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APPROXIMATION IN INTERMEIIIATII SPACES III 

Theorem 1.1 is asymptotically unimprovable. What we find very interest- 
ing is also the fact that this theorem provides a link between the two most 
classical convergence criteria for Fourier series; the Dirichlct- Jordan test 
and the Dini test. Indeed, if /‘is a continuously differentiable functton, then 

I,'(!:,. [O. j.1) < 2.is i',f"ll , (I.21 

Thus. for II 2 3. ( 1 .I ) becomes 

(1.3) 

In view of the equivalence between the modulus of continuity and a 
K-functional, estimate (1.3) is equivalent to the Dini&Lipschitz test (cf. 
[ 131). This suggests that it would be interesting to examine the rate of 
convergence of Fourier series for functions in interpolation spaces between 
the class of continuous functions and the class of functions with bounded 
variation. Unfortunately, this approach using the K-functional is not 
applicable for an estimate of the form ( 1.1). For the classical Fourier series, 
we used in [ 181 an explicit evaluation of the relevant K-functional due to 
Bergh and Peetrc [3] and the explicit form of the Dirichlet kernel to 
obtain an estimate of this nature in terms of the K-functional. 

In this paper. we investigate this problem for the aperiodic case. when we 
do not have an explicit structure afforded by the Dirichlct kernel. We shall 
consider approximation processes for bounded real valued functions f’ on 
[ - I. I ] which are of the form 

I!,,( f; xi) := 1’ k.,,(.Y, t) f’(r) dp,,(t), (1.4) 
L I 

where K,, is a kernel function satisfying certain technical conditions to be 
described in the next section and !L,, is a positive Bore1 measure. Typically, 
~1,~ would be either absolutely continuous with respect to the Lebesgue 
measure or a discrete measure. For a bounded function .f’and XE ( - I. 1 ) 
for which both ,f’(s+ ) and .f’( .Y- ) exist, we shall estimate C,,( f; .I-) - 
(,/‘(.Y + ) +,f’(.u-m ))!2. For continuous functions ,f; this estimate will be in 
terms of the K-functionals between the spaces C[u. h] and BV[lr, h] (the 
class of functions having bounded variation on [LI, h]) where [u, h] G 
[ - I. I]. In particular, our estimate will be valid for a large class of 
orthogonal polynomial expansions, as well as the Lagrange and 
HermiteeFejer interpolation processes at certain generalised Jacobi nodes. 
For functions having bounded variation on [ - 1, I], our estimate 
(essentially) includes the corresponding previously known results in [S, 61. 
For functions in intermediate classes such as the Wiener classes V,, or the 
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Waterman classes I127 i ~ B1’, our estimates are new. to the best of our 
knowledge. 

Although we cannot apply the K-functional directly with an estimate of 
the form (1.1 ). we will. nevertheless, use similar ideas. Thus, our proof will 
consist of estimating L:,,(,/‘- ,y, .Y) and (.:,i( ,q, .v) for a judiciously chosen 
function Cy having bounded variation on [ ~~ I. 11. The particular form of 
the estimates, together with the explicit expression of the proper 
K-functional given by Bergh and Pcctrc [3] will then help us to arrive at 
the final result. 

In Section 2, we introduce most of the necessary notations and defini- 
tions. The main theorem and the applications are described in Section 3. 
The main theorem itself is proved in Section 4. while in Section 5, we 
prove that the various operators belong to the class for which the main 
theorem is stated. in the process. we shall obtain certain technical cstima- 
tions and complete the proofs of the remaining theorems. 

2. PRl3.IMINARIES 

Throughout the rest of this paper, we adopt the following conventions 
concerning constants. All constants will be independent of the variables not 
explicitly listed. The constants denoted by small case letters can have 
different values at different occurences of the same letter, even within a 
single formula. The constants denoted by capital letters will retain their 
values. 

The following definition describes the various properties of the 
approximating operators which we wish to study. 

