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a b s t r a c t

A relational first order structure is homogeneous if it is countable (possibly finite) and
every isomorphism between finite substructures extends to an automorphism. This article
is a survey of several aspects of homogeneity, with emphasis on countably infinite
homogeneous structures. These arise as Fraissé limits of amalgamation classes of finite
structures. The subject has connections to model theory, to permutation group theory,
to combinatorics (for example through combinatorial enumeration, and through Ramsey
theory), and to descriptive set theory. Recently there has been a focus on connections
to topological dynamics, and to constraint satisfaction. The article discusses connections
between these topics, with an emphasis on examples, and on special properties of an
amalgamation class which yield important consequences for the automorphism group.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

For the purposes of this article, a homogeneous structure is a countable first order structure M over a relational language
(here usually assumed finite) such that any isomorphism between finite substructures of M extends to an automorphism
ofM . This definition is couched in first order logic, in model-theoretic language, but the notion is essentially combinatorial.
One fixes at the outset a first order relational language L, or signature, by specifying a collection (R̄i : i ∈ I) of relation
symbols, each with a specified arity ai ∈ N>0. An L-structure M = (M, (Ri)i∈I) is then just a set M (the domain), equipped,
for each i ∈ I , with a subset Ri of Mai (the interpretation of R̄i). If we are dealing with graphs (with no multiple edges),
or digraphs, or partial orders, the language L will consist just of a single binary relation symbol R̄. In the case of (loopless)
graphs, the interpretation of R̄will always be symmetric and irreflexive. If we wish to deal with k-hypergraphs, that is with
sets equippedwith a family of k-subsets (the hyperedges or k-edges), the relation symbol R̄will have arity k; its interpretations
will be irreflexive and symmetric in the natural sense. If working in the context of totally ordered graphs, we would fix a
language with two binary relation symbols, one interpreted by the set of edges, the other by the ordering. Mostly, we will
be considering infinite homogeneous structuresM , where |M| = ℵ0.

The context of homogeneous structures provides a meeting-point of ideas from combinatorics, model theory,
permutation group theory, and descriptive set theory, and connections to theoretical computer science and to universal
algebra are beginning to emerge. I aim in this article to give an introduction and overview to the subject, emphasising
recently emerging themes and the connections between areas. In particular, I focus on combinatorial aspects, and on certain
families of examples which often arise. The article contains virtually nothing new. Proofs are in general omitted, or at most
sketched.

The subject arose first inwork of R. Fraissé in the early 1950s. A basic example of a homogeneous structure is the countable
dense linear order without endpoints, (Q, <); for this structure, homogeneity can be seen either by a ‘back-and-forth’
argument to build automorphisms, or just by extending finite order-preserving maps to piecewise linear automorphisms.
The ordered set of rationals is built as a direct limit of finite (so discrete, and hence rigid) total orders. The high symmetry of

E-mail address: h.d.macpherson@leeds.ac.uk.

0012-365X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2011.01.024

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82326889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.disc.2011.01.024
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:h.d.macpherson@leeds.ac.uk
http://dx.doi.org/10.1016/j.disc.2011.01.024


1600 D. Macpherson / Discrete Mathematics 311 (2011) 1599–1634

(Q, <) is explained by the fact that any two finite total orders can be amalgamated over any common subordering. This led
to Fraissé’s Amalgamation Theorem ([62], see Theorem 2.1.3). This theorem asserts that any homogeneous structure arises
(by a limiting process) from an amalgamation class of finite structures in the same language. Thus, examples are found by
constructing amalgamation classes, and classification problems reduce to the classification of amalgamation classes.

The focus of Fraissé and associates was on relational structures in general, viewed combinatorially, with homogeneous
structures as a very special case. However, infinite homogeneous structures are of immediate model-theoretic interest,
since (assuming the language is finite) they are ω-categorical; that is, any infinite homogeneous structure is determined
up to isomorphism, among countable structures, by its first order theory. This motivated Henson’s construction of 2ℵ0

homogeneous directed graphs [75], followed by a body of work by Lachlan, Cherlin and others (e.g. Harrington, Schmerl,
Shelah, Woodrow) in the late 1970s and 1980s.

The initial focus of this work was on classification, with the Lachlan–Woodrow classification of infinite homogeneous
graphs [101], and Cherlin’s description of the infinite homogeneous digraphs [38]. In another direction, Gardiner [63]
and independently Golfand and Klin [69] classified finite homogeneous graphs, and Lachlan classified finite homogeneous
digraphs, and observed that, aside from very small structures, the examples fall into finitelymany infinite families, such that
in each family the isomorphism type is determined by the values of finitelymany independent and free-ranging dimensions.
This led to a connection tomodel-theoretic stability theory, a subject developed in the 1970s and still central tomodel theory.
Lachlan showed that any stable countably infinite homogeneous structure over a finite relational language is the union of
a chain of finite homogeneous structures with additional properties. For homogeneous structures, stability is extremely
restrictive, eliminating many of the interesting phenomena. However, Lachlan’s work led to the study of ω-categorical
ω-stable structures in [40], to work of Ahlbrandt and Ziegler [5] on axiomatisation and covering constructions, and to the
monograph [41] by Cherlin andHrushovski on smoothly approximable structures. Many ideas inmodern geometric stability
and simplicity theory first emerged in this work.

Another major theme has been the connection to infinite permutation groups. Permutation group theory (including
the classification of finite simple groups) is used in the above work on stable homogeneous structures, but the focus is
on the structures, with group theory used as a tool to study them. In the other direction, homogeneous structures, and
in particular Fraissé’s Theorem, provide a wonderful source of examples of infinite permutation groups. This emerges
particularly in work of Cameron, and [26] provides an excellent general reference. One topic of interest is the abstract
structure of the automorphism group (e.g. normal subgroup structure, embeddability properties, subgroups of small index,
and other phenomena more recently considered). There are connections to combinatorial enumeration: many interesting
integer sequences familiar from enumeration problems arise by counting orbits of the automorphism groups on finite sets
or tuples. Also, it is possible to translate between the language of permutation group theory and the language of model
theory, which suggests that one may be able to recover a homogeneous structure, at least up to ‘bi-interpretability’, from its
automorphism group; this is not always possible, but is achievable inmany cases. The automorphism group of any countably
infinite first order structure is a Polish group with respect to a natural topology, the ‘topology of pointwise convergence’.
Thus, techniques from descriptive set theory are available for some of the above questions, and also, automorphism groups
of homogeneous structures provide important examples of Polish groups.

More recently, the subject has moved in other directions. There is a notion of ‘Ramsey class’ of finite structures (see
Definition 6.5.1), developed by Nešetřil, Rödl, and others. Any Ramsey class of finite ordered structures is an amalgamation
class (Proposition 6.5.2), and there are partial characterisations of those amalgamation classes which, augmented by an
ordering, give Ramsey classes. In [93], Kechris, Pestov and Todorcevic found an application of this subject to topological
dynamics, that is, to questions about continuous actions of Polish groups on compact spaces. In another direction, Bodirsky
has recently investigated versions of constraint satisfaction with infinite (usually homogeneous) M . For a fixed structure M ,
one asks whether a finite structure (given as input) has a homomorphism to M , or equivalently whether a certain positive
primitive sentence is true of M . For a number of interesting constraint satisfaction problems, it is appropriate to choose M
to be homogeneous.

In this survey, we do not consider just homogeneous structures, but work in the broader framework of ω-categorical
structures. However, I have emphasised topics forwhich the combinatorics of homogeneous structures play a prominent role,
and have stressed the connection to infinite permutation groups. I have also tried to emphasise the role of certain examples,
such as the various ω-categorical structures associated with trees. Another theme of the article is that specific properties of
amalgamation (free amalgamation, monotone free amalgamation) have very strong consequences for the structure of the
automorphism group of the Fraissé limit, such as simplicity and extreme amenability. These consequences are summarised
in Theorems 6.5.6 and 6.5.7. A number of open questions are included.

Many topics are omitted, including the following: the rich theory of ω-categorical ω-stable structures, developed in [40]
and in later papers of Ahlbrandt and Ziegler, Hrushovski and others; smoothly approximable structures (the subject of the
monograph [41]); the theory of finite covers of ω-categorical structures, initiated by Ahlbrandt and Ziegler, and developed
particularly by Evans and coauthors; results on ω-categorical groups and rings; ‘Hrushovski constructions’, which are
variants of Fraissé amalgamation based on a predimension; homogeneous metric spaces—a subject of considerable activity
recently, particularly concerning Urysohn’s universal metric space.

Several other articles and books survey parts of this subject, from different points of view. Cameron’s monograph [26]
focusses mainly on the automorphism group, in the slightly wider setting of ω-categorical structures, and there are other
helpful surveys by Cameron. For a range of constructions of ω-categorical structures, see [57]. The paper [94] has many
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new results, but also collates material around automorphism groups of Polish groups. The introduction of [38] discusses
classification, and both it and [39] have many open problems. For material around Jordan groups, [15] is a possible source.

Permutation groups play a major role in this subject. We fix some standard permutation group-theoretic notation and
terminology. The automorphism group of a first order structure M is denoted by Aut(M). We often write (G, X) for a
permutation group G on a set X , and we write permutations to the left of their arguments. We say (G, X) is transitive if,
for all u, v ∈ X , there is g ∈ G with g(u) = v; if k ≥ 1, then (G, X) is k-transitive if, for any distinct u1, . . . , uk ∈ X and
distinct v1, . . . , vk ∈ X , there is g ∈ G with g(ui) = vi for i = 1, . . . , k. The permutation group (G, X) is k-homogeneous
if G is transitive on the collection of unordered k-subsets of X . It is highly transitive (respectively, highly homogeneous) if it
is k-transitive (respectively, k-homogeneous) for all k ∈ N. We say (G, X) is primitive if there is no G-invariant equivalence
relation on X other than the trivial one and the universal one; it is imprimitive otherwise. Likewise, a first order structureM
is transitive (respectively, primitive) if Aut(M) acts transitively (respectively, primitively) on M . If G is a permutation group
on X and x ∈ X , then Gx denotes the stabiliser {g ∈ G : g(x) = x}. If A ⊂ X , then G{A} := {g ∈ G : g(A) = A} (the setwise
stabiliser of A) and G(A) := {g ∈ G : g|A = id|A} (the pointwise stabiliser of A).

In the context of graphs, we use ∼ for adjacency: if x, y are vertices, x ∼ ymeans that they are adjacent. Model-theoretic
notation is fairly standard. We write M |H σ if the first order sentence σ is true in the structure M . If A, B are first order
structures, we write A ≤ B if A is a substructure of B. (This is the model theorist’s notion of ‘substructure’, corresponding
to the graph theorist’s notion of ‘induced substructure’.) If R is a relation (of arity n) on a structure M , we say R is irreflexive
if, whenever ā = (a1, . . . , an) ∈ Mn lies in R, the entries in ā are all distinct. We say R is symmetric if it is invariant under
permutations of the arguments. We then talk of an irreflexive relational structure, if all its relations are irreflexive, or of
an irreflexive class of structures; likewise for ‘symmetric’. A homomorphism between relational structures A, B in a fixed
language is a function h from A to B such that for any n > 0, any relation symbol R of arity n, and any a1, . . . , an ∈ A, if
R(a1, . . . , an) holds in A then R(h(a1), . . . , h(an)) holds in B.

The article does not require much background from model theory. I assume familiarity with the notions of first order
language and structure, formula, and interpretation of a formula in a language. Beyond this, I have tried to give definitions
if they are needed. A good background source in model theory is [81].

2. Background to homogeneous structures

2.1. Amalgamation classes and Fraissé limits

In this article, I will adopt the following definition of homogeneity. By a relational structure, I mean a structure (M, (Ri)i∈I).
Such a structure has domain or universe M . Each Ri has a prescribed arity, and a relation Ri of arity ai is just a subset of Mai .
The corresponding language L has relation symbols corresponding to the Ri, of appropriate arity ai, and I do not distinguish
notationally between a relation symbol (in the language) and the corresponding relation in the structure. I tend to use
the same symbol for a structure and its domain, but where there is ambiguity (e.g. if several structures have the same
domain) I may write M for (M, (Ri)i∈I). Usually the language L is finite—this means that |I| is finite. Much of the theory of
homogeneous structures can be developed for languages which also have function symbols and constant symbols, replacing
‘finite’ by ‘finitely generated’. To keep with the combinatorial emphasis of the volume, I mostly avoid this, but it would be
fairly harmless at least to allow finitely many constant symbols. Often, we will not be very specific about the language. For
example, if we are talking about graphs, or digraphs, or partial orders, it is assumed that the language has a single binary
relation symbol. The language for 3-hypergraphs would consist of a ternary relation symbol.

Definition 2.1.1. A homogeneous structure is a countable, possibly finite, relational structure such that, for every
isomorphism f : U → V between finite substructures U and V ofM , there is an automorphism f ′ of M extending f .

In some sources, the word ‘ultrahomogeneous’ is used for this notion (possibly with the requirement that |M| = ℵ0), due
to overload for the word ‘homogeneous’. Also, we have built into the definition of homogeneity the requirement that |M| is
countable. This is to save words, since in this paper we only consider countable structures. Some sources do not do this.

Example 2.1.2. The structure (Q, <), where< is the usual order on the rationals, is homogeneous. For if f : U → V is a finite
partial isomorphism and a ∈ Q \ U , then there is b ∈ Q \ V such that f extends to a partial isomorphism taking a to b; just
choose any b in the appropriate interval. Using Cantor’s back-and-forth procedure, one iterates this step, alternately putting
new elements into the domain and range of f , until, at the limit, an automorphism, i.e. order-preserving permutation of Q,
is constructed. This method for constructing automorphisms or isomorphisms is ubiquitous in this subject. In the particular
case of (Q, <), the back-and-forthmethod is not needed: a piecewise linear automorphism extending f could be constructed
directly.

A few homogeneous structures, such as (Q, <), and disjoint unions of complete graphs all of the same size, require no
special construction technique. However the standard method of construction of homogeneous structures, described next,
is by Fraissé’s Theorem.
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Following Fraissé, we shall say that the age of a countable relational structureM with language L, denoted Age(M), is the
collection of finite structures which are isomorphic to a substructure of M . It is easily seen that Age(M) has the following
properties:

(i) Age(M) is closed under isomorphism and substructure,
(ii) Age(M) has countably many members up to isomorphism.
(iii) Age(M) has the joint embedding property (JEP): if U, V ∈ Age(M) then there is W ∈ Age(M) such that both U and V

embed inW .
Conversely, if C is a class of finite L-structures satisfying (i), (ii), and (iii), then there is a countable L-structure M such

that C = Age(M): just build M as a union of a chain of finite structures in C, repeatedly using (iii).
We are interested in the following additional condition:
(iv) A classC of finite L-structures has the amalgamation property (AP) if the following holds: whenever A, B1, B2 ∈ C and

fi : A → Bi (for i = 1, 2) are embeddings, there is C ∈ C and embeddings gi : Bi → C (for i = 1, 2) such that g1 ◦ f1 = g2 ◦ f2.

Theorem 2.1.3 (Fraissé’s Theorem [62]). (a) Let M be a homogeneous relational structure. Then Age(M) has the amalgamation
property.
(b) Let C be a non-empty class of finite L-structures satisfying (i)–(iv) above. Then there is a homogeneous L-structure M with

Age(M) = C. If N is another homogeneous L-structure whose age is C, then M ∼= N.

Sketch Proof. (a) Consider f1, f2, A, B1, B2 as in the statement of (AP). We may suppose B1 and B2 are substructures of M ,
and that f1 = idA. The map f2 extends to an automorphism g ofM . Put C := g(B1) ∪ B2, g2 := idB2 , and g1 := g|B1 .

(b) It suffices to build M so that for every A, B ∈ C with A ≤ B, and every embedding f : A → M , there is an embedding
g : B → M extending f . There are countably many such configurations (f , A, B) to consider. We shall build M as a union
of a chain of finite substructures (Mi)i∈N, so countably many steps occur in the construction. We use some of these steps to
ensure Age(M) = C, using (JEP). At other steps, we consider some A ≤ B as above, with some embedding f : A → Mn, and
buildMn+1 as an amalgam of the embeddings f : A → Mn, id : A → B.

The uniqueness ofM follows by a back-and-forth argument. �

The homogeneous structureM with age C is called the Fraissé limit of C.
We shall say that C has the disjoint amalgamation property (DAP), also called the strong amalgamation property, if in (iv)

above, C and the gi can be chosen so that g1(B1) ∩ g2(B2) = f1(A). When actually considering whether a class C has the
amalgamation property, we usually view f1, f2 as the identity maps, so B1, B2 are L-structures with a common substructure
A. The amalgamatiom problem is to build a structure C ∈ C with union B1 ∪ B2, so that B1 and B2 are substructures of C . One
must specify whether any elements of B1 \ A are identified with elements of B2 \ A, and which tuples of C which meet both
B1 \ A and B2 \ A satisfy relations of L. Viewed this way, the amalgamation is disjoint if and only if C can be chosen so that
B1 ∩ B2 = A, that is, if no additional identifications are forced.

Lemma 2.1.4. Let M be a homogeneous L-structure. Then Age(M) has (DAP), if and only if, for any finite A ⊂ M,Aut(M)(A) has
no finite orbits on M \ A.

Proof. See [26, (2.15), p. 37]. �

There is a further refinement of amalgamation: we say that an amalgamation class C with (DAP) has free amalgamation
if, in the definition above of (AP), the structure C can be chosen so that no tuple of C which satisfies a relation intersects both
g1(B1) \ g1f1(A) and g2(B2) \ g2f2(A) non-trivially. With the informal view above (where A is identified with substructures of
B1 and B2) thismeans that the structure C with union B1∪B2 can be built so that B1∩B2 = A, and, in addition, no tuple which
meets both B1 \ A and B2 \ A satisfies any relation of L. We denote such an amalgam as B1 ⊕A B2. If C is a free amalgamation
class, we call its Fraissé limitM a free homogeneous structure.

We shall say that a class C of finite L-structures is monotone if the following holds, where L has, for each i ∈ I , a relation
symbol Ri of aritymi: for each structure A ∈ C with domain A, if B is any L-structure with domain B ⊆ A and for each i ∈ I ,

{x̄ ∈ Bmi : B |H Rix̄} ⊆ {x̄ ∈ Bmi : A |H Rix̄},

then B ∈ C. More informally, there is a distinction, in graph theory, between the notion of subgraph and induced subgraph.
The standard model theoretic notion of ‘substructure’ (as used in this paper) corresponds to ‘induced subgraph’. The class C
is monotone if it is closed under the ‘graph-theoretic’ weaker notion of substructure. Clearly, any monotone amalgamation
class with disjoint amalgamation is a free amalgamation class. We shall call the Fraissé limit of a monotone amalgamation
class with disjoint amalgamation a ‘monotone homogeneous structure’.

We shall say that an amalgamation classC over a language L is finitely bounded (or that its Fraissé limit is finitely bounded)
if there is a finite set F of finite L-structures, such that C is the set of all finite L-structures which have no substructure
(in the model theorist’s sense) which is isomorphic to any member of F .

Remark 2.1.5. 1. A homogeneous structure M with a transitive binary relation R (e.g. a partial ordering or equivalence
relation) satisfied by a pair of distinct elements cannot be free.

2. The notions ‘free’ and ‘monotone’ involve a distinction between ‘positive’ and ‘negative’ properties. For example, the
complement of a monotone homogeneous graph is not in general monotone.
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3. It is easy to give examples which are free but not monotone. For example, let L be a language with two binary relation
symbols R and G, and let C be the class of all finite L-structures such that (i) R and G are symmetric and irreflexive, (ii) there
is no triple of distinct elements x, y, z such that R holds of all pairs from {x, y, z} but G holds from no pairs from this set.

Free and monotone amalgamation classes will be a major theme of this paper—see for example the results at the end of
Section 6.5.

2.2. Some classification results

We are now ready to give some examples and describe some classification results. First, to get used to homogeneity, note
that any connected homogeneous graph has diameter at most two. For otherwise, a pair of vertices at distance two would
be isomorphic to a pair at distance three, but these two pairs would lie in distinct orbits on pairs.

Example 2.2.1. LetC be the class of all finite graphs. ThenC is a free amalgamation class. Its Fraissé limitR is knownasRado’s
graph, ormore commonly as the random graph, for reasons discussed after Theorem 3.2.3. A back-and-forth argument shows
that R is the unique countably infinite graph which satisfies, for all n ∈ N>0, the following condition (sometimes called the
‘Alice’s Restaurant Axiom’, or just an ‘extension axiom’):
(∗)n let U, V be finite disjoint subsets of (the vertex set of) R with |U ∪ V | = n. Then there is a vertex x ∈ R joined to all

vertices in U and to no vertices in V .

Example 2.2.2. Let n ≥ 3, and Cn be the class of all finite Kn-free graphs, that is, graphs which do not have an n-vertex
complete graph as an induced subgraph. Then Cn is a free (in fact, monotone) amalgamation class. The Fraissé limit Rn is
known as the generic Kn-free graph (or universal homogeneous Kn-free graph).

