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Building on work of Terada, we prove that h-homogeneity is productive in the class of
zero-dimensional spaces. Then, by generalizing a result of Motorov, we show that for every
non-empty zero-dimensional space X there exists a non-empty zero-dimensional space Y
such that X × Y is h-homogeneous. Also, we simultaneously generalize results of Motorov
and Terada by showing that if X is a space such that the isolated points are dense then Xκ

is h-homogeneous for every infinite cardinal κ . Finally, we show that a question of Terada
(whether Xω is h-homogeneous for every zero-dimensional first-countable X) is equivalent
to a question of Motorov (whether such an infinite power is always divisible by 2) and give
some partial answers.

© 2011 Elsevier B.V. All rights reserved.

All spaces in this paper are assumed to be Tychonoff. It is easy to see that every zero-dimensional space is Tychonoff.
For all undefined topological notions, see [7]. For all undefined Boolean algebraic notions, see [9]. Recall that a subset of a
space is clopen if it is closed and open.

Definition 1. A space X is h-homogeneous (or strongly homogeneous) if all non-empty clopen subsets of X are homeomorphic
to each other.

The Cantor set, the rationals and the irrationals are examples of h-homogeneous spaces. Every connected space is
h-homogeneous. A finite space is h-homogeneous if and only if it has size at most 1. The concept of h-homogeneity has
been studied (mostly in the zero-dimensional case) by several authors: see [10] for an extensive list of references.

We will denote by Clop(X) the Boolean algebra of the clopen subsets of X . Recall that a Boolean algebra A is homoge-
neous if A � a is isomorphic to A for every non-zero a ∈ A, where A � a denotes the relative algebra {x ∈ A: x � a}. If X is
h-homogeneous then Clop(X) is homogeneous; the converse holds if X is compact and zero-dimensional (see the remarks
following Definition 9.12 in [9]).

1. The productivity of h-homogeneity

In [20], the productivity of h-homogeneity is stated as an open problem (see also [10] and [11]), and it is shown that the
product of zero-dimensional h-homogeneous spaces is h-homogeneous provided it is compact or non-pseudocompact (see
Theorem 3.3 in [20]). The following theorem, proved by Terada under the additional assumption that X is zero-dimensional
(see Theorem 2.4 in [20]), is the key ingredient in the proof. Recall that a collection B consisting of non-empty open subsets
of a space X is a π -base if for every non-empty open subset U of X there exists V ∈ B such that V ⊆ U .
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Theorem 2 (Terada). Assume that X is non-pseudocompact. If X has a π -base consisting of clopen sets that are homeomorphic to X
then X is h-homogeneous.

The proof of Theorem 2 uses the fact that a zero-dimensional non-pseudocompact space can be written as the disjoint
union of infinitely many of its non-empty clopen subsets (the converse is also true, trivially). However, that is the only
consequence of zero-dimensionality that is actually used (see Appendix A). Therefore such assumption is redundant by the
following lemma, whose proof we leave to the reader.

Lemma 3. Assume that X is non-pseudocompact. If X has a π -base consisting of clopen sets then X can be written as the disjoint
union of infinitely many of its non-empty clopen subsets.

Using Theorem 2 one can easily prove the following.

Theorem 4 (Terada). Assume that X = ∏
i∈I Xi is non-pseudocompact. If Xi is h-homogeneous and it has a π -base consisting of clopen

sets for every i ∈ I then X is h-homogeneous.

For proofs of the following basic facts about β X , see Section 11 in [12]. Given any open subset U of X , define Ex(U ) =
β X \clβ X (X \ U ). It is easy to see that Ex(U ) is the biggest open subset of β X such that its intersection with X is U . If C is a
clopen subset of X then Ex(C) = clβ X (C), hence Ex(C) is clopen in β X . Furthermore, the collection {Ex(U ): U is open in X}
is a base for β X .