DEFINITION 2. I. Let n 3 I be a positive integer. An operator U,,, acting 
on bounded, real valued, measurable functions.f‘on [ ~ 1, I] will be said to 
be of type B if it can be expressed in the form 

r!,,(,f; .\‘I = /_ ’ K,,(.L O./(1) 44,(t), (2.1 ) 
. I 

where p,, is a positive, unit. Bore1 measure on [ - I, I]. K,,: [ ~ 1. I] x 
[ ~ 1, I] + R is continuous in .Y. /c,,-integrable in t and, in addition. 
satisfies each of the following conditions. 

(PI) 

f, K,,(.Y, t)tl,u,,(t)= 1. YE c-1. 11 
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i 

Bad-~) 
IK,,(.Y. t)l < min nB,,,,(.u), ~ ,-y-. [, MfJ(f). 

1 
.\-. fE [ - I, I]. (2.2) 

( P3) Thcrc exists a partition 

~ 1 =: .I‘,, + ,.,i < .I’,,.,, < . < .I’[.,, < .I‘,,,, I := I 

such that 

y+ 1”‘” M,,(t) dp,,(t) < 5. 
“1, I,/ Ii 

(P4) We have 

(2.3) 

“I 
M,,(u) d/z,,(u)< C’(s)(r-x), -l<s<t<l (24a) 

-1 

[‘ M,,(u) d,&(u) < cc.\-)(.\-- I), - 1 < t < .\- < I. (2.4b) 

(PS) Suppose that .Y E: (J.,, , 

We pause here to describe three examples of operators of type El. We say 
that 11‘: [ ~ 1, 1 ] + [CL x ) is a weight function if 

With a weight function )I‘ we can construct a unique system of orthogonal 
polynomials [ 143 

p,l(L1’,s)=:l),,(l)=:si’,, fi (s-x~,,), tz=o. l,,,.) (2.7a) 
A -I 

where 
;I,, > 0. - 1 < .Y,,,? < < .Y,,z < I) 

*I 

I7 = 0. 1. . . . (2.7b) 

P,,(s ) p,,,( .Y ) ~(9 ) ti.~ = 0 ,,,, /, H. VI = 0, 1, .,. (2.7c) 
- I 
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If f’ is a bounded. real valued, measurable function on [ ~ 1. I ]. then we 
can define the following three approximating processes for f: the partial 
sums .s,,(,/‘) of the orthogonal expansion of ,/; the Lagrange interpolation 
polynomials L,,(j‘) and the Hermite-Fejkr interpolation polynomials H,,( f’) 
at {.~~,,1. More explicitly, we set 

Uk( f’) :=tr,(w. f’) := 1’ f’( t ) [‘,\ ( I ) w( I ) t/r. h =(I, 1. ,., (2.&l) L I 

s,,(,f; x) := .I,,( H’, ,f; .u) := “I’ NA(,f’) I1J.Y). 
k -0 

/?=I 7 . i> . . . . .YE R. (2.8b) 

The polynomial L,,(,f’) is the unique polynomial of degree at most II 1 
such that 

L,(.fi -Yl,,) =.f’(.\-A,, ), ti = I. . . . . I?. I7 = 1. 2. (2.9) 

The polynomial H,,( f’) is the unique polynomial of degree at most 37 ~ I 

such that 

H,A f: -Yh 1 = f’(s,,, J, H;,( f. .Yi,) ) = 0. h= I ,..., II, II= 1.3 .,,,. (2.10) 

Under suitable conditions on H’, which will be described in Section 5, each 
of the operators .Y,,, L,,. H,, will be of type B. In particular, these conditions 
are satisfied when N.(.u) = ( 1 ~ .\-)” (I + I)“. ;I, [j 2 ~ i (in the case of H,,. 
even when x {j > ~ 1). 

