiter cell culture plates with
2 x 107 of washed rat erythrocytes (Charles River Laboratories, 465
L'Arbresle, France) in Dulbecco's phosphate-buffered saline, pH 7.4
(100 W) for 1 h at 37 °C. After incubation the suspension was centri-
fuged (12,000 x g; 15 s) and the absorbance of supernatant was mea-
sured at 450 nm. A parallel incubation with 0.1% v/v Triton was
performed to determine the absorbance value associated with 100%
haemolysis. The HCsq value was taken as the concentration of peptide
producing 50% haemolysis.

Pl uptake: Human leukemic U937 monocytes (10° cells/ml in PBS)
were incubated with the fluorescent probe PI (10 pg/ml) and with dif-
ferent peptide concentrations ranging from 0.5 pM to 40 uM at 37 °C.
Membrane damage was determined using the flow cytometer by mon-
itoring the emission at 610 nm of PI intercalated to DNA after 5, 15, 30
and 45 min of peptide exposure. To evaluate the extent of permanent
damage with respect to transient membrane permeabilization, peptide
was removed after 30 min exposure by washing twice with PBS and
cells were then resuspended in complete medium and incubated for ad-
ditional 24 h. Uptake of PI to these cells was then measured by flow cy-
tometry. For each measurement, 10,000 events were collected and
stored as list mode files, which were then analysed using FCS Express
3 (DeNovo Software).

MTT assay: Breast cancer MCF7 cells were harvested from culture
flasks after trypsinization, counted and appropriately diluted in com-
plete medium (0.5 x 10%/ml); 100 ul of this cell suspension was trans-
ferred into each well of a 96-well culture plate. After overnight
incubation, the supernatant was discarded and 0.5, 5, 10 and 25 pM con-
centrations of trichoplaxin were added in culture medium and incubat-
ed 24 h at 37 °Cin a humidified atmosphere (5% CO-). The colorimetric
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
assay was then performed to assess the metabolic activity of treated
cells in comparison to the untreated control. Briefly, 20 ul MTT solution
(stock: 5 mg/ml) was added to each well, and cells were then incubated
for 4 h at 37 °C. Finally, cells were lysed and MTT crystals solubilized
with an isopropanol/0.04 M HCI solution. All measurements were car-
ried out in triplicate on a microtiter plate reader (Tecan Mdnnedorf,
Switzerland) and the obtained data subjected to statistical analysis
(Student-Newman-Keuls test) (GraphPad InStat).

2.5. Circular dichroism studies

The circular dichroism spectra were recorded at 20 °C using either a
Jobin Yvon CD6 (Longjumeau, France) or a Jasco 700 (JASCO, Europe)
spectropolarimeter. Spectra were recorded in quartz 1-2 mm path
length cell between 185 and 260 nm with a spectral bandwidth of 2

M. saxatilis moronecidin

and 0.5 nm steps. Peptide was tested at 30 uM in H,0 (Milli-Q) in 10
or 80 mM sodium dodecyl sulfate (SDS) or 50% trifluoroethanol.

2.6. Preparation of large unilamelar vesicles

Two types of large unilamelar vesicles (LUVs) were prepared contain-
ing either only DMPC (dimyristoyl phosphatidylcholine) or DMPC/DMPG
(dimyristoyl phosphatidylglycerol) mix. Briefly, for the preparation
of DMPC vesicles 1.5 mg of DMPC (MW = 677.94 g/mol) was
dissolved in 150 pl of chloroform. For DMPC/DMPG vesicles a mix
of 3DMPC/DMPG, 1.12 mg of DMPC and 0.38 mg of DMPG (MW =
688.86 g/mol) was dissolved in 150 pl of methanol/chloroform
(1:1). Tubes containing both lipid solutions were heated at 37 °C
for 5 min in a bath and dried under the stream of nitrogen gas
while rotating to form a thin layer of lipids and placed in a centrifugal
evaporator at 45 °C during 3H to evaporate solvent traces. After evapora-
tion the lipid mixtures were hydrated with 1.5 ml of filtered Na,HPO4
(10 mM), pre-heated at 37 °C, and mixed to obtain a homogeneous solu-
tion. This lipid solution contains multilamelar vesicles (MLV) which
needed to be transformed into LUVs by seven cycles of freezing/thawing
using liquid nitrogen and a bath at 37 °Crespectively. This procedure will
cause MLVs to burst their outer lipid layers leaving only LUVs in the solu-
tion. The lipid sample was filtered using an extruder (Avanti Polar
Lipids, Inc.) preheated at 50 °C for 10 min with ten passages through
filters of respectively reducing pore size (0.4, 0.2 and 0.1 uM). Final
lipid solution (1 mg/ml) was kept in a clean vial at room temperature
and used for subsequent analysis within 24 h.