It can be checked directly that any countable graph which is a disjoint union of complete graphs, all of the same size, is
homogeneous. Its automorphism group is just a wreath product of symmetric groups. In this case, amalgamation will not be
free unless the complete graphs are singletons. As a particular case, a countable independent set is homogeneous, and will
often be referred to as a pure set. Observe too that if Γ is a homogeneous graph, so is its complement Γ̄ , which has the same
vertex set, but with two vertices joined in Γ̄ if and only if they are not joined in Γ ; for Aut(Γ ) = Aut(Γ̄ ), and likewise, a
partial map U → V is an isomorphism between substructures of Γ if and only if the same holds for Γ̄ . The complement of
Rn (for n ≥ 3) is not monotone or free.

We can now state a difficult classification theorem of Lachlan and Woodrow. It extends an earlier classification by
Woodrowof countably infinite triangle-free homogeneous graphs. In the theorembelow, the graphs R and Rn, and an infinite
independent set, are all monotone, but the others are not. All are finitely bounded.

Theorem 2.2.3 ([101]). Let Γ be a countably infinite homogeneous graph. Then Γ or Γ c is isomorphic to one of: R, Rn (for
n ≥ 3), or a disjoint union of complete graphs, all of the same size.

It is convenient to mention now a graph which just fails to be homogeneous, namely the random bipartite graph. This
is a countably infinite bipartite graph such that each part of the bipartition is infinite, and if U, V are finite disjoint sets of
vertices from one part, there is a vertex in the other part adjacent to all vertices of U and to none of V . This graph is not
homogeneous, since there are two orbits on pairs of non-adjacent vertices, but it becomes homogeneous when one adds a
binary relation symbol interpreted as the bipartition. Homogeneous bipartite graphs (in this language) are classified in [68]
(a paper dealing mainly with a notion of homogeneity for uncountable graphs). The examples are: the complete bipartite
graph, an independent set, the random bipartite graph, a perfect matching, and the complement (in the bipartite sense) of
a perfect matching, namely, a complete bipartite graph with the edges of a perfect matching between the parts removed.

Earlier, Gardiner [63], and independently Golfand and Klin [69], classified finite homogeneous graphs, first investigated
by Sheehan [137].

Theorem 2.2.4 ([63]). Let Γ be a finite homogeneous graph. Then either Γ or Γ c is isomorphic to a disjoint union of complete
graphs all of the same size, or to the pentagon, or to the line graph L(K3,3).

Observe the basic format of this theorem. Every finite homogeneous graph is either sporadic (the pentagon or L(K3,3),
both of which are isomorphic to their complements) or belongs to one of two families, each parameterised by two natural
numbers, which range freely. By very deep work of Lachlan and coauthors, discussed in Section 3.3, this phenomenon is
completely general for finite homogeneous structures over a finite relational language.

Prior to the classification of homogeneous graphs, there was a more elementary classification of homogeneous partial
orders, due to Schmerl [134]. The examples are easily described. First, as noted above, (Q, <) is homogeneous. Next, the
collection C of all finite partial orders has the disjoint amalgamation property: given two finite partial orders B1, B2 with
common substructure A, first form the free amalgam B1 ⊕A B2; it may not be a partial order, but it is easily checked that
its transitive closure is a partial order which induces no extra structure on the Bi. The Fraissé limit of C is the universal
homogeneous partial order, denoted P . There are also some rather trivial examples of homogeneous partial orders, namely
(for 1 ≤ n ≤ ℵ0): An (an antichain on n vertices); Bn = An × (Q, <), with (a, p) < (b, q) if and only if a = b and p < q; and
Cn, which has the same domain as Bn, but with (a, p) ≤ (b, q) if and only if p < q.
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Theorem 2.2.5 ([134]). Any homogeneous partial order is one of: (Q, <),P , An, Bn, Cn (for 1 ≤ n ≤ ℵ0).

To prove this, the key step is to verify that ifC is an amalgamation class of finite partial orders andC contains the structure
{u, v, w} (where u < v,w and v,w are incomparable) and C also contains the structure on u, v, w where u < v and w is
incomparable to u and v, then C consists of all finite partial orders. This is done by bare-hands arguments with transitivity.
If C does not embed one of the above structures, this gives highly restrictive structural information from which the other
examples are recovered.

The Lachlan–Woodrow classification of homogeneous graphs is much more intricate, and requires many amalgamation
arguments. This programme was taken much further by Cherlin [38], who classified the infinite homogeneous digraphs.
(Here, we view a digraph as a structure with a single binary irreflexive relation R such that given distinct vertices x, y, either
they are unrelated by R, or exactly one of Rxy, Ryx holds.)

I describe briefly the infinite homogeneous digraphs. I have organised the list in a different way to [38, Ch. 5], allowing
some overlaps between classes, and given less detail.

(i) The homogeneous partial orders classified by Schmerl (Theorem 2.2.5) may be viewed as digraphs.
(ii) A tournament is a digraph (D,→) such that for any two distinct vertices x, y, either x → y or y → x.

Lachlan, [96], introducing a Ramsey-theoretic method greatly developed in [38], classified the countably infinite
homogeneous tournaments. There are three of them: we may view (Q, <) as a homogeneous tournament, and also the
class of all finite tournaments has the amalgamation property, so there is a universal homogeneous tournament, sometimes
called the random tournament. In addition, there is a homogeneous tournament constructed by distributing countablymany
points densely on the unit circle, no two antipodal, and putting x → y if and only if 0 < arg(x, y) < π : this last example is
known as the local order, or circular tournament—see also [26]. Following some notation adopted later (Example 2.3.1), we
denote it by S(2).

(iii) Henson [75] observed that there are 2ℵ0 homogeneous digraphs constructed as follows. Let X be any collection of
finite tournaments such that no member of X is a subtournament of any other member of X , and let CX be the collection
of all finite digraphs which do not embed any member of X . Then CX is a free amalgamation class, so the Fraissé limit MX
is a homogeneous digraph. Furthermore, if X and Y are distinct such sets of tournaments, then CX ≠ CY , so MX ≁= MY . To
obtain 2ℵ0 pairwise non-isomorphic such MX , it suffices to find an infinite collection A of pairwise non-embeddable finite
tournaments, since then X can range through subsets of A. Henson finds such A by encoding finite cycles into tournaments.
We refer to homogeneous digraphs of the form MX as ‘Henson digraphs’. Since we may choose X to be empty, this class
includes the universal homogeneous digraph. These examples are all monotone. If X is infinite then MX is not finitely
bounded.

(iv) Given any n ≥ 2, let In denote the finite digraph with n vertices and no edges, and Cn the class of all finite digraphs
not embedding In. Then Cn is an amalgamation class, and its Fraissé limit Γn is a homogeneous digraph. These examples are
not monotone (or free).

(v) There are countably many homogeneous digraphs with imprimitive automorphism groups, not listed here, but easily
described. Schmerl’s partial orders Bn and Cn (for n > 1) also belong here.

(vi) There are two further ‘sporadic’ primitive digraphs, denoted by Cherlin S(3) and P (3). The digraph S(3)
(Example 2.3.1(2)) belongs to the family listed in Example 2.3.1, and P (3) is closely related to the universal homogeneous
partial order.

Theorem 2.2.6 (Cherlin). The infinite homogeneous digraphs are exactly the members of (i)–(vi) above.

Cherlin’s monograph [38] contains also a revised treatment of the classifications of infinite homogeneous graphs. It has
an extremely helpful introduction, with an overview of the classification, and a number of open problems.

In my view, we know rather little about homogeneous structures in general. There are many questions which are
answered for homogeneous graphs and digraphs using the classification (and other results) but seem out of range in general,
and it would be valuable to take classification to an additional level of complexity. In addition to other questions scattered
around this survey, we ask:

Question 2.2.7. 1. Does every structure which is homogeneous over a finite relational language have the small index property
(Definition 5.2.1).

2. Is there a binary homogeneous structure with primitive automorphism group and non-disjoint amalgamation
[39, Problem D] ?

3. Which are the homogeneous structures whose age has no infinite antichains under embeddability? Is this condition equivalent
to the growth rate of (fk(Aut(M))) (see Section 6.3) being bounded above by an exponential function?

4. If M is homogeneous over a finite relational language, must Aut(M) have just finitely many normal subgroups which are
closed (in the topology described in Section 4.1)?

There are many other interesting questions in [39].
Cherlin’s classification of homogeneous digraphs is at present the strongest such result, but there are other more recent

classifications. Torrezao de Sousa [46] extended Schmerl’s result by classifying homogeneous partial orderings in a language
expanded by unary predicates (coloured partial orderings). Also, there are results of Jenkinson, Rose, and Truss towards a
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classification of homogeneous 2-graphs (as distinct from the two-graphs of Example 2.3.1!); these are graphswith the vertex
set partitioned into two pieces by unary predicates, and with finitely many colours for those edges which meet each piece.

In another direction, Cameron [27] classified the countably infinite homogeneous permutations, where a permutation of
a set X is viewed as a pair of total orders of the set. There are five of these: the identity permutation (where the two total
orders agree everywhere), the universal homogeneous permutation (where the two total orders are independent), one in
which<2 is the reverse of<1, and two others, each of which has automorphism group Aut(Q)wrAut(Q). For these last two
there is an ∅-definable equivalence relation E on the domain, with classes convex with respect the order<1 (which is dense
without endpoints), such that the order induced by <1 on the quotient by E is dense without endpoints. For one of these
last two structures, <2 agrees with <1 on each class and disagrees for pairs in distinct classes, and the other structure
is obtained by reversing <2. Cameron also describes the circular permutations (homogeneous structures in a language
with two ternary relations, each interpreted by a circular order), and poses several problems, for example the classification
problem for homogeneous structures which consist of a set equipped with n > 2 total orders.

There are two obvious further directions for classification: one would be to classify homogeneous graphs with edges
coloured with two (or more) colours; equivalently, to classify homogeneous structures in a language with finitely many
symmetric irreflexive binary relations. Already, with two such relations, there are 2ℵ0 non-isomorphic homogeneous
structures, by a variant of Henson’s argument. Indeed, we may view such structures as graphs with edges coloured red
or green. Let K be the collection of all red/green colourings of a finite complete graph such that the red edges form a cycle;
this is an infinite set of graphs which are pairwise non-embeddable. For any X ⊂ K , let CX be the collection of coloured
graphs which do not embed anymember ofA. It is easily checked thatCX is a free amalgamation class, and different subsets
X yield different Fraissé limits.

Another goal would be to classify homogeneous 3-hypergraphs, that is, homogeneous structures (M, R), where R is a
ternary irreflexive symmetric relation. Some initial results here are obtained in [6]—for example, it is shown that there are
2ℵ0 non-isomorphic examples. An important example is the universal homogeneous two-graph (Example 2.3.1(4)). The finite
homogeneous 3-hypergraphs are classified by Lachlan and Tripp [100]. Such structures have 2-transitive automorphism
groups, and the latter are known, by the classification of finite simple groups.

2.3. Other examples of homogeneous structures

We draw attention here to some other interesting families of homogeneous structures, some described in more detail
later.

Example 2.3.1. 1. The example (Q, <) is one of a family of four. One may view the ordering up to reversal, and so obtain a
(ternary) linear betweenness relation B on Q, where B(x; y, z) holds if and only if y < x < z or z < x < y. Alternatively, by
bending the rational line into a circle one obtains a natural (ternary) circular ordering K on Q; here,

K(x, y, z) ⇔ (x < y < z) ∨ (y < z < x) ∨ (z < x < y).

The latter too may be viewed up to reversal, to obtain the (quaternary) separation relation S: S(x, y; z, w) if the points x, y
in the circular ordering separate the points z, w (so the group induced on 4 points is the dihedral group of order 8). All
the structures (Q, <), (Q, B), (Q, K), (Q, S) are homogeneous. They are characterised by a theorem of Cameron [28] which
asserts that any highly homogeneous but not highly transitive infinite permutation group preserves or reverses a linear or
circular order; see also Theorem 6.2.1.

2. The homogeneous local order described above, in the list of homogeneous digraphs, is one of a family. Let n be a
positive integer, and let (S(n), σ0, . . . , σn−1) be the structure whose domain is a countably infinite set of points, distributed
densely around the unit circle with no two making an angle of 2kπ/n at the centre (for any k ∈ Z), and where each σj is
a binary relation such that σj(x, y) holds if and only if 2π j/n < arg(x/y) < 2π j/(n + 1). Then each such structure S(n) is
homogeneous. The structure S(1) is just (Q, K).

3. A tree, or lower semilinear order is a partial order (T ,≤) such that

(i) ∀x, y∃z(z < x ∧ z < y), and
(ii) for all x ∈ T , the set {y ∈ T : y ≤ x} is totally ordered by<.

Droste [49] classified the countably infinite 2-homogeneous trees, that is, those trees such that any isomorphism between
2-element subsets extends to an automorphism. These are not in general homogeneous (consider two possible kinds of
antichains on 4 vertices) but it is easy to add finitely many automorphism–invariant relations to the language so that the
structure becomes homogeneous. We refer the reader ahead to Section 6.1 for a description of Droste’s classification, and of
the related (treelike) C-relations, general betweenness relations, and D-relations.

4. A two-graph is a 3-hypergraph such that any 4-set contains an even number of 3-edges. It can be checked that the
class of finite two-graphs has the amalgamation property (but not free amalgamation), so there is a universal homogeneous
two-graph H . Let x ∈ H , and define a graph on K := H \ {x}, putting y ∼ z if and only if {x, y, z} is a 3-edge. Then (K ,∼)
is isomorphic to the random graph R, and in fact Aut(H)x induces the full automorphism group of the random graph on K .
Extending permutation group language, we say that the two-graph is a transitive extension of the random graph. For more
on this see Section 6.2, and also Cameron [29, Section 7]. It would be interesting to classify the homogeneous two-graphs.
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There is a curious analogy between H , the circular order (Q, K), and the universal homogeneous D-relation; we discuss
this also in Section 4.2 (Proposition 4.2.8). They are useful examples to bear in mind. As noted in Section 6.2, the universal
homogeneous two-graph H is both a transitive extension of the random graph, and a reduct; that is, there is a copy of the
random graph Rwith the same domain asH , such that Aut(R) < Aut(H). Likewise, the circular order onQ is both a transitive
extension of a copy of (Q, <) and a reduct of (Q, <), and the universal homogeneousD-relation is both a transitive extension
and a reduct of the universal homogeneous C-relation.Model-theoretically, they behave rather differently: the circular order
and theD-relation have NIP but not simple theories, and the two-graph has a simple but not NIP theory (see Definition 6.4.1).
These analogies are explored, in the context of finite covers, in [86].

2.4. Variants on homogeneity: extending some partial isomorphisms, set-homogeneity, homomorphism–homogeneity

Extending some partial isomorphisms
In some situations, one considers a privileged class C of finite substructures of M , and only requires that isomorphisms

between members of C extend to automorphisms of M . There is a version of Fraissé amalgamation, where one works with
a class C of finite structures, and a class E of maps between members of C; see [57, Theorem 2.10] for a presentation. This
is the basis of the ‘Hrushovski constructions’ mentioned in the introduction, but there are simpler versions as well.

Let M be a countable graph. We say that M is connected-homogeneous if every isomorphism between finite connected
subgraphs extends to an automorphism ofM . This is a strengthening of distance-transitivity: a graphM is distance-transitive
if, for every positive integer k,Aut(M) is transitive on the set of ordered pairs of vertices at distance k. Extending results
of Enomoto and Gardiner for finite and locally finite graphs, the countably infinite connected-homogeneous graphs are
classified in [71]. In addition to the homogeneous graphs, and some imprimitive examples (the random bipartite graph, the
line graph of the complete bipartite graph Kω,ω , and the complement of a perfect matching), the list includes a family of
graphs of infinite diameter, in which complete graphs of a fixed cardinality are glued together in a treelike way. In the proof,
it is observed that ifM is connected-homogeneous, then all vertex-neighbourhoods are homogeneous graphs. The possible
vertex-neighbourhoods are then considered case-by-case. This result has possible generalisations, as there is a notion of
connectedness for any relational structure.
Set-homogeneity

Following terminology of Fraissé, a countable relational structureM is said to be set-homogeneous if, whenever two finite
substructures U, V of M are isomorphic, there is g ∈ Aut(M) with g(U) = V (so we do not require that all isomorphisms
extend). Clearly, if all finite substructures of M are rigid, then set-homogeneity of M implies homogeneity. Also, in a very
short combinatorial argument, Enomoto [56] showed that any finite set-homogeneous graph is homogeneous.

In recent work of Gray et al. [72], finite set-homogeneous digraphs are classified (even allowing some undirected edges,
as well as directed edges). The list of examples is quite long, including a 27-vertex ‘sporadic’ digraph. The work also includes
a classification of set-homogeneous not 2-homogeneous infinite digraphs (not allowing undirected edges). Here, a structure
is k-homogeneous if every isomorphism between substructures of size k extends to an automorphism.

For graphs, there is a nice example in [51] of an infinite set-homogeneous graphwhich is not 3-homogeneous. It is related
to S(3), and is obtained by distributing countably many points densely on the unit circle, no two making an angle π/3 at
the centre, with two vertices adjacent if they make an angle at the centre less than π/3. This graph is characterised in [51]
as the unique graph (up to complementation) which is set-homogeneous but not 3-homogeneous.

A full classification of set-homogeneous graphs or digraphs seems rather difficult. There is a (twisted) version of Fraissé
amalgamation in [51], but it seems difficult to use.
Homomorphism-homogeneity

There are the beginnings of a theory of homogeneous structures but with ‘homomorphism’ replacing ‘isomorphism’. The
subject was initiated in [35], and has been developed further in the Ph.D. thesis of Lockett (see also [34]), and in a series of
papers by Mašulović and coauthors. Given the connections of homogeneity to constraint satisfaction (see Section 6.6), this
subject seems promising.

The definition of homomorphism is as in the introduction, and a monomorphism is just an injective homomorphism. Let
I, M, H stand for ‘isomorphism’, ‘monomorphism’ and ‘homomorphism’ respectively, and for X, Y ∈ {I,M,H} say that a
structure P is XY -homogeneous if every map of type X between finite substructures of P extends to a map P → P of type Y .
Thus, II-homogeneity is just homogeneity. Since one should not expect to be able to extendmaps to ones satisfying stronger
assumptions, the interesting conditions are IH, MH, HH, IM, MM, and II.

A version of Fraissé’s Theorem for MM-homogeneity is given in [35]. In Lockett’s Ph.D. thesis, full classification results
for homomorphism–homogeneity for partial orders are obtained. The notion of homomorphism is sensitive to whether or
not the partial orderings are strict. In [34], it is shown that for strict partial orders, the classes defined by IH, MH, HH, IM and
MM all coincide, but properly contain II. For not strict partial orders, IH, MH and HH coincide, properly contain IM and MM
(which coincide), and these in turn properly contain II. Similar results are obtained by Mašulović in [119].

3. Model theory of homogeneous structures

We develop here the basic model-theoretic framework of ω-categoricity, discuss the finite model property, and give an
overview of Lachlan’s theory of stable homogeneous structures. This is extended further in Section 6.4.
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3.1. Omega-categoricity

From amodel-theoretic viewpoint, homogeneity fits in a broader framework, since infinite homogeneous structures over
a finite relational language areω-categorical. There are other notions too, such as saturation and recursive saturation, which
give similar symmetry information.

Definition 3.1.1. (i) A first order theory over a language L is a consistent set of first order sentences, that is, formulas without
free variables. It is a complete theory if it is maximal subject to being consistent. Equivalently, a complete theory is the set
of all sentences true of some L-structureM (and is then called the theory ofM , denoted Th(M)).

(ii) A complete theory T in a countable language is ω-categorical if it has an infinite model and any twomodels of size ℵ0
are isomorphic. An ω-categorical structure is a structureM of size ℵ0 whose theory is ω-categorical.

If G is a permutation group on a set X , then G has an induced action, coordinatewise, on Xn for each n. Following
Cameron [26], we say that (G, X) is oligomorphic if |X | = ℵ0 and G has finitely many orbits on Xn for all positive integers n.
The central result on ω-categoricity is the following, usually called the Ryll-Nardzewski Theorem, though parts are due to
Svenonius and Engeler. It gives an equivalence between model-theoretic and group-theoretic conditions. We omit some of
the model-theoretic equivalent conditions. At the heart of the theorem, though hidden below, is Vaught’s Omitting Types
Theorem.

Theorem 3.1.2 ([132,55,141]). Let M be a countably infinite first order structure in a countable language. Then the following are
equivalent.
(i) M is ω-categorical;
(ii) Aut(M) acts oligomorphically on M;
(iii) for each n > 0, there are finitely many formulas φ(x1, . . . , xn) up to Th(M)-provable equivalence.

Corollary 3.1.3. Let M be a countably infinite structure which is homogeneous over a finite relational language. Then M is
ω-categorical.

Proof. Since the language is finite, there are finitely many isomorphism types of n-element substructures of M . Any two
isomorphic (labelled) structures of size n lie in the same Aut(M)-orbit onMn. �

Remark 3.1.4. The assumption in Corollary 3.1.3 that the language is finite is unnecessarily strong. Provided that all the
relations are irreflexive, it suffices that the language has finitely many relation symbols of each arity.