Remark. It is not true that β X is zero-dimensional whenever X is zero-dimensional (see Example 6.2.20 in [7] or Exam-
ple 3.39 in [22]). If β X is zero-dimensional then X is called strongly zero-dimensional.

We will need the following theorem (see Theorem 8.25 in [22]); see also Exercise 3.12.20(d) in [7]. Recall that a subspace
Y of X is C∗-embedded in X if every bounded continuous function f : Y → R admits a continuous extension to X .

Theorem 5 (Glicksberg). Assume that X = ∏
i∈I Xi is pseudocompact. Then X is C∗-embedded in

∏
i∈I β Xi .

Remark. The reverse implication is also true, under the additional assumption that
∏

j �=i X j is infinite for every i ∈ I . Such
assumption is clearly not needed in the above statement (see Proposition 8.2 in [22]).

Proposition 6. Assume that X × Y is pseudocompact. If C is a clopen subset of X × Y then C can be written as the union of finitely
many open rectangles.

Proof. It follows from Theorem 5 that X × Y is C∗-embedded in β X × βY . By the universal property of the Čech–Stone
compactification (see Corollary 3.6.3 in [7]), there exists a homeomorphism h : β X × βY → β(X × Y ) such that h(x, y) =
(x, y) whenever (x, y) ∈ X × Y .

Let C be a clopen subset of X × Y . Since {Ex(U ): U is open in X} is a base for β X and {Ex(V ): V is open in Y } is a
base for βY , the collection

B = {
Ex(U ) × Ex(V ): U is open in X and V is open in Y

}

is a base for β X × βY . Therefore {h[B]: B ∈ B} is a base for β(X × Y ), hence we can write Ex(C) = h[B1] ∪ · · · ∪ h[Bn] for
some B1, . . . , Bn ∈ B by compactness.

Finally, if we let Bi = Ex(Ui) × Ex(V i) for each i, we get

C = Ex(C) ∩ (X × Y )

= (
h[B1] ∪ · · · ∪ h[Bn]

) ∩ h[X × Y ]
= h

[
B1 ∩ (X × Y )

] ∪ · · · ∪ h
[

Bn ∩ (X × Y )
]

= (
B1 ∩ (X × Y )

) ∪ · · · ∪ (
Bn ∩ (X × Y )

)

= (U1 × V 1) ∪ · · · ∪ (Un × Vn),

that concludes the proof. �
Lemma 7. Assume that C is a clopen subset of X × Y that can be written as the union of finitely many rectangles. Then C can be written
as the union of finitely many pairwise disjoint clopen rectangles.
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Proof. For every x ∈ X , let Cx = {y ∈ Y : (x, y) ∈ C} be the corresponding vertical cross-section. For every y ∈ Y , let C y =
{x ∈ X: (x, y) ∈ C} be the corresponding horizontal cross-section. Since C is clopen, each cross-section is clopen.

Let A be the Boolean subalgebra of Clop(X) generated by {C y: y ∈ Y }. Since A is finite, it must be atomic. Let P1, . . . , Pm

be the atoms of A. Similarly, let B be the Boolean subalgebra of Clop(Y ) generated by {Cx: x ∈ X}, and let Q 1, . . . , Q n be
the atoms of B.

Observe that the rectangles Pi × Q j are clopen and pairwise disjoint. Furthermore, given any i, j, either Pi × Q j ⊆ C or
(Pi × Q j) ∩ C = ∅. Hence C is the union of a (finite) collection of such rectangles. �
Proposition 8. Assume that X × Y is pseudocompact. If X is h-homogeneous and Y is h-homogeneous then X × Y is h-homogeneous.

Proof. Assume that X and Y are h-homogeneous. If X and Y are both connected then X × Y is connected. So assume
without loss of generality that X is not connected. Since X is also h-homogeneous, it follows that X ∼= n × X whenever
1 � n < ω. Therefore X × Y ∼= n × X × Y whenever 1 � n < ω.