We now turn our attention to the description of the K-functional which 
we will be (indirectly) using. Let B[rr, h] denote the class of all bounded, 
real valued, measurable functions on [fl, h]. When f‘~ B[rr, h], WC write 

II/II,, ,.,I, =sup(l,fI.\-)l:.\-EC~I.hJ) (2.llaj 

4.1; [G hl 1 := sup i I.f’(r, ) ~ f’(r, ,)i:1,,:=u<t,< “‘<r,,:=h 
i-1 1 

(2.1 lb) 

The class BV[a, h] then consists of all f’: [u. h] + R for which 
V(f: [u, h])< X. The K-functional between B[u. h] and BV[N, h] can 
then be defined by 

K(.f; 6, [u, h]) := inf[ lI.f-l7ll,, ,,,,, +~C’(/I, [(l, h])). cs > 0, f’E B[u. /I]. 

(2.12) 

where the inf is over all /7 E BV[u, h] 
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IfI is a subinterval of [-I. I] and I’: [-I. 11-R, we set 

o.sc~(,f:I):=sup(~,f’(r)~1’(~4)(:/,uEI). 

For [u, h] c [ - I. I] and 6 > 0. we put 

J-q/: (5, [u, h] ) := sup 6 1 o.sc( ,f; I), 
,r I 

(2.13) 

(2.14) 

where the sup is over all the families .P of subintervals of [N, h] such that 

card(J) := number of intervals in .f < (5 ’ (2.15a) 

,vy I= Ill. hl (2.15b) 

the members of .Y are pairwisc disjoint. (2.15c) 

When ,f’~ C’[ - I, I], [N, h] G [ ~ 1, 11, Q(,f; ii, [a, h]) gives the order of 
magnitude of the K-functional K(,f; 6. [N, h]). More precisely, we have 

THEOREM 2.2 [-?I. Lct.f’E C[ ~ I. I], [a h] i [ ~ 1, I], mdci;-O. T/WY, 

SQ( f; S. [u. h]) 6 K(,/: S, [LI, h]) G 4n(.t: (5, [u, h] ). (2.16) 

In [ 181, we have verified that the constants are, indeed, independent of 
[N. h]. 

We will state our results in terms of 0. In applications. however. WC 
would like an expression which is also increasing. Towards this end, we set 

Q*(,j; S, [u. h] ) := ~~p{n(,f: f. [u, h] 1, 0 < t G d ), (2.17) 

Since the K-functional is increasing, we see from (2.16) that. when 
I’EC[-I. I], 

aQ*(.f; 6, [u. h] ) 6 qf; ii. [u. h]) d 4Q*( I; s, [u, h] ). (2.18) 

The following proposition summarizes some of the obvious properties of L? 
and Q*. 

PROPOSITION 2.3. Let ,fi g E B[ ~ 1, 11, [u, h] G [ - 1. 11. (/E [u. h], 
0~~3, -cd,, fi>O, i.>O. Then, 

(a) Q*( /; 0, [a h] ) is incrwsing in ii. h md ckrrasing in (1. 
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Next, we describe the order of magnitude of O*( f; 6, [u. h]) for a few 
function classes. First, we note that the definition of R is directly related to 
the Chanturiya classes I’(\#) investigated in some detail in connection with 
the convergence of Fourier series (cf. [I, 2. and the references therein] ). 
Given a nondecrcasing, concave sequence V. the Chanturiya class 
V(\#, [N. II]) is, in fact, defined to be the class of functions /‘E B[u, h] for 
which 

Q( ,f, 6, [N, h] ) = 0 (y 1. II := id ‘J. (2.19) 

Obviously. if /‘E V( 11, [o. h] ). and [c>, (I] z LL/, h], then f E I;( ~1, [c,. 111) also. 

DEFINITION 2.4. Let A := (iLa j be an increasing sequence, I < /7 < X. 
For ,f’: [(I. h] -+ R, we set 

v ,( ,f. [LI. h] ) := sup 
1 

% ,sc’;f3 IA 1i (2.20) 
h I h 

I’& /: [u, h]) := sup 
i 

i (0X(.1; I, ))” 
h I I 

’ i’ 
. (2.21 ) 

where the sup is over all the pairwise disjoint intervals lfA 1;’ , whose 
union is [N, h]. The classes ABV[u, h] and V,,( [(I, h]) are then defined by 

.ABV( [N. h]) := ; f’: [u. /I] + R: l’l(,j. [rr, /I]) < x ; (2.22) 

I.,,( [tr. /I]) := ; /‘: [u. h] + R: I’,,( 1; [LI, h] ) < x ;. (2.23) 

We have the following estimates [2]. 