For an ω-categorical structureM , by Theorem 3.1.2 and its proof, one can translate between model-theoretic and group-
theoretic concepts. Recall that if M is a first order structure then X ⊂ Mn is definable if X is the set of solutions in Mn

of some formula φ(x1, . . . , xn), possibly with parameters. If the parameters come from A ⊂ M (that is, X = {x̄ ∈ Mn
:

φ(x̄, a1, . . . , am)} for some m and a1, . . . , am ∈ A) then we say that X is A-definable. If M is ω-categorical and A ⊂ M is
finite, then X ⊂ Mn is A-definable if and only if X is a union of Aut(M)(A)-orbits on Mn. Also, recall that an n-type of M is a
maximal set of formulas in x1, . . . , xn consistentwith Th(M), and, forω-categoricalM , can be identifiedwith the intersection
of the solution sets of these formulas. For finite A ⊂ M , there is a corresponding notion of n-type over A, where the formulas
are allowed to have parameters from A. The corresponding subset of Mn is just an Aut(M)(A)-orbit on Mn. Back-and-forth
arguments underpin all these observations.

There are many ω-categorical structures which are not homogeneous, indeed are not naturally viewed as relational
structures.

Example 3.1.5. An ℵ0-dimensional vector space V over the finite field Fq is naturally parsed in the language
(+,−, 0, (fa)a∈Fq), where each fa is a unary function symbol interpreted as scalar multiplication by a. The theory of V
expresses that V is a vector space over Fq. Also, if V is countably infinite then dim(V ) = ℵ0. Since the dimension and
the field determine the isomorphism type, ω-categoricity of V follows. Alternatively, observe that its automorphism group
GL(ℵ0, q) acts oligomorphically on V .

The first order theory T has quantifier elimination if, for every formula φ(x1, . . . , xn) there is a quantifier-free formula
ψ(x1, . . . , xn) such that T ⊢ ∀x1 . . . ∀xn(φ(x̄) ↔ ψ(x̄)). If the language is not too complex, this condition makes it feasible
to understand the definable sets in models of T .

Proposition 3.1.6. Let M be anω-categorical structure over a relational language L. ThenM is homogeneous if and only if Th(M)
has quantifier elimination.

Sketch Proof. ⇒ Suppose that M is ω-categorical and homogeneous. By Theorem 3.1.2, for any n there are finitely many
formulas in n variables (modulo Th(M)). If two tuples satisfy the same quantifier-free formulas then they lie in the same
orbit so satisfy all the same formulas. It follows easily that every formula is equivalent to a quantifier-free formula.

⇐ Suppose that M is ω-categorical and Th(M) has quantifier-elimination, and f : U → V is an isomorphism of finite
substructures of M . If ū enumerates U and v̄ = f (ū), then ū and v̄ satisfy the same quantifier-free formulas, and hence
by quantifier-elimination satisfy the same formulas. It follows from the Ryll-Nardzewski Theorem (though this is not quite
immediate from the conditions in Theorem 3.1.2) that there is g ∈ Aut(M)with g(ū) = v̄. �
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If M is any ω-categorical structure, then there is an ω-categorical homogeneous relational structure with the same
domain and automorphism group as M: for each n, introduce a relation symbol for each Aut(M)-orbit on Mn, interpreted
by the orbit (and omit any function of constant symbols in the original language). Model-theoretically, this is known
as Morleyisation, and there is no restriction to ω-categoricity. The process can also be done starting with an arbitrary
oligomorphic permutation group. Given an oligomorphic permutation group (G, X) or ω-categorical structure M , the
relational language thus obtained is referred to as the canonical language. For example, it is clear that PGL(ℵ0, q) acts
oligomorphically on the projective space PG(ℵ0, q), and the latter can be viewed as a homogeneous relational structure
in the canonical language.

Within the class of all ω-categorical structures, there is a subclass consisting of those ω-categorical structures M such
that there is a homogeneous structure M ′ over a finite relational language such that M and M ′ have the same domain
and Aut(M) = Aut(M ′). Following Covington [44], who systematically investigated the notion, we call such structures
homogenisable. It is easily seen that V in Example 3.1.5 is not homogenisable. Indeed, if n ∈ N and Vn is a structure which
has the same domain as V and, for each orbit of Aut(V ) on V k for each k ≤ n, has a relation symbol interpreted by the
orbit, then Vn is not homogeneous; for if v1, . . . , vn+1 are linearly independent vectors, then the map (v1, . . . , vn, vn+1) →

(v1, . . . , vn, v1 + · · · + vn) is an isomorphism in the language of Vn, but there is no automorphism of Vn taking the first
tuple to the second. This argument is generalised in [107], where the following is proved using the affine Ramsey theorem.
A structure M is interpretable in another structure N if an isomorphic copy of M lives on a quotient (by an ∅-definable
equivalence relation) of an ∅-definable subset of a power of N , with the relations, functions and constants of the copy of M
also ∅-definable in N .

Theorem 3.1.7. Let M be a homogenisable structure. Then no infinite group is interpretable in M, even after naming constants
from M.

3.2. The finite model property

Homogeneous structures arise from amalgamation classes, but in general the model theory of a homogeneous structure
is very different from that of its finite substructures. For example (Q, <) is dense, but finite total orders are discrete, and
have endpoints.

Definition 3.2.1. A first order theory T has the finite model property (FMP) if every sentence in T is true of some finite
structure. A structureM has the finite model property if Th(M) has the finite model property.

There is a strengthening of this—M has the finite submodel property (FSP) if every sentence of Th(M) is true of a finite
substructure ofM .

Question 3.2.2. Is there an ω-categorical structure which has (FMP) but not (FSP)?

We recall the following result (Theorem 3.2.3), a ‘zero-one law’, usually attributed to Fagin [61] but proved also in [67].
Since all finite graphs embed in the random graph, it shows the random graph has FSP in a very strong form. A very similar
argument justifies the term ‘random graph’. Indeed there is a probability measure on the collection of all graphs with vertex
set N obtained, informally, by tossing a coin for each pair of vertices, distinct pairs having independent tosses, and making
them adjacent if the coin shows ‘heads’. For each n, the axiom (∗)n of Example 2.2.1 then holdswith probability 1, and hence,
with probability 1, the graph obtained is isomorphic to the random graph, since a countable union of measure zero sets has
measure zero.

Theorem 3.2.3. Let R be the random graph, let T := Th(R), and let σ ∈ T . Then almost all finite graphs satisfy σ , in the sense
that if an is the number of labelled graphs on {1, . . . , n} satisfying σ , and bn is the number of labelled graphs on {1, . . . , n}, then
limn→∞

an
bn

= 1.

Sketch Proof. Recall that T is axiomatised by sentences σn (for n ∈ N), where σn is:

∀x1 . . . xn∀y1 . . . yn

 
1≤i,j≤n

xi ≠ yj → ∃z


n

i=1

(z ∼ xi ∧ z ≁ yi)


.

Thus, it suffices to show that σn holds for almost all finite graphs. Observe that if S is a finite set of size m, and U, V are
disjoint subsets of S with |U ∪ V | = n, then the proportion of graphs on S such that no vertex outside U ∪ V is correctly
joined to U ∪ V (i.e. joined to all vertices of U and to none of V ) is (1 −

1
2n )

m−n. This has limit zero asm → ∞. Of course, in
view of the universal quantifiers, some additional argument is needed. �

It is not immediately obvious how to construct specific finite graphs satisfying σn, but there is one construction which
gives much stronger information. If q is a prime power with q ≡ 1(mod 4), then the Paley graph Pq has vertex set the
finite field Fq, with x ∼ y if and only if x − y is a square; this is symmetric, as −1 is a square in Fq. It is shown in [24]
that if U, V are disjoint subsets of Pq with |U ∪ V | = n, and t = |{z ∈ Fq : ∀u ∈ U(z ∼ u) ∧ ∀v ∈ V (z ≁ v)}|, then
|t − q

2n | ≤
1
2 (n−2+2−n+1)q

1
2 +

n
2 . The proof uses character sums, and is linked to the Lang–Weil estimates for finite fields.

This result says in particular that σn holds in any sufficiently large Paley graph, and hence so does any sentence of T . So the
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set of sentences which are true in all but finitely many Paley graphs Pq (where q ≡ 1(mod 4)) is a complete theory, namely
that of the random graph. The Paley graphs form a one-dimensional asymptotic class in the sense of [115]; this means that
the cardinalities of definable sets have asymptotically a rather uniform behaviour across the class of all Paley graphs (where
the sets are defined by a fixed formula, but with parameters varying).

All the above considerations apply also to the universal homogeneous tournament, butwith Paley tournaments Pq, where
q ≡ 3(mod 4), replacing Paley graphs. The proof is given in [70].

Paley graphs have particular interest because they can be viewed as pseudorandom graphs. That is, they form a specific
class of graphs which have many properties which should hold of a random graph. This viewpoint is developed in [23].

There are certain other homogeneous structures which clearly have the finite model property for probabilistic reasons:
for example, the universal homogeneous n-coloured graph (where every edge is coloured with exactly one of n colours),
the universal homogeneous digraph, the random bipartite graph, and the universal homogeneous k-hypergraph. It is not so
clear inwhich cases there are corresponding analogues to the Paley graphs and tournaments. Beyarslan [13], with a beautiful
construction, has shown that for any k ≥ 2 the universal homogeneous k-hypergraph is definable in a pseudofinite field (that
is, an infinite field satisfying every first order sentencewhich holds for all finite fields). By generalmodel theory, thiswill give
a class Ck of finite k-hypergraphs, definable in finite fields, which approximates the universal homogeneous k-hypergraph,
in the sense that every sentence true in the latter holds in all but finitely many members of Ck. I do not know if Ck has the
same kinds of asymptotic regularity and ‘pseudo-randomness’ that Paley graphs exhibit.

We shall see in the next subsection that stable homogeneous structures (in a finite relational language) also have the FSP.
In all those homogeneous structures which I know to have the finite model property, FSP arises either from probabilistic
arguments as above or from stability, or conceivably from a mixture of these, e.g. for the disjoint union of the random
graph and an infinite complete graph. It would be valuable to have a new method for proving the finite model property
for homogeneous structures. A hard open problem, raised by Cherlin, is whether the universal homogeneous triangle-free
graph has the FSP. The probabilistic arguments for the random graph do not work, since with probability tending to 1 with
|Γ |, any finite triangle-free graph Γ is bipartite. It is also not known whether there are 2ℵ0 homogenisable structures with
the FSP.

Finally, we mention one further refinement of the finite model property. The following result is due to Thomas ([142],
see also Section 6.2). In [142] Thomas describes the condition on Hk as the strong finite submodel property, and gives a short
proof, due to Kahn, using the Borel–Cantelli Lemma. The result holds also for the random tournament [11].

Theorem 3.2.4. For any k ≥ 2, the generic k-hypergraphHk can bewritten as the union of a chain (∆n)n∈N of finite k-hypergraphs
such that

(i) |∆n| = n for all n; and
(ii) for each sentence σ such that Hk |H σ , there is an integer Nσ such that ∆n |H σ for all n > Nσ .

3.3. Stable homogeneous structures

In a serious of major papers in the 1980s, Lachlan and coauthors developed the model theory of stable homogeneous
L-structures, where L is a finite relational language. Curiously, this runs in parallel with a structure theory of finite
homogeneous L-structures.

Definition 3.3.1. A complete theory T is unstable if there is a formula φ(x̄, ȳ) (where l(x̄) = r and l(ȳ) = s), some model M
of T , and āi ∈ Mr and b̄i ∈ Ms (for i ∈ N) such that for all i, j ∈ N,

M |H φ(āi, b̄j) ⇔ i ≤ j.

The theory T is stable otherwise. A structure M is stable if its theory is stable.
The theory T (over a countable language) is ω-stable if, for any countable model M , there are just countably many

complete types overM .

See [118] for more on ω-stability. This is a stronger condition than stability.
Stability is equivalent to many other conditions on T . For example, stability of T is equivalent to no infinite subset of

a power of any model of T being totally ordered by any formula; to there being an infinite cardinal λ such that for every
model M of T of size λ, there are just λ types over M (this is λ-stability); to the condition that all types over models of T
are definable; and to the finiteness of certain local ranks on formulas. Stability theory is a major branch of model theory.
Notions related to stability provide dividing lines between those theories for which models of all cardinals can be classified
by cardinal invariants, and those for which there are too many non-isomorphic models for this to hold (2λ models of each
sufficiently large cardinality λ). Stability theory has yielded abstract notions of independencewith a geometric flavour, with
many ramifications and applications.

The random graph is unstable: we may simply take φ(x, y) to be the formula x ∼ y. (Note here that the random graph
embeds every countable graph, so in particular has vertices ai, bi — for i ∈ N —with ai ∼ bj ↔ i ≤ j.) It is also easily shown
that the universal homogeneous Kn-free graph, and the ‘Henson digraphs’ are unstable. On the other hand, a disjoint union
of complete graphs, all of the same size, is stable.
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It is easily seen that any stable finitely homogeneous structureM isω-stable. For this, it suffices to show that there are at
most ℵ0 1-types over M . By standard stability theory arguments, for any formula φ(x, ȳ), there are at most ℵ0φ-types over
M , that is, partial types using only the formula φ; here the ȳ are viewed a ‘parameter-variables’ taking values in M . Since
Th(M) has quantifier elimination by Proposition 3.1.6, this is enough. Indeed, any type is determined by its subtypes given
by the finitely many the atomic formulas (with all but one of the variables as parameter-variables).

Thus, stable finitely homogeneous structures belong to the broader class ofω-categoricalω-stable structures investigated
in [40]. Note that for an ω-categorical structure, stability (or ω-stability) is a property determined by the automorphism
group; it is not changed by moving to the canonical language.

Example 3.3.2. For an illuminating example of a stable ω-categorical structure, let Γ be the graph whose vertices are the
2-element subsets of N, with two 2-sets adjacent if they intersect in a singleton. Then Aut(Γ ) = Sym(N) (in its action on
2-sets); the containment≥ is clear, but a littlework is needed for the other direction. The graphΓ is not homogeneous, since
there are two orbits on triangles, the first containing {{0, 1}, {0, 2}, {0, 3}} and the second containing {{0, 1}, {0, 2}, {1, 2}}.
If a ternary relation is added to the language interpreted by triples of the first kind, namely three distinct 2-sets all sharing a
single element, then the graph becomes homogeneous.When viewed as a homogeneous structure in this richer language, its
age does not have (DAP). This does not yield a positive answer to Question 2.2.7(2), since the language is ternary. It is stable
(in fact, ω-stable), for example because it is first-order interpretable in an ω-stable structure, namely a set in the language
just with equality. In fact, these two structures, Γ and the pure set, are bi-interpretable; this is related to the fact that they
have the same automorphism group (as a topological group). For more on this example, see Section 5.1. See also Thomas’s
result after Theorem 6.2.2.

The above graph is a well-known example of a distance-transitive graph. It is one of the Johnson graphs. The number 2
above can be replaced, without affecting the model theory much, by any integer k > 2: a Johnson graph then has as vertices
the k-subsets of N, with two such adjacent if they intersect in a (k − 1)-set. There is also an analogous construction of the
Hamming distance transitive graphs: if k > 1 is an integer, form a graph whose vertex set is Nk, with two k-tuples adjacent
if they agree in k − 1 coordinates. All of these examples are not homogeneous as graphs, but are homogenisable, and have
stable theory.

Both the constructions in Example 3.3.2, and the disjoint union of complete graphs, arise as the union of a chain of
finite homogeneous structures. For example, Γ is the disjoint union of the corresponding graphs Γn, which has vertex set
the collection of 2-element subsets of {1, . . . , n}. Lachlan proved that if M is any stable countably infinite homogeneous
structure over a finite relational language L, then M is a union of a chain (Mn : n ∈ N) of finite homogeneous L-structures,
and each sentence σ ∈ Th(M) holds in all but finitely many of theMn. TheMn are embedded intoM very nicely, in that any
two tuples of Mn lie in the same Aut(M)-orbit if and only if they lie in the same Aut(Mn)-orbit (this is the idea of smooth
approximation). Furthermore, the finite homogeneous L-structures fall, apart from finitelymany sporadics, into finitelymany
infinite families, with the isomorphism type in each family determined by finitely many N-valued dimensions, which range
freely above a certainminimum. If someof these dimensions are given valueℵ0, one obtains a stable homogeneous structure.
The main model-theoretic arguments are contained in [97]. A key ingredient is the finiteness of a certain rank function
proved in [42] via the classification of finite simple groups, entering via the O’Nan–Scott Theorem in finite permutation
group theory. In the case of a binary language there is a somewhatmore direct argument, not usingmuch group theory, given
in [99]. Thiswork on stable finitely homogeneous structureswas extended to themuch richer class of smoothly approximable
structures (or Lie coordinatisable structures) in [41].

In some sense, the example above (the graphwhose vertices are 2-subsets ofN) is typical of primitive stable homogeneous
structures over a finite relational language L. For part of the structure theory in [42,97] yields the following description of
sufficiently large finite homogeneous L-structures.

Theorem 3.3.3. Let L be a finite relational language, and M a finite transitive homogeneous L-structure. Then if ≡ is a maximal
proper ∅-definable equivalence relation on M (so Aut(M) is primitive on M/ ≡), and |M/ ≡ | is large enough relative to L, there
is a set X, an equivalence relation E on X with a finite number m (depending just on L) of E-classes, a number k (depending just on
L) and a transitive permutation group H on X such that every permutation of X which fixes each E-class is induced by a member
of H, so that the following holds: if N is the collection of subsets Y of X which meet each E-class in a k-set, then the permutation
group (Aut(M),M) is isomorphic to the permutation group H acting on N.

The Lachlan theory of homogeneous structures is surveyed in the article [98]. In the same volume there is another
survey [108] with a slightly different treatment of part of [42], replacing part of the group theory by use of Theorem 3.1.7.

4. Automorphism groups: induced actions on subsets, free subgroups, normal subgroups, generic automorphisms

We turn now to group-theoretic aspects of the subject. From the point of view of automorphism groups, it ismore natural
to work with ω-categorical structures, rather than just homogeneous structures over a finite relational language.

4.1. The Polish group topology

Recall that a Polish space is a topological space where the topology arises from some complete separable metric space. A
Polish group is a topological group, often assumed to be Hausdorff, such that the underlying topology is that of a Polish space.
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If M = {mi : i ∈ N} is a countably infinite set, then Sym(M) is a Polish group. There are many possible metrics, and the
exact form plays no role for us. We could define d(f , g) (for f , g ∈ Sym(M)) to be 1

2n where n is the least r such that either
f (mr) ≠ g(mr) or f −1(mr) ≠ g−1(mr). Of course, thismetric depends on the enumeration ofM , but the underlying topology
does not. The topology is Hausdorff. Pointwise stabilisers of finite sets (subgroups Sym(M)(A), where A ⊂ M is finite) form a
systemof neighbourhoods of the identity. So a typical basic open set has the form gSym(M)(A) := {h ∈ Sym(M) : h|A = g|A}.
The topology is often referred to as the ‘topology of pointwise convergence’. If we endowM with the discrete topology, and
view Sym(M) as a subset of the function spaceMM , then the topology is that induced from the product topology.

Lemma 4.1.1. Let G ≤ Sym(M), where M is countably infinite. Then G is closed in Sym(M) if and only if G = Aut(M) for some
first order structure M with domain M.

Proof. Given a first order structure M with domain M = {mi : i ∈ N}, the group Aut(M) is a closed subgroup of Sym(M).
Indeed, if (fi)i∈N is a Cauchy sequence of elements of Aut(M) then the fi, as well as their inverses, agree on longer and longer
initial subsequences of (mi)i∈N and converge to a permutation, which will also be an automorphism. Conversely, if G is a
closed subgroup of Sym(M), then let M be the structure on M which has the canonical language for the action of G, namely
a relation for each orbit on tuples. We find G = Aut(M). �

It follows that ifM is a countably infinite first order structure, then G := Aut(M) is itself a Polish group. The left cosets of
point stabilisers Aut(M)(A) form a basis of open sets. A subgroup H of G is dense in G if and only if H meets each coset gG(A)
for all finite A ⊂ M , and this holds if and only if H has the same orbits as G onMn for all n ∈ N. A permutation group G on a
countably infinite setM is the automorphism group of someω-categorical structure onM if and only if it is an oligomorphic
closed subgroup of Sym(M).

Observe that the group Aut(M) is compact if and only if all its orbits are finite (in which case it is profinite). The group is
locally compact if and only if the pointwise stabiliser of some finite set has only finite orbits onM . Thus, the automorphism
group of a countably infinite locally finite connected graph is locally compact, but the automorphism group of an
ω-categorical structure is not, since it is oligomorphic.

4.2. Abstract group structure of automorphism groups

We aim here to give a picture of the kind of groups which arise as automorphism groups of ω-categorical structures.
Throughout this section, M denotes an ω-categorical structure with automorphism group G. Clearly, |G| = 2ℵ0 . This
can be seen directly by building a tree of height ω with nodes labelled by partial maps, so that branches correspond to
automorphisms. Alternatively, observe that G, as a topological space, has no isolated points.
Induced group actions on subsets

In general, ifM isω-categorical and A is an infinite coinfinite subset ofM , we have very little control over the permutation
group induced by Aut(M){A} on A. It may not be closed as a subgroup of Sym(A), even if A is definable. For example, if R3 is
the universal homogeneous triangle-free graph, v is a vertex of R3, and A is the set of neighbours of v, then H := Aut(R3){A}

does not have a closed action on A. For by homogeneity, as A has no edges, the action induced by H on A is highly transitive,
but not every permutation of A is induced: indeed, some (countably many) infinite coinfinite subsets of A have the form
{x ∈ A : x ∼ a} for some vertex a of R3, and others do not, and two such sets must lie in different orbits of H on the power
set of A, so H does not induce Sym(A). However, we do have the following.

Proposition 4.2.1. Let M be an ω-categorical structure.