Now let C be a non-empty clopen subset of X ×Y . By Proposition 6 and Lemma 7, we can write C as the disjoint union of
finitely many, say n, non-empty clopen rectangles. By the h-homogeneity of X and Y , each such rectangle is homeomorphic
to X × Y . Therefore C ∼= n × X × Y ∼= X × Y . �
Corollary 9. Assume that X = X1 × · · · × Xn is pseudocompact. If each Xi is h-homogeneous then X is h-homogeneous.

An obvious modification of the proof of Proposition 6 yields the following.

Proposition 10. Assume that X = ∏
i∈I Xi is pseudocompact. If C is a clopen subset of X then C can be written as the union of finitely

many open rectangles.

Corollary 11. Assume that X = ∏
i∈I Xi is pseudocompact. If C is a clopen subset of X then C depends on finitely many coordinates.

Remark. The zero-dimensional case of Corollary 11 is a trivial consequence of a result by Broverman (see Theorem 2.6 in
[2]).

Theorem 12. Assume that X = ∏
i∈I Xi is pseudocompact. If Xi is h-homogeneous for every i ∈ I then X is h-homogeneous.

Proof. Assume that each Xi is h-homogeneous. Let C be a non-empty clopen subset of X . By Corollary 11, there exists a
finite subset F of I such that C is homeomorphic to D × ∏

i∈I\F Xi , where D is a non-empty clopen subset of
∏

i∈F Xi . But∏
i∈F Xi is h-homogeneous by Corollary 9, so D ∼= ∏

i∈F Xi . Hence C ∼= X . �
Theorem 13. If Xi is h-homogeneous and it has a π -base consisting of clopen sets for every i ∈ I then X = ∏

i∈I Xi is h-homogeneous.

Proof. If X is pseudocompact, apply Theorem 12; if X is non-pseudocompact, apply Theorem 4. �
Corollary 14. If Xi is h-homogeneous and zero-dimensional for every i ∈ I then

∏
i∈I Xi is h-homogeneous.

Question. Can the zero-dimensionality requirement be dropped in Corollary 14?

2. Some applications

The compact case of the following result was essentially proved by Motorov (see Theorem 0.2(9) in [16] and Theorem 2
in [15]).

Theorem 15. Assume that X has a π -base B consisting of clopen sets. Then Y = (X × 2 × ∏
B)κ is h-homogeneous for every infinite

cardinal κ .

Proof. One can easily check that Y has a π -base consisting of clopen sets that are homeomorphic to Y . Therefore, if Y is
non-pseudocompact, the result follows from Theorem 2.

On the other hand, an analysis of Motorov’s proof shows that the only consequence of the compactness of Y that is used
is the fact that clopen sets in Y depend on finitely many coordinates. Therefore the same proof works if Y is pseudocompact
by Corollary 11. We reproduce such proof for the convenience of the reader.

Assume that Y is pseudocompact and let C be a non-empty clopen subset of Y . The fact that C depends on finitely many
coordinates implies that C ∼= Y × C . So it will be enough to show that Y × C ∼= Y .
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Let B be a clopen subset of C that is homeomorphic to Y . Let D = C \ B and E = (Y \ C) ⊕ B . Observe that Y ∼= Y 2 ∼=
(Y × D) ⊕ (Y × E) and that Y ⊕ Y ∼= 2 × Y ∼= Y . So

Y × C ∼= (Y × D) ⊕ (Y × B)

∼= (Y × D) ⊕ Y 2

∼= (Y × D) ⊕ (
(Y × D) ⊕ (Y × E)

)
∼= (

(Y ⊕ Y ) × D
) ⊕ (Y × E)

∼= (Y × D) ⊕ (Y × E)

∼= Y ,

that concludes the proof. �
Remark. In [15] and [16], Motorov asked whether the 2 can be dropped in the definition of Y . This is certainly true if Y
is non-pseudocompact, but we do not know the answer in general. Observe that if the answer were ‘yes’ then Theorem 18
would become an immediate corollary of Theorem 15.