Q(f:(j, Iu.hlK i l/i,’ V,(f; [II,~]), 
i I) 

rr:=Lij ‘J (2.24) 
h I 

.Q(f,6. [~,h])~6”‘1;,(/; [~.h]). (2.25) 

Finally, we make some observations which will simplify the statement of 
our main theorem. If /‘E fI[ - I, 11, .VE ( ~ 1, I ) and /‘(.Y ’ ) and f’(.u ) exist, 
then we set 

f(f)- .f(- 1 if ~~ 1 < t < .r < 1; 

h’,(C) := 0 if I=\-: (2.26) 

f’( t ) ~ f’(.x- + ) if -I<.u</,<l. 



APPROXIMATION IN INTERMEDIATE SPACES 117 

If we then let 

l),(f) := 

i 

if ~ 1 6 t < s < 1; 

if t=.\-: 

1 if -1 <.u<t,< I. 
then, for f # .Y, we have 

(2.27 ) 

f’( .Y + ) - f‘( .Y - ) 
,f~(i)=t(.f’(.\.+)+f’(.r~)i+,~,(r)+’ 2’ $,(t). (2.28) 

For convenience, we shall assume that f’is regulated at x, i.e., (2.;!8) holds 
even for t = .Y. Hence, if U,, is an operator of type B, (2.2) implies that 

c’,,c,/: .Y) ~ ; ( f‘(.v + ) + ,I’( .Y ~ ) ) 

= [’ ( ~ 
‘!/ I 1) 

.y) +,f.i.v + 1 - f’(-y ~ ) 
2. 

c:,,(l+b ,. xl. (2.29) 

The asymptotic behavior of U,,($ ,, .Y) as II + x is perhaps a fairly difficult 
problem. The solution is known only for a few particular operators (e.g., 
[S, 171). Since our objective is to investigate the effect of the smoothness 
of f‘ (as measured by the quantity Q defined in (2.14)) on the convergence 
of Ci,,(,j; .I-). we concentrate on estimating U,,( g,, .v). Thus. it is enough for 
us to estimate U,,(g, .I-) where go R[ - I, I]. g(s) = 0 and I is a point of 
continuity of g. 

3. MAIN RESULTS 

Our main theorem is the following. 
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(3.2a ) 

FJ,,,( Y) := 3DlB I.,, (-1-j i 2A,,(.\Y) c’(.\-):f),. (3.2bJ 

In applications, when WC have a good estimate for the quantities : .I, ,, ). 
WC can use Proposition 2.3 to obtain a more elegant estimate. Theorem 3.1 
thus prescribes a method to obtain estimates on the rate of convergence of 
various processes for function classes intermediate to RC.[ - I. I ] and 
B[ - 1, I]: so as to include (directly) both the DinikLipschitL type criterion 
and the Rojanic type estimate. WC illustrate this for the operators 
.s,~. L,,. If,, introduced in (2.X). (2.9), (3.10). respectively. 

Here. and elsewhere in this context. the various constants will depend 
upon 11‘ even though this is not clearly indicated. 

For the Lagrange interpolation process. WC state our conditions in terms 
of the Christoffel function 

and the numbers Ok,, defined by cos I),,, := .I~,,. We denote the Cotes 
numbers i.,,(.\-,,,) by i.,,,. 
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nh, 6 (‘, nj.,,, pz l(.uk,,) 6 (‘. k = 1, . ..) 17, n = l,2 ,... (3.6b) 

c1 6 d”k + l.J1 - fi,.,,) G (‘2% k = 1, . . . . n, n = 1, 2, . . (3.6~) 

In particular, the conditions (3.6) are satisfied by all the generalized 
Jacobi polynomials (to be defined below) when the parameters X. /I >, - 1.‘2. 