2.7. Surface plasmon resonance analysis

Interaction between trichoplaxin and LUVs was measured using sur-
face plasmon resonance (SPR) on a BIACORE 3000 instrument con-
trolled by Biacore 3000 Control Software v4.1 (GE healthcare, Uppsala,
Sweden) using the L1 chip support consisting of a carboxymethyl dex-
tran matrix with additional hydrophobic alkane groups (GE healthcare).
All experiments were done at 25 °C. Negative control experiment
showed that the peptide interacted non-specifically with the L1 chip
support (Fig. S1). In order to prevent these interactions BSA (bovine
serum albumin 0.3 mg/ml; flow rate: 5 pl/min; contact time: 5 min)
was first immobilized on L1 chip by hydrophobic interactions.
This BSA treatment totally prevents peptide binding to the chip
surface. Moreover, the peptide did not have any interaction with BSA
molecules (Fig. S2). Then DMPC or DMPG/DMPC LUVs (DMPC LUVs:
0.2 mg/ml; flow rate: 1 pl/min; contact time: 5 min; DMPG/DMPC
LUVs: 0.3 mg/ml, flow rate: 1 pl/min; contact time: 5 min) were
immobilized by hydrophobic interactions. After this surface prepara-
tion, trichoplaxin binding experiments with DMPC or DMPG/DMPC
were performed by diluting the peptide in HBS-N running buffer
(HEPES 10 mM pH 7.4, NaCl 150 mM) (GE healthcare) and injecting
on immobilized DMPC or DMPG/DMPC at a flow rate of 20 pl/min
with a 1 min contact time. Finally, dissociation was performed under a

MKCATLFLVLSMVVLMAE PGDAFFHHIFRG---IVHVGKT IHRLVTGGKAEQDQQDQQYQ 57

E. coioides epinecidin-1

MRCIALFLVLSLVVLMAE PGEGFIFHIIKG---LFHAGKMIHGLVTRRRHGVEELQDLDQ 57

P. americanus WF3

MKFTATFLVLSLVVLMAE PGECFLGALIKG---AIHGGRFIHGMIQ-NHHGYDEQQELNK 56

P. americanus WFYT

MKLAAAFLVLFLVVLMAE PGESFLGFLFHG---IRHGIKAIHGMIH-GN-SLDEMQELDK 55

T. adherens trichoplaxin

M. saxatilis moronecidin

MKCAMIFLVLTLVVLMAE PGECFFGRLKSVWSAVKHGWKAAKSRWR-———--— ESKQSEQ 53

t: TXXX :tl‘l‘ttttt:
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QEQQEQQAQQYQRFN--RER--AAFD 79

E. coicides epinecidin-1 R-———————— AFE--REKAFA--- 67
P. americanus WF3 Re=—————————— AVD==E=======— 61
P. americanus WFYT R-=————————— SFD--DNPNAIVFD 68

T. adherens trichoplaxin

G---EQAGQGGPPADQGQAPPNVAWR 76

Fig. 1. Alignment of trichoplaxin precursor with antimicrobial peptide precursors from PFAM antimicrobial 12 family. Underlined — signal peptide; bold and arrows — putative

trichoplaxin mature peptide.
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Antimicrobial activity of trichoplaxin against Gram-positive, Gram-negative bacteria and yeasts. Minimal inhibitory concentration (MIC), haemolytic activity (HCso) and selectivity index

(SI) are indicated.