Corollary 16. For every non-empty zero-dimensional space X there exists a non-empty zero-dimensional space Y such that X × Y is
h-homogeneous. Furthermore, if X is compact, then Y can be chosen to be compact.

Question. Is it true that for every non-empty space X there exists a non-empty space Y such that X × Y is h-homogeneous?
If X is compact, can Y be chosen to be compact?

Remark. In [21], using a very brief and elegant argument, Uspenskiı̆ proved that for every non-empty space X there exists
a non-empty space Y such that X × Y is homogeneous (in the sense of Definition 19). However, it is not true that Y can be
chosen to be compact whenever X is compact: Motorov proved that the closure in the plane of {(x, sin(1/x)): x ∈ (0,1]} is
not the retract of any compact homogeneous space (see Section 3 in [1] for a proof).

The following was proved by Matveev (see Proposition 3 in [10]) under the additional assumption that X is zero-
dimensional, even though such assumption is not actually used in the proof (see Appendix A). Recall that a sequence
〈An: n ∈ ω〉 of subsets of a space X converges to a point x if for every neighborhood U of x there exists N ∈ ω such that
An ⊆ U for each n � N .

Proposition 17 (Matveev). Assume that X has a π -base consisting of clopen sets that are homeomorphic to X. If there exists a sequence
〈Un: n ∈ ω〉 of non-empty open subsets of X that converges to a point then X is h-homogeneous.

The case κ = ω of the following result is an easy consequence of Proposition 17. Motorov first proved it under the
additional assumption that X is a zero-dimensional first-countable compact space (see Theorem 0.2(2) in [16] and Theo-
rem 1 in [15]). Terada proved it for an arbitrary infinite κ , under the additional assumption that X is zero-dimensional and
non-pseudocompact (see Corollary 3.2 in [20]).

Theorem 18. Assume that X is a space such that the isolated points are dense. Then Xκ is h-homogeneous for every infinite cardinal κ .

Proof. We will show that Xω is h-homogeneous and it has a π -base consisting of clopen sets. Since Xκ ∼= (Xω)κ for every
infinite cardinal κ , an application of Theorem 13 will conclude the proof.

Let D be the set of isolated points of X and let Fn(ω, D) be the set of finite partial functions from ω to D . Given
s ∈ Fn(ω, D), define Us = { f ∈ Xω: f ⊇ s}. Now fix d ∈ D and let g ∈ Xω be the constant function with value d. It is easy
to see that 〈U g�n: n ∈ ω〉 is a sequence of open sets in Xω that converges to g . Furthermore B = {Us: s ∈ Fn(ω, D)} is a
π -base for Xω consisting of clopen sets that are homeomorphic to Xω . So Xω is h-homogeneous by Proposition 17. �
3. Infinite powers of zero-dimensional first-countable spaces

Definition 19. A space X is homogeneous if for every x, y ∈ X there exists a homeomorphism f : X → X such that f (x) = y.

It is well-known (and easy to prove) that every zero-dimensional first-countable h-homogeneous space is homogeneous.
As announced by Motorov (see Theorem 0.1 in [16]), the converse holds for zero-dimensional first-countable compact
spaces of uncountable cellularity (see Theorem 2.5 in [8] for a proof). In [3], Van Douwen constructed a zero-dimensional
first-countable compact homogeneous space X that is not h-homogeneous (actually, X has no proper subspaces that are
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homeomorphic to X ). In [17], using similar techniques, Motorov constructed a zero-dimensional first-countable compact
homogeneous space that is not divisible by 2 (in the sense of Definition 21); see also Theorem 7.7 in [14].

In [20], Terada asked whether Xω is h-homogeneous for every zero-dimensional first-countable X . In [4], the following
remarkable theorem is proved.

Theorem 20 (Dow and Pearl). If X is a zero-dimensional first-countable space then Xω is homogeneous.

However, Terada’s question remains open. In [15] and [16], Motorov asks whether such an infinite power is always
divisible by 2. Using Theorem 20, we will show that the two questions are equivalent: actually even weaker conditions
suffice (see Proposition 24).