DEFINITION 3.4. The weight function I(’ is a generalized Jacobi weight if 
it can be represented as 

W(.Y) := I/b(X)( 1 ~ X)’ ( I + .Y)‘j, CL, p> -1 (3.8) 

where $(.u) > 0, .Y E [ ~ 1, 11, li/ is continuously differentiable on [ - I. 1 ] 
and $’ satisfies a Lipschitz condition on [ ~ 1. I]: 

l$‘(.r)-$‘(/)I =0(1-r-tl). .v. tE [- 1, I] 

In [ 193, it has been proved that if N’ is a generalized Jacobi weight, and 
,f’~ C[ - 1, 11, then the HermiteeFejtr interpolation process H,(,,f) at the 
zeros of p,,(s) (cf. (2. IO)) converges uniformly to ,I’ on closed subintervals 
of ( ~ I. 1 ). Theorem 3.1 applied to H,, in this case gives 

We note that g is not necessarily a continuous function on [ - 1. I]. Our 
theorem, except for the last term on the right hand side of (3.9), extends 
a theorem of Bojanic and Cheng [6] which is for the case when 1%‘ is a 
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Chebyshev weight (i.e., $ = 1, x = /j = - I in (3.8)). It is proved in [6] that 
even in this case, H,,( ,q. .v-) does not converge to 0 if .v is not a point of 
continuity of s. 

4. THE PROOF OF THE MAIN THEOREM 

A major step in this proof is to obtain an estimate on G:,,( g. s) in terms 
of j~).~d& I?), + I.,13 J,,,,,])} where the points { .I.,,,~). are defined in the condi- 
tion (P3) in Definition 2. I. Since II will be fixed throughout the proof. WC 
will omit it as a subscript in this section. For example, c’(g, X) means 
CT,,(g, -u), -13, means J*,.,~, etc. Suppose that x E [I!,,+, , y,] G [J,,, :, ~~1. We 
set 

i 

K(l.k) if t~(.t.~ + ,, ~~1. kdl-2 

h(r):= 0 if f E IV, +?. J‘, ,] 

id?‘, / I) if t~[~.~+,,r~). kal+2 

Then Ir is a function of bounded variation. If we let 

G(f) :=,y(t)-h(r). tE[-I. I], 

then, we have, in view of the fact that I = 0, 

(4.1) 

(4.2) 

(4.3) 

We shall first obtain a preliminary estimate on both U(G, s) and U(h, x). 

Proof’ q/ Lctntmi 4. I (a) We express 

b’(G, x) =: S, + S2 + S, (4.6) 
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where. 

(4.7a) 

(4.7b) 

(4.7c) 

In view of (2.2), (2.3). and (4.3). 

Next. WC estimate S, Let 0 < k < I- 2. Then using (2.2). (4.3), and (2.3 ), 

In view of (2.4a), (2.3), we get 

Substituting from (4.9) and (4.10) into (4.7a), we get 

(4.9) 

(4.10) 

(4.11) 

Similarly. 

In view of (4.8), (4.1 1 ), (4.12), the estimate (4.4) is proved 
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(b) Using (4.1). we see that 

We estimate the second sum first. In fact. this is the integration by parts 
argument which is usually used to obtain estimates for functions of 
bounded variation. Here, it takes the form of a summation by parts. Thus, 
we set 

Then, (2.5b) and (4.10) imply that 

IAhl G 
A(.Y) .4(.r) C.\Y) 

)2(!‘1+,-.x-)dD,(/-k- 1); 
I, = 0. . . . . 1 ~ 2. (4.15) 

Thus, 

Since R(X) = 0 and .YE [J,, , , , 13 1, we see from (4.15) and (4.16) that , 

We estimate the first term in (4.! 3) in a similar way to get (4.5) 
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lU(g, \-)I 6 IU(G, x)1 + IU(h, x)1 