HCsp (M) Bacterial strains® Yeast strains®

GRAM + MIC (uM) SI° (exp) GRAM — MIC (M) SI (exp) Yeasts MIC (uM) SI (exp)
>800 S. aureus 3 >260 E. coli 3-6 >130 C. albicans 25 >32

S. aureus (multires.) 3 >260 P. aeruginosa 6 >130 C. parapsilosis 50 >16

L. ivanovii 3 >260 A. baumanii 3 >260

E. faecalis 12.5 >65 K. pneumoniae 6 >130

@ Gram-positive strains: S. aureus (ATCC 25923), multiresistant S. aureus (BAA-44), E. faecalis (ATCC 29212), L. ivanovii; Gram-negative strains: E. coli (ATCC 25922), P. aeruginosa (ATCC

27853), A. baumanii (ATCC 19606), K. pneumoniae (ATCC 13883).
b Yeast strains: C. albicans (ATCC 90028), C. parapsilosis (ATCC 22019).
¢ As the maximum haemolysis observed was 20% at 800 pM peptide, the SI =

20 pl/min flow during 5 min. The chip surface was regenerated using re-
generation buffer (octyl-glucoside, 40 mM; flow rate: 5 pl/min; contact
time: 1 min). For kinetic study different concentrations (50, 100, 150,
200 and 300 nM) of trichoplaxin were injected and their dose dependen-
cy response was measured. For general view of one injection cycle see
Supplementary Data (Fig. S3). Data were analysed with BlAevaluation
software 4.1 and the Kp dissociation constant was determined using
the Fit kinetic simultaneous Ka/Kp (1:1 binding; Langmuir algorithm).

3. Results
3.1. In silico analysis of trichoplaxin

The trichoplaxin precursor, up to the acidic propeptide at its C-terminal,
belongs to the ‘Antimicrobial 12’ family in the PFAM database (PF08107),
which includes pleurocidin peptides from teleost fish. The four sequences
with the lowest E-values for this AMP family belong to three fish species:
Epinephelus coioides, Morone saxatilis, Pseudopleuronectes americanus, and
are coding respectively for epinecidin-1, moronecidin, and pleurocidin-
like peptides WF3 and WFYT (Fig. 1). Trichoplaxin precursor shows a re-
markable similarity with pleurocidin peptides within its signal peptide
region, with 77% sequence identity with M. saxatilis moronecidin. However,
the complete precursor of trichoplaxin shares less than 40% identity with
other pleurocidin family peptides, of which P. americanus WFYT has the
highest score at 37% sequence identity. For trichoplaxin alone (bold se-
quence in Fig. 1) BLASTP cannot find anything similar in the database of
non-redundant protein sequences up to the E-value of 6.8.

3.2. Trichoplaxin antimicrobial and haemolytic activities

Trichoplaxin was synthesized by FastMoc solid phase synthesis (see
Section 2.2), and its antimicrobial activity was tested against several dif-
ferent bacterial and two yeast strains. The peptide showed similar activity
against Gram-positive and Gram-negative strains (Table 1) with most
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HCso/MIC is likely to be considerably higher than the obtained value, as indicated.

values ranging from 3 to 12 pM. The lowest activity was against
E. faecalis with a MIC at 12.5 uM. The same MIC (3 pM) was measured
against both the antibiotic susceptible ATCC S. aureus strain and the
multiresistant BAA-44 strain. The growth of two yeast strains, C. albicans
and C. parapsilosis was inhibited with a MIC value of 25 uM and 50 pM re-
spectively. Minimal bactericidal concentration (MBC) for all strains was
determined to be at double the MIC value (data not shown).

A haemolytic activity assay was performed using rat erythrocytes
(Table 1). The peptide was tested up to 800 uM where it produced
20% haemolysis of rat erythrocytes. It is therefore only possible to esti-
mate a HCy. It follows that the standard accepted definition for thera-
peutic or selectivity index SI = HCso/MIC will give higher SI results.
We estimate it to be over 100, depending on the organism (Table S1).
Haemolytic activity however measures release of haemoglobin, a rela-
tively large molecule, from cells. A more sensitive measure of host-
cell membrane permeabilization is permeabilization to propidium io-
dide (PI). We carried out such an assay against U937 cells, a leukemic
monocyte-derived cell line (Fig. 2A).

This assay indicated that while permeabilization was low at concen-
trations comparable to the MIC, a significant permeabilization occurred
at 25 mM peptide. It should however be considered that PI is a small
molecule, and can have alternative means of entering cells than mem-
brane permeabilization [35]. For this reason we also carried out an
MTT assay on breast cancer MCF7 cells, which is a generally accepted cy-
totoxicity assay (Fig. 2B). In this assay, also, cytotoxicity was low at con-
centrations comparable to the MIC, with the ICyg being reached at
25 mM. Additionally, PI uptake after peptide treatment was evaluated
also in bacteria. Both E. coli and S. aureus cells were tested (Fig. 3). The
results indicate that at concentration close to MIC value (5 uM),
trichoplaxin is permeabilizing S. aureus cells more readily than E. coli
cells. After one hour incubation the percentage of PI positive cells is
10% and 33% for E. coli and S. aureus respectively. At concentration
that is between two and three times the MIC value (25 uM), both
E. coli and S. aureus cells are almost completely permeabilized (90%).
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Fig. 2. Cytotoxic activity of trichoplaxin. A) Permeabilization of U937 cells at increasing concentrations of trichoplaxin (5 uM, 25 uM and 50 pM), estimated by flow cytometry, estimated as
% permeabilized cells after incubation of 10° cells with increasing concentrations of peptide for 1 h. B) MTT assay, carried out after incubation of 10° MCF7 cells with increasing peptide