Definition 21. A space F is a factor of X (or X is divisible by F ) if there exists Y such that F × Y ∼= X . If F × X ∼= X then F
is a strong factor of X (or X is strongly divisible by F ).

We will use the following lemma freely in the rest of this section.

Lemma 22. The following are equivalent.

(1) F is a factor of Xω .
(2) F is a strong factor of Xω .
(3) F ω is a strong factor of Xω .

Proof. The implications (2) → (1) and (3) → (1) are clear.
Assume (1). Then there exists Y such that F × Y ∼= Xω , hence

Xω ∼= (
Xω

)ω ∼= (F × Y )ω ∼= F ω × Y ω.

Since multiplication by F or by F ω does not change the right-hand side, it follows that (2) and (3) hold. �
Whenever we will write X ⊕ Y , we will assume without loss of generality that X and Y are disjoint.

Lemma 23. Assume that Y is a non-empty zero-dimensional first-countable space. Then X = (Y ⊕ 1)ω is h-homogeneous and X ∼=
Y ω × (Y ⊕ 1)ω ∼= 2ω × Y ω .

Proof. Recall that 1 = {0} and let g ∈ X be the constant function with value 0. For each n ∈ ω, define

Un = {
f ∈ X: f (i) = 0 for all i < n

}
.

Observe that B = {Un: n ∈ ω} is a local base for X at g consisting of clopen sets that are homeomorphic to X . But X is
homogeneous by Theorem 20, therefore it has such a local base at every point. In conclusion X has a base (hence a π -base)
consisting of clopen sets that are homeomorphic to X . It follows from Proposition 17 that X is h-homogeneous.

To prove the second statement, observe that

X ∼= (Y ⊕ 1) × X ∼= (Y × X) ⊕ X,

hence X ∼= Y × X by h-homogeneity. It follows that X ∼= Y ω × (Y ⊕ 1)ω . Finally,

Y ω × (Y ⊕ 1)ω ∼= (
Y ω × (Y ⊕ 1)

)ω ∼= (
Y ω ⊕ Y ω

)ω ∼= 2ω × Y ω,

that concludes the proof. �
Proposition 24. Assume that X is a zero-dimensional first-countable space containing at least two points. Then the following are
equivalent.

(1) Xω ∼= (X ⊕ 1)ω .
(2) Xω ∼= Y ω for some space Y with at least one isolated point.
(3) Xω is h-homogeneous.
(4) Xω has a non-empty clopen subset that is strongly divisible by 2.
(5) Xω has a proper clopen subset that is homeomorphic to Xω .
(6) Xω has a proper clopen subset that is a factor of Xω .
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Proof. The implication (1) → (2) is trivial; the implication (2) → (3) follows from Lemma 23; the implications (3) → (4) →
(5) → (6) are trivial.

Assume that (6) holds. Let C be a proper clopen subset of Xω that is a factor of Xω and let D = Xω \ C . Then

Xω ∼= (C ⊕ D) × Xω

∼= (
C × Xω

) ⊕ (
D × Xω

)
∼= Xω ⊕ (

D × Xω
)

∼= (1 ⊕ D) × Xω,

hence Xω ∼= (1 ⊕ D)ω × Xω . Since (1 ⊕ D)ω ∼= 2ω × Dω by Lemma 23, it follows that 2ω is a factor of Xω . So 2ω is a strong
factor of Xω . Therefore (1) holds by Lemma 23. �

The next two propositions show that in the pseudocompact case we can say something more.

Proposition 25. Assume that X is a zero-dimensional first-countable space such that Xω is pseudocompact. Then Cω ∼= (X ⊕ 1)ω for
every non-empty proper clopen subset C of Xω .