+ [3D,B,(.\-)+2A(.u) C(.Y).D,] o.cc(<y. [j.,+ I. J‘, , J), (4.18) 

This is the aperiodic version of a corresponding estimate due to Bojanic 
and Waterman [IO] for periodic functions. One may use this to study the 
convergence of U(g, x) when g is in the class ABV introduced by Water- 
man (cf. [21]). We will. however, proceed in a different direction. The 
argument in the sequel is similar to the one in [21], but involves more 
technical details. We write 

(4.19b 

To estimate SF, we introduce 

F(t) := c (d g. [ .)‘A + , . .\‘h ] ). (4.20) 
11,. .I,, -, 2 

Then F is a decreasing function and, in view of (2.14), 

A summation by parts yields that 

i 7 F(k:rr) - F((k + I )li?) 
s:= c 

h--C I-l-k 

F(O) ‘-’ F((I- I -k)/n) 
==f c 

h I h-(k + I ) 

(4.22 ) 
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Using (4.21) we see that 

(4.23 ) 

Moreover, since F is decreasing. we get. using (4.21 ) again. 

’ 2 F((/- 1 -h-)/G?) 
sy,, := 1 

/. I (A+ 1)’ 

II]. (4.24) 

Substituting from (4.24) and (4.23) into (4.22). we get 

We estimate Sp in a similar manner to get 

(4.26) 
/ 

Since 

o.sc(g, [.1’,+2. j‘/ ,l,<QCg, I, [.1’,+1. .I’/ ,I,. (4.27) 

Theorem 3.1 is proved in view of (4.25), (4.26) (4.27), (4.24), and (4.18). 

5. APPI.ICATIONS 

Let I7,, denote the class of all polynomials of degree at most n, 11‘ be a 
weight function, and (P,~}, (.Y~,,) be as in (2.7). 

First, we prove that under the condition (3.3). .Y,, is of type B. It is well 
known that [20] 

.c,,(,f: .u)= (’ ((1) K,,(.x-, t) w(t) rlt, (5.1) 
” I 



APPROXIMATION IN INTERMEDIATE SPACES 125 

where 

K,,(.\-, I) :=“f /lA(.Y) /,A(!) 

i 0 

., 
i II I P,,(-VI I),, 1(r) ~ P,,(f) P,, ,(.x1 

(5.2) ., 
i II .Y - 1 

We therefore, show that ,Y,, is of type B with h-,) = K,, and A/c,,(t) == ii.(t) dt. 

I-12 y \/( 1 ~ .y)‘2. n-13 $ \li( I +x)/2 (5.3!z) 

JL, ,- ,,- ,,,,ds+(.(l -X)ik. I <k<l-2 
(5.3h) 

.I’L (il ,, A ; + , + , 3 .Y ~ c( 1 + X)/k. 1+2<k<n. 

PIYH$’ of’ Lc~~mcr 5.1. The estimate (5.3a) is proved in [S] (cf. also 
[ 171). The rest of the estimates involve only elementary computations 
using (3.3). (5.2), which we omit. 1 

In view of Lemma 5.1, Theorem 3.2 follows as a simple application of 
Theorem 3.1 and Proposition 2.3. 

Next, we show that the Lagrange interpolation operators L,, are of type 
B. 
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L,,( f; s) = f f’(.Vh,,) /,,,(.u) = /_’ f’(f) K,,(.\-, t) d/L,,(/ 1. 
h I ” 1 

K,,(.L t) 

and for Bore1 subsets 

=; 
rzl,,,(s) if f = .\-i,i. h = I, .._. II 
0 otherwise 

Bof [PI, I]. 