concentrations (2.5 uM, 5 pM, 10 pM and 25 pM).
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Fig. 3. Propidium iodide uptake of bacteria in contact with trichoplaxin. Permeabilization of E. coli (A) and S. aureus (B) after 1 h incubation with different concentrations (1 uM, 5 pM and 25 puM)

of trichoplaxin.

Due to lack of similarity with mature teleost AMPs, the analogy with
fish-derived mature antimicrobial peptide is not a strong argument for
the cleavage site positioning peptide C terminal before third tryptophan
of trichoplaxin precursor (Materials and methods section). In the case
when third tryptophan is also considered to be inside mature trichoplaxin
sequence (Fig. 1), an interesting pattern appears with aromatic residue at
each seventh position: FFGRLKSVWSAVKHGWKAAKSRWR. This peptide
was also synthesized and tested against E. coli and S. aureus. It showed a
lower antimicrobial activity with MIC in the range of 25-50 uM (data
not shown).

3.3. Structural studies

The spectra obtained by circular dichroism show (Fig. 4) solvent
dependency of the secondary structure. In aqueous environment
trichoplaxin has a minimum at 196 nm which indicates a disordered
secondary structure. On the other hand, when placed in 80 mM SDS,
the spectrum of the peptide changes with a single maximum at
191 nm and a strong minimum at 207 nm, with shoulders at 218
and 230 nm respectively. The position of the minimum is not com-
patible with a beta-sheet type structure. The spectrum has only
partial resemblance to that of an alpha-helix as this has intense
minima at 208 and 222 nm (Fig. 4A). Given the relatively high
SDS concentration that was used, we lowered it to just above the
micellar concentration (10 mM) to ensure that the spectral shape
was not due to the latter. Under these conditions, the spectra
were still not those expected for a canonical helical structure. On

the other hand, when the CD spectrum was measured in
trifluoroethanol, a solvent known to strongly induce a helical con-
formation, it had the typical shape of a helical peptide (Fig. 4B).

It is thus possible that trichoplaxin may have a structure that is not a
canonical helix in a membrane-like environment, possibly due to the
presence of four aromatic residues in the peptide sequence (F1, F2,
W9 and W16), which may influence how trichoplaxin interacts with
its environment.

Plotting trichoplaxin on a helical wheel projection reveals a second-
ary structure where residues are arranged in an amphipathic helical
structure (Fig. 5A). An interruption of hydrophobic half of the amphi-
pathic helix is caused by two arginine (R4 and R22) and a glycine
(G15) residue. Prediction of tertiary structure based on homology
with resolved PDB structures [31] suggests an a-helical structure with
clearly visible amphipathic nature of the helix (Fig. 5B).

In order to examine the distribution of hydrophobicity across the
length of the a-helix, we calculated the molecular hydrophobic poten-
tial [32] (MHP) of the peptide (Fig. 6). The 2D MHP map of the peptide
surface shows that the hydrophobicity is concentrated around four res-
idues, F1, F2, W9 and W16. As with helical wheel projection (Fig. 5A) the
MHP map confirms the amphipathic character of the a-helix as hydro-
phobic patches created by these four residues are all in the right half of
the map delineated by a vertical axis at 180° of rotation angle about the
helix axis. Also, it is clearly visible that the hydrophobic property of the
peptide is more prominent in its N-terminus, with most of hydrophobic
patches placed in the lower half of the map, representing the first 11
residues of the peptide sequence.