(i) There is a subset X = {xi : i ∈ Q} such that, if H := Aut(Q, <), there is an embedding of groups φ : H → G, where, for
h ∈ H, we have (φ(h))(xi) = xh(i) for all i ∈ Q.

(ii) If M has stable theory, then there is a subset X = {xi : i ∈ N} such that, if H = Sym(N), there is an embedding φ : H → G,
such that, for h ∈ H, (φ(h))(xi) = xh(i) for all i ∈ N.

(iii) If R is the random graph, then the conclusion of (ii) holds with M = R, and X can be chosen so that in addition
Aut(R)(X) = {1}.

(iv) Let R denote the random graph. Then Aut(R) is a universal closed permutation group: that is, for every closed permutation
group (H, Y ) of countably infinite degree, there is an infinite co-infinite subset X of R such that Aut(R)(X) = {1} and
Aut(R){X} induces on X a permutation group isomorphic to (H, Y ).

Proof. Part (i) is a classical model-theoretic result. Add Skolem functions to the language, and in the richer language, build
a structureM+ which has reductM in the original language, as an Ehrenfeucht-Mostowski model; soM+ is the Skolem hull
of a sequence of indiscernibles indexed by Q. Part (ii) is due to Lachlan. Proofs of both results can be found in [109].

(iii) This result was first proved by Henson [76, Theorem 3.1]. Build a copy of R in layers from the countably infinite set
X . At a typical step, suppose we have constructed layers X = X0, . . . , Xn−1. For each set A of size n2 consisting of n points
from each Xi, introduce a vertex xA adjacent to the vertices of X0 ∪ · · · ∪ Xn−1 which lie in A, and to no other vertices of
X0 ∪ · · · ∪ Xn−1. The layers Xi are themselves all independent sets. The resulting graph with domain


i∈N Xi satisfies the

extension axioms for graphs, so is isomorphic to the random graph. It is easily seen that each permutation of X0 extends
uniquely to an automorphism of R, to give an embedding of groups.
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(iv) This is a small extension of (iii), from [117]. As a first step (also done by Henson in [76, Theorem 3.1]), note that
we could have put an arbitrary graph structure on X0; then every automorphism of this graph extends uniquely to an
automorphism of R (which will still be the random graph). To arrange that a more general closed group is induced on X0,
some coding of relations on X0 is needed. �

I take this point to note that [117] mistakenly does not cite [76] —wewere unaware that essentially the argument in (iii)
was given there — and thank Eric Jaligot for pointing this out.

Problem 4.2.2. Generalise Proposition 4.2.1(iv), by finding universal closed permutation groups for restricted classes of
structures.

For example, Jaligot [89] has shown that if M is the random tournament, and N is any countably infinite tournament,
then there is a copy N ′ of N embedded in M such that every automorphism of N ′ extends uniquely to an automorphism of
M .
Free subgroups

If M is ω-categorical and G = Aut(M), then G has many free subgroups. As a first step it was noted in [109] that G
has a dense free subgroup of rank ℵ0. One builds countably many automorphisms of M , which will be a free basis of the
group they generate, as unions of finite partial maps. First list the words in the generators; there are countably many. Then
build the generating automorphisms in countablymany steps, apportioning tasks so that for any non-identity reducedword
w(x1, . . . , xn) and partial maps g1, . . . , gn approximating the generators, the gi are extended to g ′

i so that w(g ′

1, . . . , g
′
n)

moves some element of M so is not the identity. We also have the following variant for uncountable structures, part (ii) of
which is satisfied by anyω-categoricalM . For a discussion of ‘saturation’, a generalisation ofω-categoricity, see [81, Ch. 10];
a structure is saturated if any type over any subset of size less than |M| is realised inM . Below, G is dense in Aut(M) if every
finite restriction of an automorphism extends to an element of G.

Proposition 4.2.3. Let M be a saturated model of a complete theory T , with |M| = λ.

(i) [120] If λ > |T | then Aut(M) has a dense free subgroup of cardinality 2λ.
(ii) (Hodges, unpublished) If λ = |T | = λ<λ, then Aut(M) has a dense free subgroup of rank 2λ.

It was shown in [109] that the automorphism group of the random graph has a dense free subgroup of rank 2. In another
direction, Gartside and Knight [64], proved the following. It stems from a long line of results, starting with the theorem of
Dixon [47] that, asymptotically, almost all pairs of permutations of {1, . . . , n} generate Altn or Symn. Recall that a subset K
of a complete metric space X is comeagre in X if K contains the intersection of countably many dense open subsets of X . By
the Baire Category Theorem, any comeagre set is dense and has size 2ℵ0 . Thus, the comeagre sets form a filter of subsets of
X , and comeagreness provides a notion of largeness.

Theorem 4.2.4 ([64]). Let M be ω-categorical and G = Aut(M). For every positive integer n, let Kn be the set of n-tuples
(g1, . . . , gn) ∈ Gn such that g1, . . . , gn are free generators of a subgroup of G. Then Kn is a comeagre subset of the Polish space Gn.

It would be interesting to obtain dense subgroups H of Aut(M) (for various ω-categorical M), where H belongs to a
prescribed class of groups not including free groups. Little is known on this, but we mention the following, from [14].

Theorem 4.2.5. Let R be the random graph. Then Aut(R) has a dense locally finite subgroup.

This is proved via the extension property (EP) for graphs (see Section 5.3, in particular Lemma 5.3.2). It is also easily seen that
formanyω-categorical structureswhich are smoothly approximable (see [41]) — for example any infinite-dimensional vector
space over a finite field equipped with a symplectic, orthogonal or hermitian form, or the projective or affine versions — the
automorphism group has a dense locally finite subgroup.We do not knowwhether this holds for all smoothly approximable
structures, in particular whether it holds for every stable structure which is homogeneous over a finite relational language.
At the other extreme, any locally finite subgroup of Aut(Q, <) is trivial, and more generally an ω-categorical structure with
the strict order property (see Definition 6.4.1) cannot admit a locally finite group dense in the full group of automorphisms.
The point here is that if (P, <) is a finite partially ordered set and g is an automorphism of P , then for every x ∈ P, g(x) is
incomparable to x. See also Remark 5.3.8(4).
Normal subgroup structure

Experience from other contexts suggests that, ifM is homogeneous (or more generally, ω-categorical) and G = Aut(M),
then if G has proper non-trivial normal subgroups, it has some obvious ones. After all, it is hard to conceive a description of
G except as an automorphism group, and anything fundamental about its group structure should be visible from the action.
As a starting point, we have the following.

Theorem 4.2.6. (i) Let M be a countably infinite set. Then the only proper non-trivial normal subgroups of Sym(M) are
FSym(M), the group of finitarypermutations (those which move just finitely many elements of M), and Alt(M), the group of
finitary even permutations.
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(ii) Let G = Aut(Q, <). Define

L(Q) := {g ∈ G : ∃q ∈ Q∀q′ > q(g(q′) = q′)},

R(Q) := {g ∈ G : ∃q ∈ Q∀q′ < q(g(q′) = q′)},

and B(Q) := L(Q) ∩ R(Q). Then the only proper non-trivial normal subgroups of G are L(Q), R(Q) and B(Q).

Proof. For (i), see [135]. A proof of (ii) can be found in [65, Theorem 2.3.2]. �

Both of the above proofs are based on a full combinatorial description of conjugacy classes. For more general
homogeneous structures, this seems out of reach, and perhaps unrewarding. However, Truss [144] proved that the
automorphism group of the random graph is a simple group. In fact, he proves simplicity of the automorphism group of
the generic n-coloured graph, where each vertex is coloured (randomly) with one of n colours. Truss also gives a description
of the possible cycle types of automorphisms of these structures.

Extending this, Rubin, in unpublished notes, proved simplicity of the automorphism group of any binary homogeneous
structure for which the amalgamation satisfies a condition close to our free amalgamation; his restriction on amalgamation
covers the generic Kn-free graphs, and, unlike that in Theorem 4.2.7, covers the random tournament. More recently, Lovell,
extending the methods of Truss, proves simplicity of various automorphism groups, such as the automorphism group of the
universal k-hypergraph, and the universal tournament (handled independently by Jaligot). In addition, it was shown in [66]
that the automorphism group of the universal homogeneous partial order is simple.

In recent work of the author and Tent (manuscript in preparation), there is a more topological approach to proving
simplicity. We prove

Theorem 4.2.7. Let M be a transitive free homogeneous structure whose automorphism group is not the whole symmetric group.
Then G = Aut(M) is a simple group.

Sketch Proof. This is based on an argument of Lascar [102]. First, it is easily shown that G has no proper open normal
subgroup. Next, by replacing an automorphism g with a commutator [g, h] for appropriate choice of h, it can be shown
that any non-trivial normal subgroup N of G contains an element g with no fixed points and no 2-cycles. Now define
α : G6

→ G by putting α(u, v, w, x, y, z) := gugvgwgxgygz . One easily finds that if H is the group generated by Im(α),
then H has the Baire property, that is, there is non-empty open U such that the symmetric difference H1U is meagre. The
key combinatorial lemma now is that if U1,U2,U3,U4,U5,U6 are non-empty open subsets of G, then there is open Y ⊂ G
such that α(U1,U2,U3,U4,U5,U6) is dense in Y . From this it follows rapidly that H is not meagre. Since, in a Polish group,
any subgroup with the Baire property is meagre or open [92], it follows that H is open. Hence, as noted above, H = G. �

The above method seems very flexible. We have in mind other structures (certain ‘Hrushovski constructions’, and free
amalgamation constructions of projective planes) to which it might be applicable.

There are other examples where normal subgroup structure has been calculated. To emphasise an analogy made in
Example 2.3.1, I note:

Proposition 4.2.8. Let M be a circular order, a universal homogeneous D-relation, or the universal homogeneous two-graph.
Then Aut(M) is simple.

Proof. For the D-relation, see [53, Theorem 5.5]. In each case, if x ∈ M then there is a homogeneous structureM ′ onM \ {x}
such that (Aut(M))x induces Aut(M ′) on M ′. The information available on normal subgroups of Aut(M ′) then suffices. For
example, suppose M is the universal homogeneous two-graph, G := Aut(M), and K is a non-trivial normal subgroup of G.
Define a graph structure on M ′

= M \ {x}, putting y ∼ z whenever {x, y, z} is an edge of the two-graph M . Then M ′ is the
random graph, which by Truss’s result (or Theorem 4.2.7) has simple automorphism group; that is, Gx is simple. By an easy
conjugation argument, K ∩ Gx ≠ {1}, so Gx ⊆ K . Since G = ⟨Gy : y ∈ M⟩, it follows that K = G. �

The above results suggest that automorphism groups of homogeneous structures are close to being simple. However, as
a warning, we note the following.

Theorem 4.2.9 ([54]). Let T be a countably infinite 2-homogeneous tree (see Example 2.3.1(3)). Then Aut(T ) has 22ℵ0 distinct
normal subgroups (but no proper non-trivial closed normal subgroups).

In another direction, Evans and Hewitt [60] showed that for any profinite group H , there is an ω-categorical structureM
with automorphism group G, such that G has a closed normal subgroup K so that G/K is isomorphic, as a topological group,
to H . If H is the Cartesian product of ℵ0 copies of the cyclic group C2, then H , and hence G, has 22ℵ0 normal subgroups of
index 2. For such constructions, the structureM in general will have infinitely many relation symbols.

The special case when H = Πi∈NC2 was introduced by Hrushovski to give an example of an ω-categorical structure
without the small index property—see Section 5.2. Cherlin gave the same construction earlier, but for different purposes.
The idea is to work over a language with a relation symbol Pn of arity 2n for each n > 0, and consider the class C of
finite structures in which Pn is interpreted by an equivalence relation on n-sets with at most 2 classes, with the different
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Pn independent. Then C is an amalgamation class, and if M is the Fraissé limit, then Aut(M) has a normal subgroup fixing
setwise each Pn-class for all n, with quotient of the required form.
Generic automorphisms

Following Truss [145], we say that an automorphism g of an ω-categorical structureM is generic if the conjugacy class C
of g is comeagre in Aut(M). By the Baire Category Theorem, any two comeagre sets intersect non-trivially, so Aut(M) has at
most one comeagre conjugacy class.

This notion can be viewed game-theoretically (the Banach–Mazur game [92]). Consider the two-player game where
each player successively builds a larger and larger finite elementary map onM , each player extending the previous player’s
map by defining it on finitely many additional points. The second wins if she is able to force that the resulting map is an
automorphism lying in C . Then C is comeagre if and only if the second player has a winning strategy. Viewed this way,
it is obvious that the comeagre conjugacy class of Sym(N) consists of permutations with infinitely many cycles of each
finite length and no infinite cycles; for the second player can ‘close up’ any finite partial cycle to a finite cycle, and can add
new finite cycles. There is an analogous description in [145] of generic automorphisms of (Q, <), and a more complicated
description of generic automorphisms of the random graph.

Truss observed in [145] that a certain amalgamation condition for structures with partial isomorphisms guarantees
existence of a generic automorphism. The following necessary and sufficient condition for existence was identified by
Ivanov [87] and also by Kechris and Rosendal in [94, Theorem2.4].We say that a classK of finite structures satisfies theweak
amalgamation property (WAP) if for every A ∈ K there is B ∈ K and an embedding e : A → B such that: for any C1, C2 ∈ K
and embeddings fi : B → Ci (for i = 1, 2) there is D ∈ K and embeddings gi : Ci → D such that g1 ◦ f1 ◦ e = g2 ◦ f2 ◦ e.
Below, if C is a class of finite structures, then Cp denotes the class of expansions of structures W ∈ C by a relation symbol
interpreted by the graph of a partial isomorphism U → V , where U, V ≤ W .

Theorem 4.2.10 ([87,94]). Let C be an amalgamation class of finite relational structures with Fraissé limit M. Then the following
are equivalent.
(i) M has a generic automorphism.
(ii) The class Cp satisfies (WAP) and (JEP).

The following result is proved by Ivanov in [88].

Theorem 4.2.11. Let M be a free homogeneous structure over a finite relational language. Then M has a generic automorphism.

Next, we collect some consequences of existence of generic automorphisms.

Proposition 4.2.12. Let M be a countably infinite structure such that G = Aut(M) has a comeagre conjugacy class C. Then
(i) G = Aut(M) has no proper normal subgroup of countable index;
(ii) every element of G is a product of two elements of C;
(iii) each element of G is a commutator, so G equals its derived subgroup G′,
(iv) if G acts as a group of automorphisms of a graph-theoretic tree, and has no inversions (i.e. no element of G swaps over any

two adjacent vertices), then for every g ∈ G there is v ∈ T such that g(v) = v;
(v) if G is a free product with amalgamation G = H1 ∗K H2, then G = H1 or G = H2.
(vi) if G acts by isometries on an R-tree, then every element of G has a fixed point.
Proof. (i) Let K be a proper normal subgroup of G. If K ∩ C ≠ ∅ then C ⊂ K , so K is comeagre. Hence all cosets of K are
comeagre, contradicting the fact that any two comeagre subsets of G intersect non-trivially. Thus, K ∩C = ∅, so K is meagre.
However, it is shown in [82, Theorem 4.1] that any meagre subgroup of a Polish group has index 2ℵ0 . (This last point follows
immediately from a theorem of Kuratowski and Mycielski—see [94, Lemma 5.6].)

(ii) Let g ∈ G. As the inversion map is continuous, C−1 is comeagre (so equals C), so also gC−1 is comeagre. Thus
gC−1

∩ C ≠ ∅, so there are h1, h2 ∈ C with gh−1
1 = h2. Then g = h2h1.

(iii) Let g ∈ G. As in (ii), there are h1, h2 ∈ C with g = h1h2. Since C = C−1, there is k ∈ G with h2 = k−1h−1
1 k. Then

g = h2h1 = [k, h1] ∈ G′.
(iv), (v) See [116].
(vi) This is a strengthening of (iv), due to Rosendal [130]. The result is further strengthened in [73], where the same

conclusion is shown to hold if G is just assumed to have a non-nesting action on the R-tree T (that is, G preserves the
betweenness relation on T and there does not exist a segment I of T and g ∈ G such that g(I) is a proper subset of I). �

Remark 4.2.13. As noted in [145], Proposition 4.2.12(i) gives a way of proving non-existence of generic automorphisms.
For example, many structures have automorphism group with a proper closed normal subgroup of finite index: examples
include the disjoint union of two countably infinite complete graphs, the randombipartite graph, and the linear betweenness
relation.

Another homogeneous structure not admitting a generic automorphism, also noted in [145], is the countable dense
circular order (see Example 2.3.1(1)). In the Banach–Mazur game, the first player could build a partial map fixing a point, or
could ensure, by interchanging two elements of Q, that no extension fixes a point. Thus, the second player does not have a
winning strategy. A similar argument shows that the universal homogeneous D-relation (see Section 6.1) does not admit a
generic automorphism. We omit the details.
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We mention briefly another model-theoretic notion of generic automorphism. Let T be a complete theory over some
countable language L, with quantifier elimination, and with an infinite model. Let Lσ = L∪ {σ }, where σ is a unary function
symbol. Let Tσ be the (in general incomplete) extension of T given by sentences which express that, if M is a model, then σ
is an automorphism of the reduct M|L. In certain cases, Tσ admits a model companion T ∗

σ , that is, a ∀∃-axiomatised theory
extending Tσ such that every model of Tσ embeds in a model of T ∗

σ and vice versa. The very important motivating example
is the theory ACFA of algebraically closed fields with a generic automorphism, developed in [36]. There is a substantial
literature on when T ∗

σ exists, emanating from [37].
The connections between these two notions of generic automorphism are investigated in [10]. They work in a broader

framework, considered earlier by Ivanov, of arbitrary expansions of a structure to a richer language, such that the expansions
are generic, e.g. in a sense coming from Baire category.

5. Reconstruction from the automorphism group

5.1. Versions of reconstruction

As noted in Section 3.1, for ω-categorical structures it is convenient to translate between the language of model theory
and the language of permutation group theory. This suggests that much information about an ω-categorical structure is
encoded in the automorphism group, and that the latter can be viewed as a kind of invariant of the structure. So we ask:
to what extent can an ω-categorical structure M be recovered from Aut(M)? It should be noted that in general Aut(M) is a
muchmore complicated object thanM , so it is not too surprising ifM is recoverable. For example, the familiar homogeneous
structures have recursively axiomatised theories, so have decidable theory; that is, the set of Gödel numbers of sentences
in their theory is recursive. On the other hand, we have the following.

Theorem 5.1.1 ([16]). If M is ω-categorical then Aut(M), viewed just as a structure in the language of groups, has undecidable
theory.

In fact, if T is any complete theory in a countable language with infinite models, then it has a countable model whose
automorphism group has undecidable existential theory. This is because there is a right orderable finitely presented group
with insoluble word problem, every countable right orderable group embeds in Aut(Q,≤), and, by the Ehrenfeucht-
Mostowski construction (cf. Proposition 4.2.1(i)), there is a countablemodelM of T such that Aut(Q,≤) embeds into Aut(M).

We could aim to recover the structure M from G = Aut(M), where G is given as a permutation group on M , or as a
topological group, or as an abstract group. As a permutation group, there is nothing to do: the ∅-definable n-ary relations
onM are the unions of orbits of G onMn, so we can recover M up to interdefinability from G, without parameters. We could
not hope for more—for example, a complete graph and a graph with no edges have the same automorphism group.

The case where G is viewed as a topological group is also well-understood. Two structures M and N are bi-interpretable,
if each is interpretable in a copy of the other, and furthermore, there is an ∅-definable (in M) isomorphism between M and
a copy M∗∗ of M which lives in a copy N∗ of N which lives in M (and likewise with M and N reversed). We now have the
following, which can be expressed functorially. The authors of [5] describe (ii) as an unpublished result of T. Coquand.

Theorem 5.1.2 (Ahlbrandt and Ziegler [5]).
(i) Let M be ω-categorical. Then a structure N is interpretable in M if and only if there is a continuous homomorphism

h : Aut(M) → Aut(N) such that h(Aut(M)) has finitely many orbits on N.
(ii) Let M and N beω-categorical structures. ThenM and N are bi-interpretable if and only if Aut(M) and Aut(N) are isomorphic

as topological groups.

Thus, we focus on two reconstruction questions.

Question 5.1.3. Let M be an ω-categorical structure and G = Aut(M).
(1) If N is also ω-categorical and Aut(N) is isomorphic to G as an abstract group, is Aut(N) isomorphic to G as a topological

group?
(2) Is the structure M interpretable (possibly with parameters) in the (abstract) group G?

There appear to be two known approaches to Question 5.1.3(1). One is via the small index property, discussed in the next
two sections. The other stems from the paper [131] of Rubin, and is discussed in Section 5.4. Question 5.1.3(2) is subsidiary,
but Rubin’s method, when applicable, gives an interpretation.

5.2. Small index property

Definition 5.2.1. The ω-categorical structure M has the small index property if every subgroup of G = Aut(M) of index less
than 2ℵ0 is open. It has the strong small index property if for every H ≤ Gwith |G : H| < 2ℵ0 , there is finite A ⊂ M such that
G(A) ≤ H ≤ G{A}.