/L,,(B) := L (number of .\.i,,‘s in B). 
n 

( 5.4c ) 

( 5.4d ) 

(5.4e ) 

(5.4f ) 

(5.4fJl 

( 5.4h ) 

( 5.4i ) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Property (Pl ) in Delinition 2.1 is immediate. We prove property (P2). 
An alternative expression for In,, is given by [ 141 

I,,, = ;‘,, I PA.\-1 . 
~ ___ j.hbl I’,, ,(-\-a,,) = &,,K,,(.y. .\-A,? 1. ., i ,I .Y - s i! ,i 

We note that, since 11‘ is supported on [ - I. 11, (cf. [ 141) 

(5.9) 

^, 111 / --< 1. (5.10) 

Using the Cauchy Schwartz inequality and (3.6) we see that 

Ii,, < if,, K,,(.Y, I~,,)’ < L,,,[j.,,(.x-)] ’ 

< CW(.Y) ‘. (5.1 I ) 
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Thus. 

IQ.\-, t)l < U?W(S) ’ (5.121) 

Also, using (5.10) and (3.6b). we see that 

(5.12b) 

Property (P2) with the estimates (5.4b), (5.4~) and (5.4d) foliows from 
(5.12). The estimates (5.4e) to (5.4i) and the properties (P3) and t P4) now 
follow by making a few simple calculations. 

The verification of property (P5) in Definition 2. I is perhaps the most 
difficult. We first estimate 

11, := i ; .l,l,i I’,, I (.y,,,,, 1 
1)s i 

= i &,,,,I‘,(.~,,,,,) P,, I (-~‘i,,,, L (5.13) 
,li I 

where 

’ [‘k(f) := 
if .Y~,, 6 t < I 

0 otherwise. 
(5.14) 

Freud [ 151 has shown that there exist polynomials @ and (fi E n, ,i J I 
such that 

(5.15a) 

(5.15b) 

Using the quadrature formula [ 141 and the orthogonality of p,, , . we see 
that 

Ah = - r,,,,,(r,(.~,,,,,)-~(.\-,,,,,)) Pn I (.y,,,,, 1. (5.16) 
1)) 1 

lJsing (5.15a), (3.6b), (3.6~). we now get 

(5.17a) 

where 

(5.17b) 
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is a trigonometric polynomial of order not exceeding 11;4. Now, from the 
formula 

.// . ,/ 
1 T(r)rt/= T(tr)(Ij- rr)+ ( (0-f) T’(I)d/ 
L I> I II 

we get, using (3.6~) and Bernstcin’s inequality. 

We then substitute from (5.19) into (5.17~1) and use (5.15) to get 

Now. let 111 be any integer such that .Y,,!,, < .Y. Then, 

i “h,, I),, I (.\-,h,,)(.Y -l-i,,,) ’ j 
h iti 

= i (/1,-/l, / ,)(.\--.Yh,,) ’ 
h 1)) 

where ,4,, _ , := 0. In view of (5.20 ). (5.21 ) implies that 

i L, I’,, ,(.\-h,,)(-~-.\-i,,l ’ < 
C’ 

t-y,,,,, < -Y ). 
h ,,i 

/Z( .Y ~ .Y,,r,, ) 

(5.18) 

(5.19) 

(2.20) 

(5.21 ) 

(5.22) 

Using the expression (5.9) in (5.7). it is now easy to see that (2.5a) is 
satisfied with A,, given by (5.4a). The estimate (2.5b) can be verified in 
exactly the same way. 

In order to prove Theorem 3.5, we need to recall certain facts about the 
HermiteeFejer interpolation process (cf. [ 19 and the references therein] ). 
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We write j.;,, for 2:,( .yA,,) where i.,, is defined in (3.5 ). and \I*~,, for K( .Y~,,), 
Then, it is known that 

H,J ,Y. .y 1 = z X(.Y,,,) r/J .x) I;,,( .\- ), (5.23a) 
h- I 

where IA,, is given in (5.9) and 

rA,,(.\-) = I ~ /)::(.\-,,,)[/):,(.\-,,,)I ’ (.v -- .xh,J = I + i;,,i,,,‘(.\- -.vh,i). (5.23b I 