© (mdegdmol-! (x104)

185 195 205 215 225 235 245 255 200 210 220 230 240
wavelength (nm)
Fig. 4. Circular dichroism spectra of trichoplaxin. A) CD spectrum of trichoplaxin in water (—) and three different concentrations of the peptide in 80 mM SDS (30 uM ----; 50uM - * = * —;
100pM - - - -+ =); B) CD spectrum of trichoplaxin at 30 uM in 10 mM sodium phosphate buffer (—) and in the presence of 10 mM SDS (- - - -) or 50% TFE (- - - - * -). Spectra are the mean

of at least three scans.
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Fig. 5. Helical wheel projection of trichoplaxin (A) and predicted tertiary structure using [-TASSER server [31] and YASARA View software (B). Residues are colour and shape coded accord-
ing to their hydrophobicity and charge. Nonpolar hydrophobic (yellow diamonds), polar uncharged (red circles) and polar basic (blue pentagons).

SPLIT server [33] also confirmed the amphipathic nature of predicted
trichoplaxin helix and greater preference for membrane-buried helical
conformation at the peptide hydrophobic N-terminal (data not shown).

3.4. Interaction assays of trichoplaxin with membrane models by surface
plasmon resonance

These assays were performed in order to measure the affinity of
trichoplaxin towards two different types of membrane models, DMPC
and DMPG/DMPC, a representation of eukaryotic and prokaryotic mem-
branes respectively (Figs. 7 and 8). Interaction of the peptide with
neutral DMPC vesicles was reversible with a signal dropping to zero
spontaneously with the flow of running buffer after approximately 10
min (Fig. 7). This indicates that the peptide had a very low affinity for
this type of vesicles and that it did not penetrate or bury in the lipid bilay-
er. Conversely, with the anionic DMPG/DMPC vesicles a spontaneous
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Fig. 6. The molecular hydrophobicity potential (MHP) on the surface of trichoplaxin as cal-
culated by PLATINUM server [32]. MHP is given in octanol-water partition coefficient logP
units. The value of the rotation angle about the helix axis and the rise along it are plotted
on x and y axes respectively. Areas with MHP > 0.09 (lighter grey shades) are shown with
contour intervals of 0.015. Dots next to residue symbols indicate the position of Cae atoms.

drop to zero of SPR signal was never achieved (Fig. 7), with a quantity
of peptide attached to the vesicles remaining constant even after more
than 50 min of continuous flow of running buffer. Kinetic tests using
DMPG/DMPC LUVs showed that trichoplaxin has high affinity for this
type of LUVs with a dissociation constant (Kp) of 8.65 x 1078 s~ ! and
% value of 2, showing a good fit (Fig. 8). A kinetic test using DMPC ves-
icles was unsuccessful as it was not possible to produce dose dependant
results necessary for Kp calculation (data not shown).

4. Discussion

The increasing efforts in both genome and EST sequencing have
resulted in an abundance of potentially novel peptides with good ther-
apeutic properties. In this study we give a first report of an antimicrobial
peptide from the EST database of placozoan T. adherens found using as a
query the signal peptide of a fish AMP piscidin. To the best of our knowl-
edge no other AMP from placozoa has been identified so far. This pep-
tide, apart from the preserved signal peptide, shares little similarity
with known peptides from known fish species. A search in a draft ver-
sion of T. adherens genome failed to produce a significant result but
this may be due to the insufficiently completed sequencing of the ge-
nome. Additionally, phylum Placozoa, represented by extant species
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Fig. 7. Binding of trichoplaxin (0.5 pM) on DMPC (blue) and DMPG/DMPC (red) LUVs.
Biacore sensograms showing the binding of trichoplaxin (0.5 uM) on DMPC (blue) or
DMPG/DMPC (red) LUVs. Response is expressed in resonance units (RU) relative to time
in seconds. Note the response due to end of injection of the peptide at 100 s.
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Fig. 8. Kinetic study of trichoplaxin binding to DMPG/DMPC large unilamelar vesicles. Five concentrations of trichoplaxin (50 to 300 nM) and HBS-N buffer were tested for their binding on
DMPG/DMPC vesicles. The base line (in pink) corresponds to the HBS-N alone (see Materials and methods). Software analysis gives a Kp value of 8.65 x 1078 M with a 2 of 2 (see

Materials and methods).

T. adhaerens, are often considered the simplest living animals [36]. Inter-
estingly, these fragile animals, invisible in seawater, due to their small
size, have strong chemical defence of unknown identity against other
small animals [37]. In laboratory they feed on bacterial biofilms (green
algae). Without having digestive organs or specialized cells, it is not
clear how T. adhaerens manages to kill microbes for food or for its own
defence. It has been noted that on the surface of the animal there is an
abundance of vesicles of high lipid content that are known to expel
their content to the surface upon external stimulation. However, the
exact chemical composition of their content is still unknown [37].