Proposition 5.2.2. Suppose that M is an ω-categorical structure with the small index property, and N is ω-categorical and
Aut(M) and Aut(N) are isomorphic as abstract groups. Then M and N are bi-interpretable.
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Proof. Let φ : Aut(M) → Aut(N) be an isomorphism, and let H be an open subgroup of Aut(N). Then there is finite
A ⊂ N such that H ≥ Aut(N)(A), so |Aut(N) : H| ≤ ℵ0, as any tuple enumerating A has countably many translates. Thus,
|Aut(M) : φ−1(H)| ≤ ℵ0, so as M has the small index property, φ−1(H) is open in Aut(M). Thus, φ is continuous. It is
well-known (see e.g. [92]) that any continuous isomorphism between Polish groups is a homeomorphism. The result now
follows from Theorem 5.1.2. �

The above argument only requires that every subgroup of Aut(M) of countable index (rather than index less than 2ℵ0 )
is open. We do not know of any example of an ω-categorical structure such that every countable index subgroup of the
automorphism group is known to be open, but for which this has not been proved for subgroups of index less than the
continuum.

The strong small index property has a further model-theoretic consequence. Namely, if the ω-categorical structure M
has the strong small index property, then it has weak elimination of imaginaries. See [81, p. 161] for definitions and a proof.
An example of a homogeneous structure with the small index property but not the strong small index property is the
disjoint union of infinitelymany complete graphs, all infinite: the setwise stabiliser of one of themaximal complete induced
subgraphs has countable index, but is not of the required form.

As noted after Theorem 4.2.9, there is anω-categorical structure M, constructed by Cherlin and by Hrushovski, such that
G = Aut(M) has a quotient (by a closed normal subgroup) isomorphic to the Cartesian product of ℵ0 copies of C2. Then G
has 22ℵ0 subgroups of index 2. The group G has at most ℵ0 open subgroups, for there are just countably many basic open
subgroups, and if H < G is basic open then there are finitely many open K with H < K < G. (This is essentially because
intermediate open groups K are closed, so correspond to ∅-definable equivalence relations in an ω-categorical structure
arising from the action ofG on cosets ofH; there can only be finitelymany such equivalence relations, by the Ryll-Nardzewski
Theorem.) Thus some subgroup of G of index 2 is not open. Using a variant of the Cherlin-Hrushovski construction with
Πi∈NC2 replaced by a carefully chosen profinite group, Evans andHewitt [60] constructed twoω-categorical structureswhich
are not bi-interpretable but which have isomorphic automorphism group (as abstract groups).

Remark 5.2.3. The small index property has been proved, among others, for the following ω-categorical structures.

(i) A pure set (so the automorphism group is the symmetric group) [48].
(ii) The group GL(ℵ0, q) for any prime power q, and the analogous symplectic, orthogonal, and unitary groups [58,59].
(iii) 2-homogeneous trees (in the sense of Droste [49]—see Section 6.1) and the corresponding C and D relations [53].
(iv) Aut(Q, <), and the countable atomless Boolean algebra [146].
(v) Those ω-categorical structures whose theory is ω-stable (see Definition 3.3.1) [82]. This class includes the stable

homogeneous structures discussed in Section 3.3.
(vi) Many homogeneous structures whose age has been proved to have the extension property (EP) for finite partial

automorphisms, defined in Section 5.3. By [77], such structures include the universal homogeneous Kn-free graph, the
universal homogeneous k-hypergraph, and the ‘Henson digraphs’.

There are essentially just two known methods for proving the small index property.
The proofs in (i)–(iv) of Remark 5.2.3 are based on a ‘piecewise patching’ property of the automorphism group—one can

in certain situations obtain an automorphism as the union of infinitely many partial maps all defined on (disjoint) infinite
sets; for example, wemay partition (Q, <) into disjoint clopen convex sets Xi (for i ∈ N), and then if gi ∈ Aut(Xi, <) for each
i and g is the union of the gi, then g ∈ Aut(Q, <). These proofs use in addition an argument with almost disjoint sets, seen
first in [48]. This line of argument also works for certain other structures closely related to the above. We do not discuss this
approach here.

For examples (v) and (vi) above, a completely different method is used, coming from [82]. The key definition in [82] is
the following. For details of Meq, see [81, p. 151]. For example (vi) in Remark 5.2.3, Meq may be replaced below by M , and
B(M) by the collection of all finite subsets ofM .

Definition 5.2.4. LetM be an ω-categorical structure, and let G := Aut(M).

(i) A base for M is a countable set B(M) of subsets of Meq such that
(a) B(M) is G-invariant: if A ∈ B(M) and g ∈ G, then g(A) ∈ B(M).
(b) for all A ∈ B(M), the set {G(B) : B ∈ B(M), B ⊇ A} is a base of open neighbourhoods of 1 in G.

(ii) Let B(M) be a base forM , and n ∈ N>0. Then (g1, . . . , gn) ∈ Gn is B(M)-generic if the following hold.
(a) {A ∈ B(M) : gi(A) = A for all i ≤ n} is cofinal in B(M), where the latter is ordered by inclusion.
(b) Suppose A ∈ B(M) with gi(A) = A for each i, and that B ⊃ A with B ∈ B(M), and let hi ∈ Aut(M) extend gi for

each i, with hi(B) = B. Then there is f ∈ G(A) such that fgif −1 extends hi|B for each i.
(iii) If B(M) is a base forM , then the structureM has ample B(M)-generic automorphisms if, for all n > 0, the set of B(M)-

generic elements of Gn is comeagre in Gn in the product topology.
(iv) A Polish group H has ample homogeneous generic automorphisms if, for each n > 0,H has a comeagre orbit on Hn in its

action by conjugation.
(v) The structureM has ample homogeneous generic automorphisms if G has ample homogeneous generic automorphisms.
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The terminology in (v) differs slightly from [82], where Aut(M) is said to have ample homogeneous generic automor-
phisms if it has ample B(M)-generic automorphisms for some base B(M). In (iv) we follow [94]. It seems possible that
M might have ample homogeneous generic automorphisms without having ample B(M)-generic automorphisms for any
baseB(M). In the other direction, by [82], everyω-categoricalω-stable structure has ampleB(M)-generic automorphisms,
but some do not have ample homogeneous generic automorphisms. An example is a set equipped with an equivalence
relation with two classes, both infinite; by Remark 4.2.13, this does not even admit a single generic automorphism (working
over ∅).

However, ifM has ample B(M)-generic automorphisms, then some open subgroup of Aut(M) has ample homogeneous
generic automorphisms. Indeed, let X be the (comeagre) set of B(M)-generic elements of Gn, and let A ∈ B(M). Let

XA := {(g1, . . . , gn) ∈ X : gi|A = id|A for i = 1, . . . , n}.

By [82, Proposition 2.3], the elements of XA are conjugate under G(A) (which is open in G by the definition of base). Also,
XA = X ∩ (G(A))n, so is comeagre in (G(A))n. It follows that, in the theorem below, (ii) follows immediately from (i).

Theorem 5.2.5. (i) [94] Let G be a Polish group with ample homogeneous generic automorphisms. Then every subgroup H of G
with |G : H| < 2ℵ0 is open.

(ii) [82, Theorem 5.3] Let M be an ω-categorical structure with ample B(M)-generic automorphisms for some base B(M). Then
M has the small index property.

The technique of [82] has been used to prove the small index property for some structures which are not ω-categorical,
such as the free group of infinite rank, and certain other relatively free groups [25]. Similar methods have been used by
Lascar to prove the small index property for any countable arithmetically saturated model of Peano Arithmetic [103], and
also a version of the small index property for any uncountable saturated structure of cardinality κ = κ<κ [105].

To apply Theorem 5.2.5, we need tools for constructing ample B(M)-generic automorphisms. The following is proved
in [82, Theorem 2.9].

Theorem 5.2.6. Let M be ω-categorical, let B(M) be a base for M, and suppose:

(i) for any A ∈ B(M), and any finite partial elementary maps e1, . . . , en between subsets of A, there is B ∈ B(M) containing A
and automorphisms f1, . . . , fn ∈ Aut(B) such that fi extends ei for each i;

(ii) if A, B, C ∈ B(M) with A ⊆ B ∩ C, there is g ∈ Aut(M)(A) such that if f1 ∈ Aut(g(B)) and f2 ∈ Aut(C) fix A setwise and
agree on A, then f1 ∪ f2 is an elementary map on g(B) ∪ C (in the sense of Meq).

Then M has ample B(M)-generic automorphisms, so has the small index property.

In many situations, condition (ii) of Theorem 5.2.6 comes free: for example, if M is a free homogeneous structure, then
its age satisfies (ii)—just choose g so that g(B)∪C = g(B)⊕A C . Similarly, in stable theories, there is a well-behaved abstract
theory of independence, and wemay choose g so that g(B) is independent from C over A (formally, we require here an extra
condition, namely that acleq(A) ⊆ dcl(A)). Usually, condition (i) is muchmore problematic. One situation where the reverse
holds—that is, condition (i) comes almost free by definition but (ii) is open in general—is that of smoothly approximable
structures; see [43].

Structures such as the random graph, the random Kn-free graph, the Henson digraphs, and the universal homogeneous
k-hypergraph, are all known to have the small index property, via Theorems 5.2.5 and 5.2.6. In each case, as they have free
amalgamation, by the last theorem the proof reduces to condition (i) in Theorem 5.2.6. This is the subject of the next section.

Forω-categorical structures, the small index property has so far only been proved by the twomethodsmentioned above:
almost disjoint sets using ‘piecewise patching’ of partial automorphisms, or using Theorem5.2.5.Wemention four test cases
for which these methods do not seem to work, and for which the question appears to be open.

Question 5.2.7. Does the small index property hold for the following homogeneous structures?

(i) The universal homogeneous tournament.
(ii) The universal homogeneous partial order.
(iii) The generic totally ordered graph. This is the unique countably infinite homogeneous structure in the language with two

binary relations R and <, whose age consists of all finite structures such that R is a graph (i.e. is symmetric and irreflexive)
and< induces a total order.

(iv) The Fraissé limit (in a language with two binary relations <1 and <2) of the class of all finite sets totally ordered,
independently, by <1 and <2 (so this is the universal homogeneous permutation in the sense of Cameron [27]—see
Section 2.2).

It seems likely that the methods of Theorems 5.2.5 and 5.2.6 will not work for structures which non-trivially involve
partial orders (e.g. thosewith the strict order property (Definition 6.4.1)). For example,Hodkinson [personal communication]
showed that for (Q, <), the automorphism group G does not have a comeagre orbit in its diagonal action by conjugation
on G2.

We shall discuss in Section 5.5 other applications of ample homogeneous generic automorphisms.
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5.3. Extension property for finite isomorphisms

The last section motivates the following general question, of independent combinatorial interest. If C is the age of a
homogeneous structureM , a positive answer yields condition (i) of Theorem 5.2.6, where B(M) = Age(M).

Question 5.3.1. Let C be a class of finite structures in some fixed first order language (typically, an amalgamation class). Is it
true that for every A ∈ C, there is B ∈ C containing A such that every isomorphism between substructures of A extends to an
automorphism of B?

We say that the class C has the extension property for partial automorphisms (EP) if the answer to Question 5.3.1 is positive
for C.

There are quantitative versions of Question 5.3.1, which we shall not discuss here: for a given class C, find a good bound
f : N → N such that for any A ∈ C we can choose B so that |B| ≤ f (|A|). There are some remarks on this in [84], and also
in [79].

For some amalgamation classes, Question 5.3.1 has an obviously negative answer. For example, every finite total order
is rigid, so the answer is negative for the class of finite total orders, and Theorem 5.2.6 could not be used to prove the small
index property for (Q, <). Likewise, ifC is the age of the universal homogeneous partial order, thenC does not have (EP). For
ifA is the 2-element total order {u, v}with u < v and e is the isomorphismwith dom(e) = {u} and e(u) = v, there is no finite
partial order B containing A such that e is the restriction of an automorphism of B. In fact, the small index property is open
for the universal homogeneous partial order (Question 5.2.7). Note that it is conceivable that the universal homogeneous
partial order has ample homogeneous generic automorphisms (and hence the small index property) even though its age
does not have (EP) and Theorem 5.2.6 is not applicable. More generally, if C is the age of a homogeneous structure with the
strict order property (see Definition 6.4.1), then C does not have (EP).

The first non-trivial proof of (EP) was by Hrushovski [84], for the class of all finite graphs. It is used in [82] to prove the
small index property for the randomgraph. A rather different, extremely short proof of (EP) for graphs is given in [79, Section
4.1]. The latter proof yields in addition the following, used in the proof of Theorem 4.2.5

Lemma 5.3.2. Let ∆ be a finite graph, and G := Aut(∆). Then there is a finite graph ∆′ such that ∆ is an induced subgraph
of ∆′, every partial isomorphism between subgraphs of ∆ extends to an automorphism of ∆′, and there is a monomorphism
φ : G → Aut(∆′) such that φ(g) extends g for all g ∈ G.

Hrushovski’s proof of (EP) for graphs was greatly generalised by Herwig in [77,78], and further (with Lascar) in [79].
I state below versions from [77,79].

Fix a finite relational language L, and a class C of finite L-structures. Recall from the introduction the definition of a
homomorphism between relational structures. If F is a class of finite L-structures, and A is an L-structure, then we say A is
F -free if there do not exist B ∈ F and a homomorphism f : B → A.

Theorem 5.3.3 ([79]). Let L be a finite relational language, and F a finite set of finite L-structures, and let C be the class of (finite
or infinite) F -free L-structures. Then C has the property (EPPA), that is: for any finite A ∈ C and set P of partial isomorphisms
between substructures of A, if there is B ∈ C with A ≤ B such that every p ∈ P extends to an automorphism of B, then there
is finite B ∈ C with A ≤ B such that every p ∈ P extends to an automorphism of B.

To avoid the assumption above that F is finite, we shall actually quote an earlier version of this theorem, from [77]. We
first give some definitions.

Definition 5.3.4. Let L be a relational language.
(i) An L-structure A is a link structure if, for some n, A = {a1, . . . , an} and A |H Ra1 . . . an for some R ∈ L. IfP is a collection

of link structures, then an L-structure A has link type P if every substructure of A which is a link structure belongs to P . An
L-structure A is packed if any two distinct elements of A lie in a tuple satisfying a relation of L.

(ii) Let P be a class of link structures (for L) and F be a class of finite L-structures. Then KPF is the collection of all finite
L-structures which are F -free and have link type P .

Remark 5.3.5. 1. If A is packed, B is irreflexive, and f : A → B is a homomorphism, then f is injective.
2. IfF is a family of packed structures, andP is a family of link structures, thenKPF has the free amalgamation property.

Theorem 5.3.6 ([77]). Let L be a finite relational language,F a set of finite irreflexive packed L-structures andP a set of irreflexive
link structures. Then KPF has (EP).

Corollary 5.3.7 ([77]). Let C be a monotone free amalgamation class over a finite relational language, with Fraissé limit M. Then
(i) C has (EP),
(ii) M has ample homogeneous generic automorphisms, and
(iii) M has the small index property.

Proof. (i) First replace L by a finite relational language L′, and each L-structure A by an interdefinable L′-structure A′ on the
same domain such that A′ is irreflexive. The idea is that for each L-relation R of arity n (for all n) and each partition π of
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{1, . . . , n} into r parts, introduce a new relation Rπ of arity r . We may then replace each R by the set of Rπ , and require that
all the Rπ be irreflexive. We leave the details to the reader.

Thus, the links of the members of C are all irreflexive. Let P be the set of link structures in C, and F the set of minimal
irreflexive L-structureswhich do not embed inC. Then, sinceC is free, themembers ofF are packed, andwehaveC = KPF .

(ii), (iii) These follow immediately from Theorem 5.2.6 and the remarks following it. Note that Theorem 5.2.6(i) yields for
M ample B(M)-generic automorphisms for the base consisting of all finite subsets of M , which ensures that M has ample
homogeneous generic automorphisms. �

Remark 5.3.8. 1. This theorem yields the small index property for the homogeneous Kn-free graph, the Henson digraphs,
and for the universal homogeneous k-hypergraph. For example, in the case of the Henson digraphs, F is just the (finite) set
of minimal tournaments which do not embed in the digraph.

2. It is noted in [79] that results about (EPPA) have translations in combinatorial group theory. Recall that if F is a finitely
generated free group, then the cosets of the finite index subgroups form the basis of the ‘profinite topology’ on F . Ribes and
Zalesskii [129] proved that if H1, . . . ,Hn are finitely generated subgroups of F , then H1 . . .Hn := {h1 . . . hn : hi ∈ Hi} is a
closed set in the profinite topology on F . Now (EP) for the collection of all graphs (Hrushovski’s Theorem) can be derived
from the Ribes–Zalesskii Theorem, and the latter follows from (EPPA) for the class of ‘n-partitioned cycle-free graphs’. In [79],
the authors show that Theorem 5.3.3 is also ‘equivalent’ to a group-theoretic theorem of this kind.

3. An alternative treatment of Theorems 5.3.3 and 5.3.6 is given in [83]. This is used to give a proof of the finite model
property of the clique-guarded fragment of first order logic. There is also an approach to Theorem 5.3.3 due to J. Almeida.

4. Solecki [139] has shown that if A is a finitemetric space then there is a finitemetric space B such that A is a substructure
of B (as metric spaces) and every partial isometry on A extends to an isometry of B. The collection of all finite metric spaces is
an amalgamation class with Fraissé limit the rational Urysohn space, that is, the unique countable metric space with rational
distances such that any isometry between finite subspaces extends to an isometry of the whole space. It follows that the full
isometry group has ample homogeneous generic automorphisms. The result is slightly extended in [140] to yield that the
isometry group has a locally finite dense subgroup—see also the remarks after Theorem 4.2.5. Solecki in [140] also proves a
slight strengthening of Theorem 5.3.3, which yields the following strengthening of Theorem 4.2.5:
if L is a finite relational language,F a finite set of finite L-structures, andC an amalgamation class of finiteF -free L-structures
with Fraissé limitM , then Aut(M) has a locally finite dense subgroup.

The class of finite tournaments is not a class of the formKPF as in Theorem 5.3.6. In fact, the following question, relevant
to Question 5.2.7(i), remains open. I find it very natural, in view of the many common features of the random graph and the
random tournament (see e.g. Section 3.2). At the end of [79], the authors give a Ribes–Zalesskii-like equivalent of (EP) for
the class of finite tournaments.

Question 5.3.9. Does the class of finite tournaments satisfy (EP)?

Towards a negative answer, we note the following.

Proposition 5.3.10. Suppose that the class CT of finite tournaments has (EP). Then for every finite tournament T1 there is a finite
tournament T2 such that

(i) T1 ≤ T2;
(ii) every isomorphism between subtournaments of T1 extends to an automorphism of T2;
(iii) T2 has primitive automorphism group.

Proof. Write VT for the vertex set of a tournament T . Given T1, by (EP) we may choose T2 satisfying (i) and (ii) with |VT2| as
small as possible. Then Aut(T2) is transitive on VT2. For since singletons of T1 are isomorphic, by (ii) they all live in the same
Aut(T2)-orbit. Any automorphism of T2 induces an automorphism of this orbit, so by minimality this orbit equals VT2.

Suppose for a contradiction Aut(T2) preserves a proper non-trivial congruence E on VT2. Then VT1 does not lie in a single
E-class, since otherwise we could replace T2 by the subtournament on this E-class, contradicting minimality of |VT2|. Thus,
each E-class meets VT1 in at most a singleton: for otherwise, as any two arcs of T1 lie in the same Aut(T2)-orbit on arcs, by
(ii) T2 would have an automorphism taking two E-equivalent elements to inequivalent elements.

Observe that as Aut(T2) has no involutions, it has odd order, so no element can interchange two E-classes. Let U1 be the
Aut(T2)-orbit on arcs which contains all T1-arcs. We now define a tournament structure T ′

2 on VT ′

2 := VT2/E. If B1, B2 ∈ VT ′

2
and there is an arc of U1 from a vertex in B1 to a vertex in B2, write B1 → B2. For each other orbit W on pairs of E-classes,
either decide that B1 → B2 for all (B1, B2) ∈ W , or that B2 → B1 for all (B1, B2) ∈ W . Then Aut(T2) acts as a group of
automorphisms of T ′

2. Furthermore, T1 embeds into T ′

2 under the map x → x/E. If we identify T1 with its image under this
map, we see that every isomorphism between subtournaments of T1 extends to an automorphism of T ′

2, again contradicting
the minimality of VT2. �

Remark 5.3.11. As noted in the above proof, the automorphismgroup of any finite tournament has odd order, so, by the Feit-
Thompson Theorem, is soluble. By a theorem of Pálfy [125], any soluble primitive permutation group on a set of size n has
order bounded by a polynomial in n. Furthermore, by a familiar line of argument which leads to the O’Nan–Scott Theorem,
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if G is a primitive soluble permutation group on a finite set X , then X has prime power size, and indeed, can be identified
with, for some n, an n-dimensional vector space over a finite field Fp, with G a subgroup of the affine group AGLn(p). Thus, in
Proposition 5.3.10, we may suppose that Aut(T2) has this form. Wemay take T1 to be a small tournament with many partial
isomorphisms, like a 5-element total order. It seems likely that current information on odd order primitive permutation
groups could now be used to show that the class CT of finite tournaments does not have (EP).

5.4. Rubin’s approach to reconstruction

We discuss here an alternative approach to the problem of reconstruction of an ω-categorical structure from its
automorphism group, initiated by M. Rubin, and generalised slightly and used by Barbina. This approach may be more
powerful than that from the small index property, and it gives additional information, namely a first order interpretation
of the structure in its automorphism group. The presentation below is from [9]. Below, if G is a group and g ∈ G then gG

denotes the conjugacy class of g in G.