Proof. Let C be a non-empty proper clopen subset of Xω . It follows from Corollary 11 that C ∼= C × Xω , hence Cω ∼= Cω × Xω .
Since Cω × Xω clearly has a proper clopen subset that is homeomorphic to Cω × Xω , Proposition 24 implies that Cω is h-
homogeneous, hence strongly divisible by 2. So Cω ∼= 2ω × Cω ∼= 2ω × Cω × Xω . Since 2ω × Xω ∼= (X ⊕ 1)ω by Lemma 23, it
follows that Cω ∼= Cω × (X ⊕ 1)ω .

On the other hand, (X ⊕ 1)ω ∼= Xω × (X ⊕ 1)ω by Lemma 23. Hence (X ⊕ 1)ω has a clopen subset homeomorphic to
C × (X ⊕1)ω . But Lemma 23 shows that (X ⊕1)ω is h-homogeneous, so C × (X ⊕1)ω ∼= (X ⊕1)ω . Therefore Cω × (X ⊕1)ω ∼=
(X ⊕ 1)ω , that concludes the proof. �
Proposition 26. In addition to the hypotheses of Proposition 24, assume that Xω is pseudocompact. Then the following can be added
to the list of equivalent conditions.

(7) Xω has a non-empty proper clopen subset that is homeomorphic to Y ω for some space Y .

Proof. The implication (5) → (7) is trivial.
Assume that (7) holds. Let C be a non-empty proper clopen subset of Xω that is homeomorphic to Y ω for some space Y .

Then clearly Cω ∼= C . Therefore C ∼= (X ⊕ 1)ω by Proposition 25. Hence C is strongly divisible by 2 by Lemma 23, showing
that (4) holds. �

Finally, we point out that Proposition 24 can be used to give a positive answer to Terada’s question for a certain class of
spaces. We will need the following definition.

Definition 27. A space X is ultraparacompact if every open cover of X has a refinement consisting of pairwise disjoint clopen
sets.

It is easy to see that every ultraparacompact space is zero-dimensional. As noted by Nyikos in [18], a space is ultrapara-
compact if and only if it is paracompact and strongly zero-dimensional (this is proved like Proposition 1.2 in [5]). A metric
space X is ultraparacompact if and only if dim X = 0 (see Theorem 7.2.4 in [7]); see also Theorem 7.3.3 in [7]. For such a
metric space X , Van Engelen proved that Xω is h-homogeneous if X is of the first category in itself or X has a completely
metrizable dense subset (see Theorem 4.2 and Theorem 4.4 in [6]). It follows that Xω is h-homogeneous if X is analytic
(see Corollary 31). For related results, see also Theorem 8 and Theorem 9 in [19].

Proposition 28. Assume that X is a (zero-dimensional) first-countable space. If Xω is ultraparacompact and non-Lindelöf then Xω is
h-homogeneous.

Proof. Let U be an open cover of Xω with no countable subcovers. By ultraparacompactness, there exists a refinement V of
U consisting of pairwise disjoint non-empty clopen sets. Let V = {Cα: α ∈ κ} be an enumeration without repetitions, where
κ is an uncountable cardinal.

Now fix x ∈ Xω and a local base {Un: n ∈ ω} at x consisting of clopen sets. Since Xω is homogeneous by Theorem 20,
for each α < κ we can find n(α) ∈ ω such that a homeomorphic clopen copy Dα of Un(α) is contained in Cα . Since κ is
uncountable, there exists an infinite S ⊆ κ such that n(α) = n(β) for every α,β ∈ S . It is easy to check that

⋃
α∈S Dα is a

non-empty clopen subset of Xω that is strongly divisible by 2. Therefore Xω is h-homogeneous by Proposition 24. �
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An application of Corollary 4.1.16, Theorem 7.3.2 and Theorem 7.3.16 in [7] immediately yields the following.

Corollary 29. Assume that X is a metric space such that dim X = 0. If X is non-separable then Xω is h-homogeneous.
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Appendix A. Proofs of the results by Terada and Matveev

In this section we will present a somewhat unified approach to the proofs of Theorem 2 and Proposition 17. Notice that
zero-dimensionality is never needed.