The predicted antimicrobial part of the peptide was synthesized and
a series of both structural and activity tests were performed. The CD
spectra of trichoplaxin showed a slight shift in the second minimum
of the curve, from 222 nm to 230 nm. This type of shift is not character-
istic of either the a-helix or 3-sheet and could be explained by four
strongly absorbing aromatic residues in the sequence. However, in TFE
the peptide does have a typical helical conformation but since TFE
heavily promotes helical structure, it is not a definitive proof that
trichoplaxin indeed is a typical a-helix. Aromatic residues mainly con-
tribute to the absorption in the near-UV spectra (>250 nm) but when
their frequency within the sequence is high, they can also contribute
to the far-UV spectra, complicating the estimation of the secondary
structure [38].

The biological activity of trichoplaxin was tested by antimicrobial
test (MIC and MBC) against Gram-positive and Gram-negative bacteria
and yeasts. Additionally, a haemolytic assay was performed. The peptide
was equally active against Gram-positive and Gram-negative bacteria
(3-6 uM) with the exception of Gram-positive E. faecalis (12 pM). On
the other hand, PI uptake test showed a more pronounced perme-
abilization of S. aureus cells in comparison with E. coli. After 1 h of incu-
bation, the percentage of permeabilized S. aureus cells was three times
higher than the E. coli cells. The activity against two species of yeasts,
C. albicans and C. parapsilosis was somewhat lower (25 and 50 uM re-
spectively). In addition to being ubiquitously active against different mi-
croorganisms, trichoplaxin proved to have extremely good selectivity
when looking at the haemolytic activity against rat erythrocytes with
HCsq value undetectable up to 800 uM of peptide concentration. With
haemolysis rate of 20% at 800 uM we hypothesize that its HCso value
is likely to be considerably higher than 1 mM. On the other hand,
when we tested trichoplaxin for cell permeabilization by PI uptake
and by MTT test, we found that peptide concentrations that produce cy-
totoxic effect in these experiments are much lower. PI uptake test shows

significant cell permeabilizaton at 25 uM while MTT test predicts ICsq in
the range of 45-50 uM. These results taken together make it difficult to
assess true cytotoxic activity of trichoplaxin since each test is placing it
in a different concentration range. One of the explanations might be due
to the nature of molecules that are taken as indicators of membrane
damage. Since haemoglobin is a much larger molecule than PI it is pos-
sible that trichoplaxin is making pores of insufficient radius for
haemoglobin to leak out of the erythrocyte, thus giving an impression
of no cytotoxic activity. Also, as indicated in the work by Xhindoli et al.
[35] PI can have alternative means of entry into the cell by activation of
channel receptors which are not related to pore formation by the peptide.
Taken together we believe that these results also raise the question of
validity of generally accepted haemolytic tests as indicators of cytotoxicity
and parameters for estimation of selectivity index in the field of antimi-
crobial peptide research. If measured by standard formula for selectivity
index (HCso/MIC), trichoplaxin has a SI value higher than 250 in some
cases, which is one of the best results for known natural AMPs and their
analogues that form a-helix in a membrane-like environment. The SI of
three well-studied AMPs, PGLa, magainin-2 and magainin-2 analogue
pexiganan is 105, 20, and 30 respectively, while their MIC against E. coli
is 10, 50, and 1.5 uM respectively [39,40]. High selectivity of natural
PGLa and magainin-2 peptides may be connected to their ability to
make small short-living pores in bacterial-like membranes [4,41,42] so
that similar mechanism of action can be proposed for the trichoplaxin.
Trichoplaxin selectivity was further tested using the surface plas-
mon resonance method. The peptide was tested for difference in inter-
action with two types of large unilamelar vesicles, representing
prokaryotic-like negatively charged membranes (DMPG/DMPC) and
eukaryotic-like, zwitterionic membranes (DMPC). In contact with
(DMPG/DMPC) trichoplaxin acted in a predictable, dose dependant
manner giving a dissociation constant Kp, of 8.65 x 10~ M. This K, is
approaching the ones expressed by antigen-antibody interactions
which are in the range of 10~°~10~'2 M. This is supported by the fact
that the only means to remove the peptide from the chip was by wash-
ing the chip with 40 mM octyl-glucoside, removing both the peptide
and the vesicles. Conversely, in the presence of DMPC vesicles the inter-
action of trichoplaxin changed dramatically, since after several attempts
we were unable to produce a dose dependant response, with same con-
centrations of peptide giving different responses within the same series
of injections. Additionally, the interaction of the peptide with this type
of vesicles was weak enough to enable the complete and spontaneous
dissociation of the peptide from the vesicles within several minutes.
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This result supported the results obtained by haemolytic tests that
showed a very low cytotoxicity.