Definition 5.4.1. (i) If G is a group, and ḡ = (g1, . . . , gn) ∈ Gn, then a formula φ(ḡ, x, y) in the language of groups (with
parameters ḡ) is an equivalence formula if:
(a) φ is ∀∃, i.e. has the form ∀ū∃v̄(ψ(ū, v̄, x, y))where ψ is quantifier-free;
(b) for any group H and h̄ ∈ Hn, φ(h̄, x, y) defines an equivalence relation on the conjugacy class hH

1 , and
(c) the equivalence relation, denoted Eφ , on gG

1 defined by φ(ḡ, x, y) is invariant under G-conjugation.
(ii) Let M be a transitive ω-categorical structure. A weak ∀∃-interpretation is a triple ⟨φ, ḡ, τ ⟩ where φ = φ(ḡ, x, y) is

an equivalence formula for G := Aut(M), ḡ ∈ Gn, and τ : gG
1 /E

φ
→ M is a bijection such that for all g, h ∈ G,

g(τ (h/Eφ)) = τ(hg/Eφ) (so τ induces a permutation group isomorphism between (Aut(M), gG
1 /E

φ) and (Aut(M),M)).

Theorem 5.4.2 (Rubin [131]). Let M and N be ω-categorical structures such that Aut(M) ∼= Aut(N) as abstract groups, and
suppose that M has a weak ∀∃-interpretation. Then M and N are bi-interpretable.

Rubin’s proof uses a set-theoretic forcing argument.

Remark 5.4.3. 1. In fact, Rubin’s conclusion is slightly different: he assumes in addition thatM and N have trivial algebraic
closure (that is, the pointwise stabiliser of any finite set A has no finite orbits outside A), and the conclusion is then that M
and N are bi-definable—they have the same ∅-definable sets. The statement in Theorem 5.4.2 is mentioned in [131], with
details given in [8].

2. The transitivity condition in Definition 5.4.1(ii) can be dispensed with, if we work orbit-by-orbit.
3. In the formula φ(ḡ, x, y), one can allow that x and y are tuples, not necessarily singletons.
4. If M (with automorphism group G) has a weak ∀∃-interpretation then we may identify M with a definable quotient

gG/E of a conjugacy class gG. The relations ofM are then identifiable with finite unions of orbits of G on n-tuples from gG/E,
so are definable in G. Thus, the structureM is parameter-interpretable in the group G.

5. A weak ∀∃-interpretation forM gives an interpretation in Aut(M)with parameters ofM and the action of Aut(M) onM .
Such an interpretation without parameters gives additional group-theoretic information, namely that Aut(M) has no non-
trivial outer automorphisms. For any automorphismα of Aut(M)will respect this interpretation, so induce an automorphism
ofM whichmust also be induced by some g ∈ Aut(M), and it follows thatα and g induce the same automorphism of Aut(M).
For example, ifM is a pure set, then the set X of transpositions is ∅-definable in S = Sym(M); for g ∈ S\{1} is a transposition
if and only if, for all h ∈ S, ggh has order atmost three. Now if Y is the set of (g1, g2) ∈ X2 such that |supp(g1)∩supp(g2)| = 1,
then Y is definable without parameters, andM may be identified with an ∅-definable quotient of Y .

Constructions of a weak ∀∃-interpretation have been given for various structures M . The idea in general is to identify a
suitable conjugacy class C of automorphisms of M which have a single fixed point, and show that there is an appropriate
formula φ(ḡ, x, y) in the language of (abstract) groups which holds precisely when automorphisms x and y (chosen in C)
have the same fixed point. The problem is that, in general, this equivalence relation is easily definable in the language of
permutation groups, but not in the language of abstract groups.

In [131], Rubin showed that (Q, <) and the universal homogeneous partial order have weak ∀∃-interpretations,
essentially by identifying a conjugacy class C of automorphismswith a single fixed point, forwhich ‘has the same fixed point’
is easily describable. For (Q, <), C consists of elements g with a single fixed point a, such that for any b > a{gn(b) : n ∈ Z}

is coterminal in {z ∈ Q : a < z}, and likewise for any b < a, {gn(b) : n ∈ Z} is terminal in {z ∈ Q : z < a}. It can be
shown that if g, h ∈ C , then they have the same fixed point if and only if gh ∈ C , a group-theoretically expressible property.
Rubin also showed that binary homogeneous relational structures with a very simple form of amalgamation (analogous
to freeness) have a weak ∀∃-interpretation. Extending this, Singerman (unpublished) proved that an n-ary analogue of the
universal homogeneous tournament has a weak ∀∃-interpretation, as does the Cherlin-Hrushovski structure mentioned
after Theorem 4.2.9. Note that the latter does not have the small index property.

Barbina [8] showed that infinite-dimensional projective spaces over a finite field, possibly equipped with a non-
degenerate sesquilinear form, have weak ∀∃-interpretations. Transvections play a key role.
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In [9] it is shown that a large class of homogeneous relational structures M , including free monotone homogeneous
structures, have a weak ∀∃-interpretation. The key step is to show that, for any c ∈ M , if Dc is the complete metric space
whose elements are those pairs of automorphisms of M which each have the unique fixed point c , then Aut(M)c , acting
diagonally by conjugation, has a comeagre orbit on Dc . Given this, let D :=


c∈M Dc . So D ⊂ Aut(M)× Aut(M). Let C be

the projection of D to the first coordinate. Then C is a conjugacy class of automorphisms ofM each with a single fixed point.
If g, h ∈ C , then g and h have the same fixed point if and only if there is k ∈ C such that (g, k), (h, k) ∈ D . This equivalence
relation is expressible in the language of groups, and gives the weak ∀∃-interpretation.

5.5. More on ample homogeneous generic automorphisms

Wemention some other group-theoretic consequences of the existence of ample homogeneous generic automorphisms.
For more on this material, see [94].

First, if G is any groupwhich is not finitely generated, we define the cofinality cf(G) of G to be the smallest cardinal κ such
that G is the union of a chain of length κ of proper subgroups. This invariant arose in connection with group actions on trees
and Serre’s property (FA) - see [136] and the end of this section.

Many ω-categorical structures are known to have automorphism groups with uncountable cofinality. We first note

Theorem 5.5.1 ([114]). Let S be the full symmetric group on a set X of infinite cardinality κ . Then cf(S) > κ .
Sketch Proof. One first shows that if Y ⊂ X with |Y | = |X \ Y | = κ (that is, Y is a moiety of X), and G is a subgroup of S
such that every permutation of Y is induced by an element of G, then there is h ∈ S such that ⟨G, h⟩ = S. Now, suppose for
a contradiction that (Gi : i < λ) is a chain of proper subgroups of S of length λ ≤ κ , with


µ<λ Gµ = S; so Gi ≤ Gj for

all i, j with i < j < λ. Choose a partition (Yµ : µ < λ) of X into moieties. By the above observation, for each µ < λ there
is gµ ∈ Sym(Yµ) which is not induced by an element of Gµ; for otherwise, there would be g ∈ S with ⟨Gµ, g⟩ = S, and if
g ∈ Gν ≥ Gµ then Gν = S, contradicting that Gν is a proper subgroup. Let g be the unique permutation of X which induces
gµ on Yµ for each µ. Then g ∈ S \


µ<λ Gµ, which is a contradiction. �

The same result was proved for Aut(Q, <) by Gourion by an analogous ‘piecewise-patching’ argument, and reproved in
a broader context by Droste and Holland [52]. We also have the following extension of Theorem 5.5.1.

Theorem 5.5.2 ([82]). Let M be anω-categorical structure such that Aut(M) has ample B(M)-generic automorphisms for some
base B(M). Then cf(Aut(M)) > ℵ0.

In fact, in [94] it is shown that any Polish group with ample homogeneous generic automorphisms has uncountable
cofinality.

There is another group-theoretic condition,which is closely related to cofinality (and possibly, at least in view of evidence
from examples, to the small index property).

Definition 5.5.3. Let G be a group which is not finitely generated.
(i) The strong cofinality of G, denoted scf(G), is the smallest cardinal λ such that there is a chain (Ui)i<λ of proper subsets

of Gwith Ui ⊆ Uj for i < j, with

(Ui : i < λ) = G, and such that for each i < λ,Ui = U−1

i and Ui.Ui ⊆ Uj for some j ∈ λ.
(ii) The group G has the Bergman property if for each subset E of G such that 1 ∈ E = E−1 and ⟨E⟩ = G, there is k ∈ N

such that Ek
= G, where Ek

:= {x1 . . . xk : x1, . . . , xk ∈ E}.
(iii) The group G has the k-Bergman property if there is a positive integer k such that for any chain (Ui)i<ω of subsets of G,

ordered by inclusion, such that G =

(Ui : i < ω), there is n ∈ N such that Uk

n = G.

Condition (i) was introduced in [52], and condition (ii) by Bergman [12], where it was shown that the symmetric group on
any infinite set has the Bergman property. Easily, condition (iii) implies that G has uncountable strong cofinality. In addition,
we have

Proposition 5.5.4 ([52]). Let G be a group which is not finitely generated. Then G has uncountable strong cofinality if and only
if G has the Bergman property and has uncountable cofinality.

Droste andGöbel [50] have given sufficient conditions for a groupG to have uncountable cofinality or to have the Bergman
property. These conditions are applicablemainly, it seems, to permutation groupswith good piecewise-patching properties.
As with the small index property, ample homogeneous generics provide another approach, by the following result.

Theorem 5.5.5 ([94]). Let M be anω-categorical structure which has ample homogeneous generic automorphisms. Then Aut(M)
has the 21-Bergman property, so has uncountable strong cofinality and the Bergman property.

There is an extensive discussion of these conditions in [94], much of it in the more general context of Polish groups. We
note the following.

Definition 5.5.6 (Serre [136]). (i) A group G is said to have property (FA) if whenever G acts on a tree (i.e. a connected graph
without cycles) without inversions (so no element of G reverses an edge) then G has a global fixed vertex, i.e., there is a
vertex v of T such that for all g ∈ G, g(v) = v.

(ii) A group G has property (FH) if any action of G by isometries on a real Hilbert space has a global fixed point.
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By a well-known result from [136], a group G which is not countable has property (FA) if and only if it satisfies all three
of the following properties:
(i) G is not a non-trivial free product with amalgamation,
(ii) Z is not a homomorphic image of G,
(iii) cf(G) > ℵ0.

Theorem 5.5.7 ([94]). Let M be an ω-categorical structure with ample homogeneous generic automorphisms. Then Aut(M) has
properties (FA) and (FH).

Property (FA) follows from the above characterisation, together with Theorem 5.5.2 and Proposition 4.2.12(i) and (v). To
obtain (FH), first note that, by [45], a group G has uncountable strong cofinality if and only if every action by isometries on
a metric space has a bounded orbit. There is extensive further recent work in this area, which we cannot cover here.

6. Further topics

6.1. Jordan groups and treelike structures

This section concerns a very old topic in permutation group theory (initiated by Jordan), for which substantial progress
wasmade recently. Sincemany of the examples are homogenisable in th sense of Section 3.1, and since the treelike structures
which arise keep recurring in this paper, it seems to deserve treatment here. For a detailed study of the treelike structures,
see [3] and also [30], and for an overview of this subject see [15].

Definition 6.1.1. If G is a permutation group on a set X , then a subset Y of X is a Jordan set if |Y | > 1 and G(X\Y ) is transitive
on Y . We say that Y is improper if there is k ∈ N such that |X \ Y | ≤ k and G is (k + 1)-transitive on X , and that Y is proper
otherwise. A transitive permutation group with a proper Jordan set is called a Jordan group.

Mainly, we shall be interested in primitive Jordan groups.

Example 6.1.2. We describe some important families of relational structures whose automorphism groups are Jordan
groups.

1. If V is an n-dimensional vector space over F andW is a proper subspace of V , then GLn(F)(W ), acting on V , is transitive
on V \W . Indeed, if v1, v2 ∈ V \W , we may pick a basis w̄ ofW , and extend w̄v1 and w̄v2 to ordered bases B1 and B2 of V .
Then the unique element g ∈ GLn(F) taking B1 to B2 fixesW pointwise and maps v1 to v2. The group GLn(F) is intransitive
on V (it fixes 0), and (assuming |F | > 2) is imprimitive on V \ {0} (which is partitioned into 1-spaces). However, both the
projective group PGLn(F) on PGn−1(F) and the affine group AGLn(F) on AGn(F) are 2-transitive Jordan groups; likewise in
the infinite-dimensional case.

2. If G := Aut(Q, <) and U is an open proper interval of Q (or any infinite proper convex open subset) then U is a Jordan
set for G. To see this, note that any order automorphism of (U, <), extended by the identity elsewhere, lies in G. There are
similar Jordan sets for automorphism groups of linear betweenness relations, circular orders, and separation relations (see
Theorem 6.2.1).

3. Let (T ,≤) be one of the 2-homogeneous trees of Droste [49]. These are all countable lower semilinear orders such that
each maximal chain is isomorphic to (Q, <). These are classified by two parameters. One parameter indicates whether or
not each ramification point (i.e. infimum in the Dedekind-MacNeille completion of two incomparable elements) lies in T ; we
say T has positive type if it contains its ramification points, and negative type otherwise. For each ramification point a, there
is an equivalence relation Ea on {x ∈ T : a ≤ x}, where xEay if and only if there is z ∈ T with a < z ≤ x, y. By 2-homogeneity,
the number of equivalence classes, which belongs to {n ∈ N : n > 1} ∪ {ℵ0}, is independent of a. It is the second parameter
for T , called the ‘ramification number’. The Ea-classes, called cones at a, are isomorphic to (T ,≤), and are Jordan sets. In fact,
if a is a ramification point then any union of cones at a is Jordan set. The group G acts primitively on T but not 2-transitively
or even 2-homogeneously as a permutation group, although the trees themselves are 2-homogeneous.

These trees are all homogenisable, in the sense of Section 3.1. For example, consider any 2-homogeneous tree of infinite
ramification order and negative type. This can be viewed as a reduct of a Fraissé limit as follows. Let L be a language with a
binary relation< and a ternary relation R. LetC be the class of all finite L-structures (A, <, R) such that (A, <) is a semilinear
order, the relation R is irreflexive, R(x, y, z) implies that x, y, z are incomparable, and for any incomparable x, y, z ∈ A, if
there is w ∈ A incomparable to z with w < x, y, then R(x, y, z). It can be verified that C is an amalgamation class, and
(T , <, R) is its Fraissé limit.

4. Let (T ,≤) be one of the 2-homogeneous trees in (3), and let M be the set of maximal chains in T , that is, maximally
totally ordered subsets of T . We viewM as a structure with a single ternary relation C as follows. Define C(α;β, γ ) to hold if
and only if α∩β is a proper subset of β∩γ . PutH := Aut(M, C). ThenH acts 2-transitively onM , and there are several kinds
of Jordan sets. Indeed, as in (3) there is a notion of ‘cone’—if a ∈ T , then the cones of M at a are the classes of the natural
equivalence relation on the set of maximal chains which contain a. If a ∈ T and Y is a cone at a, then (Y , C) ∼= (M, C), so
admits a 2-transitive automorphism group; and any automorphism of (Y , C) can be extended by idM\Y to an automorphism
of (M, C), so Y is a Jordan set. Again, the union of any set of cones at a is a Jordan set. Furthermore, {x ∈ M : a ∉ x} is also a
Jordan set for H .
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Of course, |M| = 2ℵ0 , but M has a countable elementary substructure (N, C) whose automorphism group is a Jordan
group with similar transitivity properties. This can be proved by the downward Löwenheim-Skolem Theorem (in a 2-sorted
languagewith a sort forM and a sort for the automorphism group). Alternatively, wemay simply chooseN to be a countable
dense subset ofM , that is, ensure that

∀x ∈ T∃α ∈ N(x ∈ α).

Alternatively, again, observe that the target structure (N, C) is homogeneous, so can be built as a Fraissé limit.
In [3], the following axioms for a C-relation are identified, analogous to those for dense linear orders.

(C1) ∀x, y, z(C(x; y, z) → C(x; z, y));
(C2) ∀x, y, z(C(x; y, z) → ¬C(y; x, z));
(C3) ∀x, y, z, w(C(x; y, z) → (C(x; y, w) ∨ C(w; y, z)));
(C4) ∀x, y(x ≠ y → ∃zC(x; y, z)).
(C5) ∀y, z∃xC(x; y, z).

It is shown in [3, Theorem 12.4] that if (M, C) satisfies (C1)–(C5) then there is a tree (T ,≤) such that M is a dense set of
maximal chains of T , with C interpreted as above.

5. Let (T ,≤) be a 2-homogeneous tree. Then there is a natural ternary general betweenness relation B on the elements
of T . For details (and for axioms for a general betweenness relation) see [3, Section 15]. The group Aut(T , B) is a 2-transitive
Jordan group.

6. Let (M, C) be a C-relation obtained from a 2-homogeneous tree (T ,≤) as in (4) above. Put M ′
:= M ∪ {∞} where

∞ ∉ M . We may view the elements of M ′ as the directions of the general betweenness relation (T , B), rather like the
ends of a tree in the sense of graph theory. We identify ∞ with the ‘downwards’ direction of (T ,≤). There is a natural
quaternary relation D on M ′. Informally, D(x, y; z, w) expresses that in the underlying general betweenness relation, the
path from x to y (which, remember, are ‘directions’, or ‘leaves’) does notmeet the path from z tow. The group Aut(M ′,D) is a
3-transitive but not 4-transitive Jordan group. Again, |M ′

| = 2ℵ0 , but (M ′,D) has a countable elementary substructurewhich
is homogeneous. For axioms for a D-relation, see [3, Section 22]. To see Jordan sets, observe that with (M ′,D) as above,
Aut(M ′,D)∞ = Aut(M, C), so has many Jordan sets.

There are connections between D-relations and ends of graphs—see e.g. Möller [121].

The main theorem of [2] is the following.

Theorem 6.1.3. Let G be a primitive Jordan permutation group on an infinite set X, and suppose that G is not highly transitive.
Then G is a group of automorphisms of a structure on X of one of the following types: a Steiner system (possibly with infinite
blocks); a linear order, circular order, linear betweenness relation, or separation relation; a semilinear order; a general betweenness
relation, or C-relation, or D-relation; or a limit of Steiner systems, general betweenness relations, or D-relations.

Remark 6.1.4. 1. The case of Steiner systems includes the projective and affine spaces in Example 6.1.2. Versions with
an arbitrary finite degree of transitivity are constructed in [15], using a ‘Hrushovski construction’, a variant of Fraissé
amalgamation. Other constructions, again with an arbitrary degree of transitivity, are given by Johnson in [90].

2. We do not give the definition of limits of Steiner systems, or of general betweenness relations and D-relations.
Constructions of the last two were given in an unpublished manuscript of Adeleke. An ω-categorical structure (M, L) with
L ternary (a ‘limit of general betweenness relations’) is constructed in [14] as a Fraissé limit. The automorphism group is
3-homogeneous, not 3-transitive, and the point stabiliser preserves a C-relation. Limits of general betweenness and D-
relations seem to be important new examples of treelike structures, deserving further investigation.

A limit of Steiner systems is constructed by Adeleke in [1]. A version of the construction, with an arbitrary degree of
transitivity, was provided by Johnson [90].

3. Theorem6.1.3was proved in [4] in the particular casewhen there is a primitive Jordan set, that is a proper Jordan subset
Y of X such that G(X\Y ) acts primitively on Y . In this case, the only examples are the linear orders (and circular orders, linear
betweenness relations, and separation relations), semilinear orders, general betweenness relations, and C and D-relations.
Both in this case and in general, the proof is based on an analysis of the intersection properties of G-invariant families of
Jordan sets. For example, if G is primitive on X and there is a G-invariant family F of subsets of X any two of which are
comparable under inclusion, then there is a G-invariant linear order on X: define

x < y ⇔ (∃A ∈ F )(x ∈ A ∧ y ∉ A).

An important observation is that if A and B are Jordan sets and A ∩ B ≠ ∅, then A ∪ B is also a Jordan set.

I mention two open problems.
1. Give a full classification of (homogenisable)ω-categorical structures whose automorphism group is a primitive Jordan

group.
2. Describe primitive structuresM which are homogeneous over a finite relational language, and have the property that

there is an infinite coinfinite subset A ofM such that for all x, y ∈ M \ A, idA ∪ {(x, y)} is an isomorphism.
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6.2. Reducts of omega-categorical structures

Suppose thatM is an ω-categorical structure, and G = Aut(M). Consider structuresM ′ with the same domain asM , such
that the ∅-definable relations onM ′ are ∅-definable inM . We call such structuresM ′ reducts ofM , and identify two reducts
if they have the same ∅-definable relations. This slightly extends the traditional use of the term, which would require that
M ′ be obtained fromM by restricting the language. It is clear that ifM ′ is a reduct ofM then Aut(M) ≤ Aut(M ′) ≤ Sym(M),
and Aut(M ′) is closed. In fact, by the Ryll-Nardzewski Theorem, this is a Galois correspondence: the lattice of reducts of M
(with the natural lattice operations) is isomorphic (after the lattice operations ∧ and ∨ are swapped) to the lattice of closed
subgroups of Sym(M)with contain Aut(M). We shall refer to the latter as closed supergroups of Aut(M).