Proof of Theorem 2. Assume that X has a π -base consisting of clopen sets that are homeomorphic to X . By Lemma 3, we
can fix a collection {Xn: n ∈ ω} consisting of pairwise disjoint non-empty clopen subsets of X such that X = ⋃

n∈ω Xn . Let
C be a non-empty clopen subset of X . Since C contains a clopen subset that is homeomorphic to X , we can fix a collection
{Cn: n ∈ ω} consisting of pairwise disjoint non-empty clopen subsets of C such that C = ⋃

n∈ω Cn .
We will recursively construct clopen sets Yn ⊆ Xn and Dn ⊆ Cn , together with partial homeomorphisms hn and kn for

every n ∈ ω. In the end, setting h = ⋃
n∈ω(hn ∪kn) will yield the desired homeomorphism. Start by setting Y0 = ∅ and

h0 = ∅. Then, let D0 ⊆ C0 be a clopen set that is homeomorphic to X0 \Y0 and fix a homeomorphism k0 : X0 \Y0 → D0. Now
assume that clopen sets Dn ⊆ Cn and Yn ⊆ Xn have been defined. Let Yn+1 ⊆ Xn+1 be a clopen set that is homeomorphic to
Cn \ Dn and fix a homeomorphism hn+1 : Yn+1 → Cn \ Dn . Then, let Dn+1 ⊆ Cn+1 be a clopen set that is homeomorphic to
Xn+1 \ Yn+1 and fix a homeomorphism kn+1 : Xn+1 \ Yn+1 → Dn+1. �
Proof of Proposition 17. Let 〈Un: n ∈ ω〉 be a sequence of non-empty open subsets of X that converges to a point x. One
can easily obtain a sequence 〈Xn: n ∈ ω〉 of pairwise disjoint non-empty clopen sets that converges to x, such that x /∈ Xn

for each n ∈ ω. Let C be a non-empty clopen subset of X . Let B be a clopen subset of C that is homeomorphic to X . Fix a
homeomorphism f : X → B and let Cn = f [Xn] for each n ∈ ω.

Now define clopen sets Yn ⊆ Xn and Dn ⊆ Cn for each n ∈ ω and a (partial) homeomorphism h as in the proof of
Theorem 2, but start by choosing Y0 homeomorphic to C \ B and fixing a homeomorphism h0 : Y0 → C \ B . Finally, extend
h by setting h(x) = f (x) for every x ∈ X \ ⋃

n∈ω Xn . It is easy to check that this yields the desired homeomorphism. �
Appendix B. Some descriptive set theory

The following results seem to be folklore, but we could not find satisfactory references. For the definitions of analytic
and property of Baire, see [13].

Theorem 30. Let X be an analytic metric space. Then either X has a completely metrizable dense subset or X has a non-empty open
subset of the first category.

Proof. Let X̃ be the completion of X . By Theorem A.13.13 in [13], X has the property of Baire in X̃ . Therefore, by Proposi-
tion A.13.10 in [13], we can write X = G ∪ M , where G is a Gδ subset of X̃ and M is of the first category in X̃ .

Since G is a Gδ subset of the complete metric space X̃ , it is completely metrizable (see Theorem A.6.3 in [13]). Since X
is dense in X̃ , the set M is of the first category in X as well (see Exercise A.13.7 in [13]). In conclusion, if G is dense in X
then the first alternative in the statement of the theorem will hold, otherwise the second alternative will hold. �
Corollary 31. Let X be an analytic metric space. Then either Xω has a completely metrizable dense subset or Xω is of the first category
in itself.

Proof. If X has a completely metrizable dense subset D then Dω is a completely metrizable dense subset of Xω (see
Lemma A.6.2 in [13]).

So assume that X has a non-empty open subset U of the first category. Observe that Mn = { f ∈ Xω: f (n) ∈ U } is of the
first category in Xω for every n ∈ ω. Also, it is clear that (X \ U )ω is closed nowhere dense in Xω . It follows that Xω is of
the first category in itself. �
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