Polyansky et al. [25] suggested that the haemolytic activity of
«a-helical peptides depends on hydrophobic properties of their N-
terminus. For the example of latracins they demonstrated that a prom-
inent N-terminal molecular hydrophobic potential (MHP) is character-
istic for haemolytic peptides and that this toxic effect can be reduced by
introducing substitutions with polar residues. Using their method we
constructed a 2D MHP mabp of trichoplaxin (Fig. 6). Our results show
that the peptide's high MHP values are concentrated primarily around
four residues, F1, F2, W9 and W16. These regions are localized and do
not form a wide hydrophobicity patch described for haemolytic pep-
tides [25]. Also, the peptide seems to have more pronounced hydropho-
bic properties in the N-terminal region of the sequence with patches of
high hydrophobicity concentrated mainly within the first ten residues
of the sequence, around F1, F2 and W9 (Fig. 6). This characteristic
could provide some insight in the action mechanism of the peptide as
it could be that the N-terminal region is more critical in establishing in-
teractions with the membrane [40].

Trichoplaxin has two arginines and two tryptophan residues in its se-
quence making it similar to the subset of AMPs called Arg-Trp rich pep-
tides. Both intramolecular and intermolecular role of these two residue
types in antimicrobial activity has been discussed in a previous work
by Chan et al. [43]. Tryptophan has a complex electrostatic nature in its
bulky side chain due to significant quadrupole moment of the indole
ring. It has a m—electron system with negatively charged clouds and it
can take part in cation-Tt interactions [44]. While in the interfacial region
of lipid bilayer, tryptophan can form hydrogen bonds with both water
and charged components of the lipid bilayer and its bulky side chain is
in an energetically more favourable environment than it would be resid-
ing deeper within the cohesive hydrophobic acyl chain environment of
the lipid bilayer [45]. Thus, tryptophan is a suitable amino acid to enable
the peptide's prolonged association with the membrane. Arginine on the
other hand with its cationic nature provides means for electrostatic in-
teraction with target membranes and it can form hydrogen bonds with
negatively charged parts of the membrane such as LPS, teichoic acid, or
phosphatidyl glycerol phospholipid headgroups. Also, if interacting
with tryptophan, arginine can have its charge shielded, allowing for an
easier penetration into the lipid bilayer [44]. The cation-m interactions
are however possible between all aromatic amino acids and both argi-
nine and lysine [46]. Intermolecular interactions of lysines and spatially
close aromatic residues are feasible in trichoplaxin, as indicated by heli-
cal wheel (Fig. 5) and wenxiang diagram (Fig. 9) [47].

Trichoplaxin has four connected small motifs of the type [G,A,S]XXX
[G,AS], where X is any amino acid, known to promote self-association
and interaction of helical peptides in a membrane environment [48].
These are underlined motifs: FFGRLKSVWSAVKHGWKAAKSR. It remains
to be explored how unique pattern of small motifs, amphipathicity,
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Fig. 9. Wenxiang diagram of trichoplaxin. Red — hydrophobic residues; Blue — polar res-
idues. Potential cation- interactions: F2-K6, W9-K13, W16-K20.

hydrophobicity and preferences profile for membrane-buried helix
[32,33], in addition to possible cation-T interactions and combination
of electrostatic and hydrophobic interactions with membrane compo-
nents, brings about trichoplaxin exquisite ability to select between
bacterial-like and eukaryotic-like membranes.

5. Conclusions

In this study we report a first antimicrobial peptide from T. adhaerens
EST database, named trichoplaxin. Our results demonstrate that this
peptide has a good activity against Gram — and Gram + bacteria, in-
cluding drug-resistant strains, and a very low haemolytic activity. Sur-
face plasmon resonance experiments suggest that the peptide low
toxicity is related to its electrostatic and hydrophobic interactions
with membrane phospholipids. High selectivity index and broad activi-
ty spectrum make trichoplaxin a good candidate for further investiga-
tion of peptides that could find their way to the clinical use.
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