It is challenging, and generally requires interesting techniques, to classify the reducts for certain M . We describe below
some results. This topic has additional recentmotivation throughwork of Bodirsky and coauthors on constraint satisfaction—
see Section 6.6.

Theorem 6.2.1 (Cameron). Let G = Aut(Q, <). Then the proper non-trivial reducts of (Q, <) are the linear betweenness relation
on Q, the countable dense circular order induced from the linear order, and the countable dense separation relation.

Proof. Since Aut(Q, <) is highly homogeneous, this follows from Cameron’s classification of highly homogeneous closed
groups acting on a countable set (see Example 2.3.1(1) above). �

Certain model-theoretic/group-theoretic properties are preserved (apart from obvious exceptions) under reducts, and
are well-understood in the ω-categorical case. For example, a strictly minimal set is an ω-categorical structure M with
primitive automorphismgroup such that any parameter-definable subset ofM is finite or cofinite inM; equivalently, Aut(M)
is primitive oligomorphic and for any finite A ⊂ M,Aut(M)(A) has a cofinite orbit onM . Strictlyminimal sets are the building
blocks of ω-categorical ω-stable theories and have been classified. Indeed, the following major result is proved in [148,
Theorem 3.0.1] and in [40], with other proofs appearing later.

Theorem 6.2.2. Let M be a strictly minimal set, and G = Aut(M). Then one of the following holds.

(i) G = Sym(M);
(ii) for some prime power q, PGL(ℵ0, q) ≤ G ≤ PΓ L(ℵ0, q), acting on projective space PG(ℵ0, q);
(iii) for some prime power q,AGL(ℵ0, q) ≤ G ≤ AΓ L(ℵ0, q), acting on affine space AG(ℵ0, q).

Using this, it is feasible to characterise reducts of strictlyminimal sets; for example, the projective and affine spaces PG(ℵ0, p)
and AG(ℵ0, p) (where p is prime) have no proper non-trivial reducts.

In [142, Example 1.2], Thomas considered a variant of these examples, also ω-stable (and, unlike the above strictly
minimal sets, also homogenisable). Fix an integer k > 1, and let Γ be the graph whose vertices are the k-element subsets
of N, with vertices A and B adjacent if and only if |A ∩ B| = k − 1. This graph has totally categorical theory, of Morley rank k
and Morley degree 1. An easy model-theoretic argument yields that Γ has no proper non-trivial reducts.

Similarly, if G = Aut(M) is a Jordan group and H is a closed supergroup of G, then except in trivial cases H will also be a
Jordan group. Using the description of primitive Jordan groups in [2], this makes a full description of closed supergroups of
Jordan groups feasible, at least in certain cases.We do not pursue this here, but for example, by Theorem 6.1.3 (or the results
in [4]), the countable homogeneous D-relations and the general betweenness relations considered in Example 6.1.2(6) will
have no proper non-trivial reducts.

Thomas [143,142] has used structural Ramsey theory to classify reducts of certain homogeneous structures, and variants
of his methods seem to have great further potential, using ideas from [22] and from Sections 6.5 and 6.6.

We first describe some reducts of the random graph R, first noted by Cameron. Let G = Aut(R).

(i) The graph R is isomorphic to its complement Rc . If h : R → Rc is an isomorphism, let D(R) := ⟨G, h⟩. This is a closed
supergroup of G, preserving R up to complementation, and |D(R) : G| = 2. Note that D(R) is 2-transitive but not
3-transitive.

(ii) Define a 3-hypergraphH with vertex set R, so that a 3-set {x, y, z} is an edge ofH if and only if it contains an odd number
of graph-edges of R. Then H is a two-graph, that is, a 3-hypergraph such that every 4-set contains an even number of
3-edges (see Example 2.3.1(4)). In fact, H is the universal homogeneous 3-hypergraph. We define S(R) := Aut(H). Then
S(R) is 2-transitive, not 3-transitive.

(iii) The two-graph H is isomorphic to its complement. Let k : H → H be an anti-isomorphism of H witnessing this, and
put B(R) := ⟨S(R), k⟩. Then B(R) is 3-transitive but not 4-transitive.

Theorem 6.2.3. (i) Any closed supergroup of Aut(R) is equal to one of: Aut(R),D(R), S(R), B(R), or Sym(R).
(ii) For any n ≥ 3, the generic Kn-free graph has no proper non-trivial reducts.

Note that the lattice of reducts of (Q, <) is isomorphic to the lattice of reducts of R. This reinforces the analogy between
the circular order and the homogeneous two-graph mentioned in Example 2.3.1(4).
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The key tool in the original proof of Theorem 6.2.3 is the following result of Nešetřil and Rödl.

Theorem 6.2.4. (i) Let A be a finite graph, and r a positive integer. Then there is a finite graph B such that if the edges of B
are coloured with r colours, then B contains an induced subgraph A′ isomorphic to A, such that all edges of A′ have the same
colour.

(ii) For any integer n ≥ 3, if A is Kn-free, then B can be chosen to be Kn-free.

A slightly different approach to such problems was developed by Bennett and Thomas in [11,142]. In [11], classifications
are given of the reducts of the homogeneous tournaments, and the reducts of generic k-coloured graphs. Then, in [142],
the reducts of the homogeneous k-uniform hypergraphs are classified. I briefly describe the latter. The methods in [11] are
similar.

First, there is a notion of ‘switching’ which generalises all the proper non-trivial reducts of the random graph. Let X, Y
are k-hypergraphs, and let A be a i-subset of X , for some i with 0 ≤ i ≤ k − 1. Then a bijection π : X → Y is a switch with
respect to A if for every k-subset B of X, π |B is an isomorphism if and only if A ⊈ B. So an anti-isomorphism is just a switch
with respect to ∅.

Theorem 6.2.5. Let Γk denote the universal homogeneous k-hypergraph, and let G be a closed permutation group such that
Aut(Γk) ≤ G < Sym(Γk). Then there is X ⊆ {0, 1, . . . , k − 1} such that G is generated (as a topological group), by Aut(Γk)
together with all π ∈ Sym(Γk) such that, for some i ∈ X, π is a switch with respect to an i-subset of Γk.

In the special case when k = 2 (so Γk = R), the group S(R) arises by putting X = {1}. This arises from the well-known
correspondence between two-graphs and switching classes.

The proof of Theorem 6.2.5 uses an analogue of Theorem 6.2.4 due independently to Abramson and Harrington, and to
Nešetřil and Rödl [123]. It also uses Theorem 3.2.4.

It follows from Theorem 6.2.5 that Γk has finitely many reducts, and that each is homogeneous over a finite relational
language. Thomas has conjectured that every homogeneous structure over a finite relational language has just finitelymany
reducts. An example is given in [143] of a homogeneous structure over a finite relational language which has a reduct which
is not homogeneous over any finite relational language.

In the direction of Thomas’s conjecture,wemention also the paper [91] by Junker and Ziegler. This contains a newproof of
Cameron’s Theorem, and also a proof that any homogeneous expansion of (Q, <) by finitely many convex unary predicates
has finitely many reducts. It is also shown that the expansion of (Q, <) by a single constant has 116 reducts, and results are
also obtained for expansions by dense predicates.

6.3. Growth rates for orbits on subsets

We discuss here aspects of the following question, investigated very heavily in papers by Cameron—see [26] as a core
reference.

Question 6.3.1. If M is an ω-categorical structure with automorphism group G, what can be said about the sequence (fk(G)),
where fk(G) denotes the number of orbits of G on the collection of unordered k-subsets of M?

By the Ryll-Nardzewski Theorem, the numbers fk(G) are all finite. So too are the numbers Fk(G) of orbits of G on ordered
k-sets, and F∗

k (G) of orbits of G onMk. Results on the relationships between these sequences can be found in [31,26], but we
focus on the fk(G).

As noted in several papers by Cameron, many important combinatorial sequences arise in the form (fk(G)) for G =

Aut(M), whereM is a homogeneousω-categorical structure. For example, ifM is the random graph, then fk(G) is the number
of unlabelled k-vertex graphs up to isomorphism. More generally, if M is the Fraissé limit of the age C, then fk(G) is the
number of k-element members of C up to isomorphism. Sequences counting labelled isomorphism types can also in many
cases arise. For example, let M be the universal totally ordered graph, the Fraissé limit of an age consisting (in a language
with two binary relations) of all finite totally ordered graphs. Then fk(G) is the number of isomorphism types of k-element
labelled graphs. If M is the homogeneous structure consisting of two (independent) total orders, then fk(G) = k!. In fact,
this construction generalises: if C is an amalgamation class with disjoint amalgamation, and C+ is the corresponding class
of all ordered members of C (in a language with an additional relation symbol <), then C+ is an amalgamation class, and
if M+ denotes its Fraissé limit, then fk(Aut(M+)) is the number of labelled members of C (and equals Fk(Aut(M))). Other
well-known sequences, such as the Catalan numbers [30] can also arise.

Cameron [32] and Pouzet [126] showed independently that the sequence (fk(G)) is non-decreasing. Both arguments are
Ramsey-theoretic. The approach in [32] is to consider an incidence matrix with rows indexed by orbits on k-sets, columns
by orbits on (k + 1)-sets, and show that the rank is equal to the number of rows.

Furthermore, Cameron noted that an arbitrarily fast growth rate is possible for (fk(G)): for any prescribed function
h : N → N, just do a Fraissé amalgamation, in a language where the number of relation symbols of arity k is greater
than h(k).

Cameron has proved a number of results on the local behaviour, for example recovering strong structural information
on M from the assumption fk(G) = fk+1(G) > 1. One relevant tool for local behaviour is a graded algebra AG

= Σk≥0V G
k ,
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whose homogeneous degree k elements consist of the G-invariant functions from the collection of k-subsets ofM to Q. The
addition and scalar multiplication is pointwise. If f ∈ V G

k and g ∈ V G
l , we define h = fg ∈ V G

k+l as follows, where, for any

structure P and positive integer k,


P
k


denotes the set of k-element substructures of P:

for any A ∈


M

k + l


, h(A) = Σ

B∈

A
k

f (B)g(A \ B).

The dimension of the kth graded component is then fk(G). Recently, Pouzet [127] settled an old conjecture of Cameron,
proving part (i) of the following. Part (ii) is derived by Cameron from (i).

Theorem 6.3.2. Let M be an ω-categorical structure, and G = Aut(M), and suppose that G has no finite orbits on M. Then

(i) [127] AG is an integral domain,
(ii) [33] for any k, l ∈ N, fk+l(G) ≥ fk(G)+ fl(G)− 1.

In fact, Pouzet’s theorem is in the more general setting of the profile of a relational structure (see below), without symmetry
assumptions. Cameron conjectures a stronger version of (i) (under the same assumption), namely that the element e ∈ V1
which has constant value 1 is prime in AG. This also has a local consequence for (fk(G)). Cameron has shown in some natural
cases that AG is a polynomial ring.

Given that (fk(G)) is non-decreasing, it is natural to investigate the asymptotic growth rate. In this direction, we have the
following.

Theorem 6.3.3. Let M be an ω-categorical structure, and G = Aut(M).

(i) [128] Either there is an integer t and constants c1 and c2 such that for all k, c1kt ≤ fk(G) ≤ c2kt , or (fk(G)) grows faster
than any polynomial.

(ii) [110] If G is primitive on M, then either fk(G) = 1 for all k, or (fk(G)) grows at least exponentially (more precisely, if
1 < c < 2

1
5 , then fk(G) > ck for large enough k).

(iii) [111] Either (fk(G)) is polynomially bounded above, or for all ϵ > 0, there is K such that fk(G) > ek
1
2 −ϵ

for all k > K.
(iv) [112] If M has the independence property (see Definition 6.4.1), then there is a polynomial p of degree at least 2 such that

fk(G) > 2p(k) for all k.
(v) [112] If M is homogeneous over a finite relational language, and there is ϵ > 0 such that fk(G) > 2k1+ϵ for sufficiently large

k, then M has the independence property.

Note that in (ii), if fk(G) = 1 for all k, then G is highly homogeneous on M . If G is not highly transitive on M , then, by
Theorem 6.2.1, M is essentially a linear order, a linear betweenness relation, a circular order, or a separation relation.

I make some remarks on the proofs. For (ii), the proof is by induction on the unique k such that G is k-transitive but
not (k + 1)-transitive: the idea is that in the action of Gx on M \ {x}, which is (k − 1)-transitive but not k-transitive,
the corresponding growth rate should by inductive hypothesis be exponential—this implies easily that (fk(G)) grows
exponentially. The main problem is to start the induction, i.e. to handle the case when G is primitive but not 2-transitive
(some work is also needed in the case when G is 2-transitive but Gx is imprimitive on X \ {x}). If G is 2-homogeneous but not
2-transitive then there is an ∅-definable tournament structure onM , with arcs given by a G-orbit onM2, and it is fairly easy
to show that the number of non-isomorphic k-element subtournaments (which is a lower bound for fk(G)) grows at least
exponentially. In the harder case, G is primitive but not 2-homogeneous, and there is a G-invariant (so ∅-definable) graph
on M whose edge set is a G-orbit on 2-sets. One must show that the sequence enumerating the number of non-isomorphic
k-element subgraphs grows at least exponentially. This can be done by coding trees into isomorphism types. Primitivity is
used as follows: consider an equivalence relation ≡ on M , where vertices x, y are equivalent if their neighbour sets (in the
invariant graph) have finite symmetric difference. By primitivity, this equivalence relation is trivial or universal, and the
latter case is easily eliminated. If the ≡-classes are singletons, one can code trees into graph isomorphism types by heavy
use of Ramsey’s Theorem.

Given (ii), to prove (iii) we may assume G is imprimitive on M . We just consider here the particular case when there
is a G-invariant equivalence relation ≡ on M with infinitely many classes, all infinite. In this case, fk(G) ≥ p(k), where
p(k) is the number of partitions of the number k: indeed, for each partition k = a1 + · · · + ak, where the ai are positive
integers, one may pick distinct ≡-classes C1, . . . , Ck and form a k-subset U of M consisting of ai elements of Ci for each i;
distinct partitions give k-sets lying in different G-orbits. In this case, (iii) follows, since by a well-known result (see e.g. [74]),
p(k) ∼

1
4k

√
3
exp(π

√
(2k/3)).

Observe that by Theorem 6.3.3, there are several gaps in possible growth rates. For example, there are gaps between
different integer degrees of polynomials, and between polynomial growth and growth related to the partition function.
Furthermore, if M is homogeneous over a finite relational language, then there is a gap between growth faster than some



D. Macpherson / Discrete Mathematics 311 (2011) 1599–1634 1627

function 2k1+ϵ and growth slower than every function 2p(k) (p a polynomial of degree 2), by parts (iv) and (v). It would be
interesting to investigate this gappiness more. For example, we have the following conjecture.

Conjecture 6.3.4. Let M be ω-categorical with G := Aut(M), and suppose that fk(G) grows faster than polynomially but slower
than the function ek

1−ϵ
(for some ϵ > 0). Then there is n such that for any ϵ > 0, and for any sufficiently large k,

ek
n

n+1 −ϵ

< fk(G) < ek
n

n+1 +ϵ

.

It would also be interesting to investigate further those primitive structures M for which the growth is no faster than
exponential. The only known examples are either treelike (see [30]), or closely related to linear or circular orders or the
structures S(n) of Example 2.3.1. A structure closely related to the homogeneous tournament S(2) (the ‘local order’) yields
the slowest known growth rate for an ω-categorical structure with a primitive but not highly homogeneous automorphism
group. By a result of Cameron (see e.g. [26, P. 58]) one has

fk(Aut(S(2))) =
1
2k
Σd|k,d oddφ(d)2k/d,

where φ(d) is Euler’s totient function. Thus, fk(Aut(S(2))) ∼
2k−1

k . There is an isomorphism α from S(2) to the tournament

obtained by reversing all the arcs. Hence, if G := ⟨Aut(S(2)), α⟩, then |G : Aut(S(2))| = 2 and fk(G) ∼
2k−2

k .
There are other possible extensions of Theorem 6.3.3. The conclusion of (iii) holds also, for an infinite graph Γ , for the

sequence counting the number of non-isomorphic k-element induced subgraphs. It would be interesting to generalise this
to other relational structures. In general, a substantial proportion of the work on (fk(G)) generalises to what Pouzet calls the
profile of an age: namely, the number of k-element members up to isomorphism. Most of the results of Pouzet on the profile
are in this combinatorial context, without an assumed oligomorphic group action.

6.4. Further model-theoretic conditions: NIP and simple theories, o-minimality and variations

Independence property, strict order property, simplicity
Beyond ω-categoricity, the only model-theoretic restriction we have considered so far is stability. Here we discuss some

model-theoretic ideas related to stability, in the light of various examples. The conditions have a combinatorial flavour and
provide dividing lines between first order theories, which seem meaningful for homogeneous structures.

Definition 6.4.1. Let T be a complete theory.
(i) We say that T has the independence property if there is a formula φ(x̄, ȳ) (where l(x̄) = r and l(ȳ) = s), some M |H T ,

and some {āi : i ∈ N} ⊂ Mr such that for every S ⊂ N there is b̄S ∈ Ms such that for all i ∈ N,M |H φ(āi, b̄S) if and only if
i ∈ S. The theory T is said to be NIP, or dependent, otherwise.

(ii) The theory T has the strict order property if there isM |H T such that for some r ∈ N, there is a definable partial order
onMr with an infinite totally ordered subset.

Proposition 6.4.2 (Shelah [138]). A theory T is unstable if and only if it has the independence property or the strict order property.

Example 6.4.3. (i) The followingω-categorical structures have the independence property but not the strict order property:
the random graph (and analogues, such as the random bipartite graph, random tournament, random digraph, random k-
uniform hypergraph, random two-graph); the homogeneous Kn-free graph (for n ≥ 3); the Henson digraphs; an infinite
dimensional vector space over a finite field equipped with a symplectic bilinear form (see e.g. [41]).

(ii) The followingω-categorical structures have the strict order property but not the independence property: (Q, <); the
‘local order’ or ‘circular tournament’ S(2) and other circular structures S(n); the 2-homogeneous trees of Droste [49], and
the related treelike objects considered in Section 6.1.

(iii) Structures which are ω-categorical and have both the independence property and the strict order property include
the universal homogeneous partial order and the countable atomless Boolean algebra.

There has been extensive recent work on the model theory of NIP structures, motivated by many important examples
(such as the real and p-adic fields). We remark that if T is NIP and φ(x̄, ȳ) is a formula, where l(x̄) = r and l(ȳ) = s, then the
family

{{x̄ ∈ Mr
: M |H φ(x̄, ā)} : ā ∈ Ms

}

is a family of subsets of Mr of finite Vapnik–Cervonenkis dimension, a notion emanating from statistics and with wide
applications.

There is another generalisation of stability due to Shelah, orthogonal to the NIP property, namely the notion of a
simple first order theory (or structure). I will not define this, but refer to [147]. Simple unstable theories will all have the
independence property, but not the strict order property. The ‘random’ graph, digraph, k-hypergraph, bipartite graph, etc.,



1628 D. Macpherson / Discrete Mathematics 311 (2011) 1599–1634

are all simple but unstable. On the other hand, the generic triangle-free graph does not have simple theory, though its arity
three analogue, the 3-hypergraph not embedding a 4-set all of whose triples are edges, does have simple theory. There is a
suggestion of a connection between simplicity and the finite model property.

I mention one conjecture, connecting ω-categoricity to the above notions and also to Section 3.2. We say a first order
theory T is finitely axiomatised if it is the deductive closure of finitely many sentences (and hence of a single sentence). In the
ω-categorical world, dense linear orders without endpoints are an obvious example, and another is the countable atomless
Boolean algebra (as is the universal homogeneous distributive lattice). Treelike structures arising from2-homogeneous trees
with finite ramification number have finitely axiomatised theories. More surprisingly, the universal homogeneous partially
ordered set is an example [7]. On the other hand, structures with the finite model property, such as the random graph,
clearly do not have finitely axiomatised theory. In [113], based partly on the above examples, the following conjecture was
made. It was proved there for ω-categorical structures M with trivial algebraic closure, that is, with the property that for
any A ⊂ M,Aut(M)(A) has no finite orbits outside A (cf. Lemma 2.1.4). This has been extended by work of Ivanov and then
by Lippel [106]. The conjecture remains open in general, even for structures homogeneous in a binary relational language
(where it seems very feasible).

Conjecture 6.4.4. Let M be an ω-categorical structure such that Th(M) is finitely axiomatised. Then Th(M) has the strict order
property.

o-minimality and variations
A very active branch of model theory in recent years has been o-minimality. A first-order structure (M, < · · ·) is em

o-minimal if < is a total order on M , and every first-order definable subset of M is a finite union of open intervals and
singletons. It was shown in the initial development of o-minimality [124] that there are no interesting ω-categorical
o-minimal structures. Essentially, they are built from (Q, <) using definable order preserving or reversing bijections, in
very limited ways.

However, there is a generalisation of o-minimality for which there are interestingω-categorical (and homogeneous over
a finite relational language) examples. A totally ordered structure (M, <) isweakly o-minimal if every (parameter) definable
subset of M is a finite union of convex sets, not necessarily with endpoints in M . In general, weak o-minimality, unlike
o-minimality, is not preserved under elementary equivalence, but in the ω-categorical case it is.