Thus, if we let 

c’,,(.\-, t) = 
i 

w,,,(s) I;,,(.\-) if .v~ [ ~ 1. I], t = .\-l,, 
0 othcrwisc 

(5.24) 

and /l,! be the measure defined in (5.X). then 

In order to prove that H,, is of type B, we need the following estimates 
valid for the generalized Jacobi weights [ 19). (here, and in the sequel. 
A - B means that C, A < B < c2 A 1. Let .Y~,~ =: cos (I,,,, O,,, , ,,,, = n, (I,,,, = 0. 
Then, 

0 i, + l.,, ~ t),.,, - 1.n. (5.26) 

If I is the index of the zero .vA,! which is (one of the) closest to .Y. then 

l/‘,,(.Y)l - I7 1.Y ~ .\.,,j [W(.Y)( I - x2)-( ‘1 ’ 2 (5.27) 

I P,, ,(.Yh,r)l - Wh,, ‘( 1 G;,,,’ -l (5.28 ) 

Ah,, - II ‘11.J 1 -.lQ .? (5.29 ) 

lj$,,l < (‘I? ' WA,,( I ~ Xf,) ) ' 2 (5.30) 

ll’J.\.) ~ I ~ ( 1 ~ .I-;,,, ’ [ZY -- /i + (x + p + 2) .Yi,l](.Y ~ .Yk,i)l 

< C’ 1.Y ~ .v,\,rlr k = 1, _._. IZ. .YE[--1. I]. (5.31) 

In particular, 

Iz.~,,(S)I 6 c( 1 - xf,,, ‘. /k = I. . ..) I?. (5.32) 

We note also that if t E (.u k + ,.,). .Y~,,]. and p E R then 

2 I’ w(t)( 1 ~ t ) - Wh,,( 1 - x;,,y - lt‘/: + ,,), (1 - .Y; + ,,,>)P. (5.33) 

The following lemma summarizes the estimates needed to prove that H,, is 
of type B. 
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Proof c?f’ Lrmmr 5.3. WC choose K,, = I’,, where I’,, is defined in (5.24) 
and ,B,, to be the measure as in (5.8). Property (Pl ) in the Definition 2.1 
is obvious. If x,,, is (one of the) closest zero to s. then. using (in sequence) 
(5.32), (5.9), (5.10), (5.29). (5.28). (5.27). and (5.33) we see that 

If .Y~.,! is not the closest zero to .Y. then an easy computation using (5.26) 
yields that 

I? l.\--.\-h,il 3 \ I - .\-I (5.3621) 

‘I \ I ~ x;,, 3 l’. 
Also. in view of (5.28 ), (5.29), and (5.30). 

‘hi I I),, I(-Yi,,)l - ‘1 ’ [ ll$J I ~ xf,,)’ 4 ) 

li;,,i,,,’ 1 < c( I - .I;,, I ‘_ 

Using (5.9). (5.10). (5.37). (5.36a), WC get 

(5.36b) 

(5.37) 

(5.3X) 
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In view of (5.23b), (5.39). and (5.40), 

Il.,,,(X) /;,,(.\-)I 6c( I -.Y’) ’ 7 /?;(.u)[n +.t-,,,J] ’ (5.41 ) 

if .Y~,, is not the closest zero to x. Property (P2) in Definition 2.1 and the 
estimates (5.34b), (5.34~) follow from (5.35), (5.41 ). Properties (P3) and 
(P4) arc also now evident. as in the proof of Lemma 5.2. To prove the 
property (P5), let x E [.Y, + ,.,), -u,,,] and - 1 <I,,,,, < I < .Y,,! ,.,I G -y/ + z.,i. 
Then. using (5.32), (5.37), (5.29), (5.9). (5.10). we get 

It is elementary to check that if xh , ,,,) < u 6 xA ,,,?, then 

Moreover. the Markov-Stieltjes inequalities [ 141 yield 

(5.42 ) 

(5.43 ) 

(5.44) 

(5.45) 
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Substituting from (5.45) into (5.42). we get (2.5a) with il,,(.~) as in (5.34a). 
The estimate (2.5b) is proved similarly. 1 

Theorem 3.5 follows from Theorem 3.1 and Lemma 5.3 after a feu simple 
computations involving Proposition 2.3. 
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