One example of anω-categorical weakly o-minimal but not o-minimal structure is a totally ordered set equippedwith an
equivalence relationwhose classes are convex, such that the quotient order on the set of classes is also convex. This structure
has the same automorphisnm group as two of the countably infinite homogeneous permutations classified by Cameron (see
Section 2.2). The construction can clearly be iterated, with a finite nested chain of equivalence relations with convex classes.
If M is ω-categorical weakly o-minimal with transitive but imprimitive automorphism group, then the invariant binary
relations have to be of this form [80, Theorem 2.2].

A more subtle construction combines a C-relation (see Example 6.1.2(4)) with a total order in the natural way, so that
cones of the C-relation are convex in the ordering. Such constructions, called below ordered C-relations, were noted in [30]
and considered in more detail in [80]. If the constructions of suchM are done in a sufficiently regular way, then Aut(M)will
be 2-homogeneous onM (so primitive), cones will be Jordan sets, and the growth rate of the sequence (fk(Aut(M))) (in the
sense of the previous section) will be exponential but no faster than exponential. (In fact, it is for one of these structures that
Cameron [30] noted that (fk(Aut(M))) is the sequence of Catalan numbers.) Apart from the axiomatisation and construction
of various ordered C-relations, the main result from [80] is:

Theorem 6.4.5. Let (M, <, . . .) be an ω-categorical weakly o-minimal structure with primitive automorphism group. Then
Aut(M) is 2-homogeneous, and either Aut(M) is highly homogeneous on M, or Aut(M) preserves an ordered C-relation on M.

In the proof, the possibilities for the system of invariant relations of arity atmost three are completely described. Essentially,
it consists of a finite sequence of ‘nested’C-relations. It is shown that there are 2ℵ0ω-categoricalweakly o-minimal structures
with non-isomorphic (2-homogeneous) automorphism groups.

From the point of view of automorphism groups, it is rather natural to extend the notion of weak o-minimality to circular
orders. If K is a circular order on a setM (so K has arity three), there is a natural notion of convex subset ofM with respect to
K . One then says that a circularly ordered structure (M, K , . . .) is weakly circularly minimal (wcm) if any definable subset of
M is a finite union of convex sets. This notion was introduced in [95], where ω-categorical wcm structures are investigated.
The connection to weak o-minimality is immediate: if M is wcm and a ∈ M , then there is an a-definable total order on
M \ {a}, and the induced structure on M \ {a} is weakly o-minimal; so the main interest is in issues of multiple transitivity
and homogeneity, and the role of parameters matters. The main results in [95] are:

Theorem 6.4.6. Let (M, K , . . .) be an ω-categorical wcm structure, and assume that Aut(M) acts primitively on M.
(i) If Aut(M) is not 2-transitive onM, then either there is an ∅-definable (so Aut(M)-invariant) total order < onM with respect

to which M is weakly o-minimal, or the invariant binary structure on M is that of the circular structure S(n) for some n.
(ii) If Aut(M) is 2-transitive, then it is 3-homogeneous (so there is no invariant C-relation on M), and either Aut(M) is highly

homogeneous, or it is not 6-homogeneous (and the possible invariant relations of arity at most 4 are known).

In (ii), the invariant quaternary structure essentially consists of a D-relation compatible with a circular order, though
more generally one can have a sequence of finitely many ‘nested’ D-relations, compatible with the circular order.
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Wemay view these theorems as results about oligomorphic closed groups of automorphisms of structures with a linear
or circular ordering, with the following property: any orbit of the pointwise stabiliser of a finite set is convex. The main
structures considered above (at least those where one considers the invariant ternary structure in the weakly o-minimal
case, or the invariant quaternary structure in the wcm case) are all homogeneous in a finite relational language. For all such
structures, the growth rates (see the previous section) are no faster than exponential, and the automorphism groups are
Jordan groups. We remark that ω-categorical weakly o-minimal and wcm structures are NIP but do not have simple theory.

6.5. Structural Ramsey theory and topological dynamics

We briefly describe here some of the work of Nešetřil and coauthors on Ramsey classes, and its applications in [93]. This
is a rich subject, only touched on here. For an overview, the survey [122] is helpful.

Fix a finite relational language L, and a classC of finite L-structures. GivenA, B ∈ C, let


B
A


denote the set of substructures

of B which are isomorphic to A. For A, B, C ∈ C and positive integer k, we write C → (B)Ak if the following holds: for every

partition


C
A


= A1 ∪ · · · ∪Ak, there is B′

∈


C
B


and i ∈ {1, . . . , k} such that


B′

A


⊂ Ai. Theorem 6.2.4(i) says (with C the

class of finite graphs) that if A is an edge, then for every finite graph B and k there is a finite graph C such that C → (B)Ak .

Definition 6.5.1. The class C above is a Ramsey class if for every A, B ∈ C and positive integer k, there is C ∈ C such that
C → (B)Ak .

We shall only consider this notion for classes of totally ordered structures, so some relation symbol is always interpreted
by a total order. Some such assumption is needed. The kinds of problems which arise without an ordering are indicated for
example in [122, Theorem 5.1].

The following result, which has a short proof, makes the connection to homogeneous structures.

Proposition 6.5.2 ([85, Theorem 1.2]). Let C be an age of ordered structures over a finite relational language, and suppose that
C is a Ramsey class. Then C has the amalgamation property.

If C is a class of finite L-structures, we let (C,≤) denote the class of all structures (A,≤), where A ∈ C and ≤ is a total
ordering (interpreting a binary relation symbol not in L). The following key theorem has a sketch proof in [85], resting on
results in [123]. In fact, one does not need that (C,≤) consists of all orderings of members of C—it is sufficient to work with
a class of ‘admissible’ orderings.

Theorem 6.5.3. Let C be a monotone class of finite structures over the relational language L, and suppose that C is closed under
isomorphism and has (JEP). Then the following are equivalent.

(i) The class (C,≤) is a Ramsey class.
(ii) C is a free amalgamation class.

The role of the ‘monotone’ assumption above suggests the following question.

Problem 6.5.4. Find a direct connection between Corollary 5.3.7 and Theorem 6.5.3.

In the remarkable paper [93], Kechris, Pestov and Todorcevic exhibited a connection between these notions and
topological dynamics. Let G be a Hausdorff topological group. A G-flow is a continuous action of G on a compact Hausdorff
topological space. Every G-flow contains a minimal subflow, that is, one in which each G-orbit is dense. Furthermore, each
such G has a (unique up to isomorphism) universal minimal G-flow, denoted M(G), namely, a minimal G-flow which maps
homomorphically onto any other minimal G-flow. The group G is extremely amenable if M(G) is a singleton; that is, if every
G-flow has a fixed point (a point x such that for all g ∈ G, g(x) = x). History and motivation for these notions are given at
the start of [93]. In particular, it seems that until recently there was a dearth of examples of extremely amenable groups.

In [93] the following theorem is proved. An order class is just a class of finite L+-structures (A,≤)whereA is an L-structure,
L+

= L ∪ {≤}, and ≤ is a linear order on A.

Theorem 6.5.5 ([93]). Let G be a closed permutation group on a countably infinite set M. Then G (as a topological group) is
extremely amenable if and only if G = Aut(M) for some structure M which is the Fraissé limit of a Fraissé order class which is a
Ramsey class.

Note in particular thatG preserves a linear order onM . It is easy to see that every extremely amenable closed permutation
group on a countably infinite set X preserves a linear ordering. For G has a continuous action on the space of all linear
orderings on X (a compact topological space, when parsed as {0, 1}X

2
with the product topology) so there must be a fixed

point, i.e., an invariant linear ordering.
In [93], the authors compute the universal minimal G-flow for various homogeneous structures. For the random graph, it

is the action on the space of all orderings of the graph. On the other hand, for some other structureswhich are notmonotone,
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there are restrictions on the invariant total order. IfM is the disjoint union of infinitelymany infinite complete graphs (i.e. an
equivalence relation with infinitely many classes, all infinite), then the universal minimal G-flow is the action on the space
of all linear orderings ofM such that each equivalence class is convex.

Throughout the paper, we have collected a number of consequences of various restrictions on amalgamation. We
summarise these in the following two theorems.

Theorem 6.5.6. Let L be a finite relational language, and let M be a free homogeneous L-structure, with G = Aut(M). Then

(i) G has a comeagre conjugacy class,
(ii) G has no proper normal subgroup of countable index,
(iii) if G acts without inversions on a combinatorial tree T , then every element of G fixes a vertex of T ,
(iv) G cannot be written non-trivially as a free product with amalgamation,
(v) if G is transitive on M and not equal to Sym(M), then G is simple.

Proof. For (i) see Theorem 4.2.11, for (ii)–(iv) see Proposition 4.2.12, and for (v) see Theorem 4.2.7. �

Theorem 6.5.7. Let L be a finite relational language, and let M be a monotone free homogeneous L-structure, with G = Aut(M).
Then the conclusions of Theorem 6.5.6 hold, and in addition

(i) G has ample homogeneous generic automorphisms,
(ii) M has the small index property, and G has uncountable cofinality and the Bergman property,
(iii) G has properties (FA) and (FH),
(iv) M has a weak ∀∃-interpretation,
(v) if C = Age(M), and C+ is the order class obtained from C (in a language with an extra binary relation <) by ordering

members of C in all possible ways, then C+ is a Ramsey class,
(vi) (vi) if M+ is the Fraissé limit of C+, then Aut(M+) is extremely amenable.

Proof. (i) and the first part of (ii) are given by Corollary 5.3.7, and Theorems 5.5.2 and 5.5.5 yield the rest of (ii). For (iii)
see Theorem 5.5.7, and for (iv), see the last paragraph of Section 5.4. Parts (v) and (vi) follow from Theorems 6.5.3 and 6.5.5
respectively. �

Note that in the second theorem we obtain three fixed point properties, namely (FA), (FH), and extreme amenability. I
believe it is consistent with the known examples that ‘monotone’ can be omitted in the second theorem above (at least for
(i)–(iv)).

6.6. Connections to constraint satisfaction

I briefly sketch some interesting recent connections of homogeneous structures and ω-categoricity to constraint
satisfaction, a topic in complexity theory. This work is due to Bodirsky and his coauthors. There is an initial presentation
in [21], and some results are surveyed in [17].

Recall from the introduction the notion of a homomorphism π : M → N , where M,N are relational structures. An
endomorphism of M is a homomorphism M → M , and an embedding M → N is an injective homomorphism π : M → N
which is strong, meaning that the inverse map π−1

: π(M) → M is also a homomorphism. A self-embedding of M is an
embedding M → M . We will write End(M) for the monoid of endomorphisms of M , and Emb(M) for the monoid of self-
embeddings ofM .

Fix a finite relational language L, and an L-structure M . The constraint satisfaction problem with template M , denoted
CSP(M), asks, for any finite L-structure P (as input) whether there is a homomorphism P → M . This problem is considered
from the viewpoint of complexity theory.

There is another way to present CSP(M). We say that an L-formula φ(x̄) is positive primitive (or p.p.) if it has the
form ∃ȳψ(x̄, ȳ), where ψ is a conjunction of atomic formulas. Now CSP(M) can be viewed as asking, for any positive
primitive sentence σ (as input), whether M |H σ . To see the connection (in one direction), let P be a finite structure with
domain {a1, . . . , an}, and let ψ(a1, . . . , an) be a conjunction of all the (distinct) atomic formulas true of P . Then there is a
homomorphism P → M if and only ifM |H ∃x1 . . . ∃xnψ(x1, . . . , xn).

It is thus clear that many natural questions in complexity theory can be posed as constraint satisfaction problems. A
remarkable underlying conjecture states that ifM is finite, then CSP(M) is either in P or is NP-complete. Considerable work,
including a universal-algebraic approach via polymorphism clones, has been devoted to this.

In the context of constraint satisfaction, a key definability notion is p.p. definability, or at least positive existential
definability (or interpretability). Indeed, we have the following—for a proof see for example [17, Proposition 3].

Proposition 6.6.1. Let M and N be structures over finite relational languages. If there is a p.p. interpretation of N in M, then
there is a polynomial-time reduction of CSP(N) to CSP(M).
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In [21,18,17], the authors give several very natural computational problems which can be parsed as a constraint
satisfaction problem with an ω-categorical (in fact, homogeneous) template, but not with a finite template. For example,
the problem of deciding whether a finite graph is triangle-free can be viewed as a constraint satisfaction problem with
template R3 (the universal homogeneous triangle-free graph). A finite digraph has a directed cycle if and only if it does not
map homomorphically to (Q, <), so testing existence of a directed cycle reduces to CSP((Q, <)). The problem of deciding
whether, given a directed graph Γ , its vertex set can be partitioned into two pieces, each carrying the induced structure
of a directed acyclic graph, is just CSP(S(2)), where S(2) is the homogeneous circular tournament (Example 2.3.1(2)).
Other constraint satisfaction problems, coming from phylogenetic reconstruction (reconstruction of evolutionary trees),
have the form CSP(M) where M is a homogeneous C-relation or D-relation (see Section 6.1). We emphasise that the CSP
is very sensitive to the choice of language — for example to whether a partial or total order is strict — since the notion of
homomorphism is sensitive to this.

A finite L-structureM is said to be a core if any endomorphism ofM is an automorphism, andM is a core of N ifM is a core
and is the image of an endomorphism of N . For infinite structures, the definitions are the same, except that ‘automorphism’
is replaced by ‘self-embedding’. Easily, every finite L-structure N has a core: choose a homomorphic image of least size, and
with as few tuples as possible satisfying relations. In fact, such a core will be unique up to isomorphism.

We shall say that L-structuresM andN are homomorphically equivalent if there are homomorphismsM → N andN → M .
If M and N are homomorphically equivalent, then they give the same constraint satisfaction problem; that is, for any finite
P , there is a homomorphism P → M if and only if there is a homomorphism P → N . It is easily seen that any finite structure
is homomorphically equivalent to a core of it. Thus, given a finite template, there is a finite core with the same constraint
satisfaction problem.

A natural first question concerning CSPs of ω-categorical structures concerns the existence of cores. In [18], Bodirsky
proves the following. Recall that a theory T is model complete if all embeddings between models of T are elementary, or
equivalently, if every formula is equivalent modulo T to an existential formula. IfM is homogeneous over a finite relational
language then its theory has quantifier elimination, so ismodel complete; but there aremanyω-categorical model complete
theorieswhich are not homogeneous—for example an equivalence relationwith two classes, one infinite and one of size one.

Theorem 6.6.2 (Bodirsky [18]). Let M beω-categorical over a finite relational language. Then M is homomorphically equivalent
to a model complete core Mc , (a core of M), and Mc is unique up to isomorphism. Also Mc is ω-categorical or finite, and its
∅-definable relations (i.e. the orbits on tuples) are p.p. definable in Mc .

This theorem is reminiscent of an old result of Saracino [133], that if M is ω-categorical, then there is a unique model
complete ω-categorical structure N (namely, one whose theory is a model companion of Th(M)) such that Age(M) =

Age(N). We note also the following nice characterisation of model completeness, proved in [20], which follows easily from
some definability characterisations in [22].

Proposition 6.6.3 (Bodirsky, Pinsker). Let M be ω-categorical over a language without function symbols. Then Th(M) is model
complete if and only if Emb(M) is dense in Aut(M).

The following result ensures that for most homogeneous structures that we have considered, the CSP is in NP . For the
notion ‘finitely bounded’, see the paragraph before Remark 2.1.5.

Proposition 6.6.4 ([21, Proposition 3,1]). Let M be homogeneous and finitely bounded over a finite relational language. Then
CSP(M) is in NP.

For such M , a non-deterministic algorithm for CSP(M), given a structure A, will guess a homomorphic image A′ of A
and check in polynomial time whether A′

∈ Age(M) by checking whether any of the finitely many minimal forbidden
configurations which determine Age(M) embed in A′.

The authors in [21] also use Cherlin’s classification of homogeneous digraphs to show that finitely bounded homogeneous
digraphs M satisfy the dichotomy conjecture for CSPs: that is, CSP(M) is in P or is NP-complete. They conjecture that
this holds for all finitely bounded ω-categorical homogeneous structures. They note that since there are continuum many
homogeneous digraphs, some such are templates with undecidable CSP.

Some of the theory connecting bi-interpretability and the topology on the automorphism group (see Theorem 5.1.2) has
analogues for these notions of definability, with the automorphism group replaced by more universal-algebraic objects.
The next few results are taken from [20]. The monoids Emb(M) and End(M) carry the topology of pointwise convergence,
so basic open sets have the form Uā,b̄ := {g : g(ā) = b̄}. Below, by a positive existential formula we mean one of the
form ∃ȳφ(x̄, ȳ)where φ is quantifier-free and has no negations. An existential interpretation is one in which all the defining
formulas can be taken to be existential; similarly for positive existential interpretation, and p.p. interpretation. See [20, Section
3.3] for the corresponding bi-interpretability definitions.

Theorem 6.6.5. Let M be ω-categorical over a language without function symbols.

(i) A structure N is existentially interpretable in M if and only if there is a continuous monoid homomorphism f : Emb(M) →

End(N) such that N is covered by finitely many cosets of the image f (Aut(M)).
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(ii) If M is non-contractible (i.e. it has no constant endomorphism) then a structure N is positive existentially interpretable in M
if and only if there is a continuous monoid homomorphism f : End(M) → End(N) such that N is covered by finitely many
orbits under f (Aut(M)).

Theorem 6.6.6. Let M,N be ω-categorical over a language without function symbols.

(i) If M and N are positive existentially bi-interpretable then End(M) and End(N) are isomorphic as topological monoids. The
converse also holds if M and N are non-contractible.

(ii) If Emb(M) and Emb(N) are isomorphic as topological monoids, then M and N are existentially bi-interpretable.

Due to Proposition 6.6.1, a major task is to investigate p.p. interpretability in ω-categorical structures. In this context,
the right algebraic notion is that of polymorphism of a structure M; namely, a homomorphism from some power Mn to
M , where Mn is equipped with the product structure. A set X ⊂ Mk is closed under polymorphisms if, for all n, every
polymorphism σ : Mn

→ M and all ā1, . . . , ān ∈ X , we have (ā1, . . . , ān)σ ∈ X . Here, if āi = (ai1, . . . , aik) for each i,
then (ā1, . . . , ān)σ := (b̄1, . . . , b̄k), where b̄j = (a1j, . . . , anj)σ .

Theorem 6.6.7 (Theorem 5.1 of [21]). Let M be ω-categorical over a language with no function symbols and let X ⊆ Mk. Then
X is p.p. definable in M if and only if X is closed under polymorphisms of M.

If D is a set, we consider the union O, over all k ≥ 1, of the sets of functions Dk
→ D. These functions are called operations

onD. There are natural notions of composition of operations and of a projection operation. A clone onD is a subset ofOwhich
contains all projections and is closed under compositions. It can be checked that the set Pol(M) of all polymorphisms of a
relational structureM is a clone.

There is a clone-theoretic analogue of the easy Lemma 4.1.1 about permutation groups. Let C ⊂ O be a clone. If k ∈ N,
and f ∈ O, with f : Dk

→ D, then we say that f is interpolated by C if the following holds: for every finite B ⊂ D, there
is g ∈ C such that g(ā) = f (ā) for every ā ∈ Bk. Now C is locally closed if it contains all operations which it interpolates.
In particular, a clone C is locally closed if and only if, for every n, the set of n-ary operations in C is a closed subset of the
topological space DDn

(with the product topology, where D has the discrete topology).

Proposition 6.6.8 ([21, Proposition 4.1]). Let C ⊂ O be a clone. Then C is locally closed if and only if C = Pol(M) for some
structure M on D.

These results from [21] yield the following.

Theorem 6.6.9 ([21]). Let M be ω-categorical. Then there is an anti-isomorphism Γ → Pol(Γ ) from the lattice of all reducts of
M which are closed under positive primitive definability, to the lattice of all locally closed clones on M containing Aut(M).

We now have some very natural questions generalising the study of reducts of ω-categorical structures in Section 6.2.
We aim to understand reducts of certain homogeneous structuresM (e.g. those for which CSP(M) is interesting) up to p.p.-
interdefinability. This is equivalent to describing the locally closed clones onM which contain Aut(M).

This problem is hard, even in the case whenM is a pure set: in [19], it is shown that there are 2ℵ0 locally closed clones on
M containing Sym(M). However, in this particular case (M a pure set) a description of the clones is given. Continuing in this
vein, there is a description in [22] of the ‘locally closed’ transformation monoids which contain the automorphism group
of the random graph R. This problem corresponds to describing reducts of the random graph up to existential (rather than
p.p.) interdefinability, but it is a step towards describing the p.p. reducts. In particular, the authors describe the minimal
members of the lattice of locally closed clones on R containing Aut(R). The methods in [22] also give a new proof, which
should have further uses, of Theorem 6.2.3 of Thomas.

We conclude by recording a result of Lascar related both to this section (Theorems 6.6.5 and 6.6.6) and to Section 5.
See [104] for the definition of G-finiteness, a condition which holds for most familiar ω-categorical structures (conceivably,
for all homogenisable structures). The statement below follows from [104, Theorem 2.4] via Theorem 5.1.2.

Theorem 6.6.10 ([104]). Let M be an ω-categorical G-finite structure, let N be any countable structure, and suppose that
semigroup of elementary embeddings M → M is isomorphic as an abstract semigroup to that for N. Then M and N are bi-
interpretable.

IfM is homogeneous then Th(M) has quantifier elimination (see the paragraph after Example 3.1.5), so every embedding
M → M is elementary, that is, the above semigroup is exactly Emb(M).
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