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A theorem of Bojanic gives a precise estimate on the rate of convergence of the
Fourer serics of a function of boundend variation. While the method of
K-functionals is not directly applicable to obtain similar estimates for functions in
classes intermediate to BV —1. 1] and C[ - 1. 1']. we obtain such an estimate in
the case of a general class of operators. The result is given in terms of an expression.
which for continuous functions, 1s equivalent to the K-functional. As particular
cascs, we study the expansions in certain (gencral) orthogonal polynomials.
Lagrange interpolation at the zeros of (general) orthogonal polynomials. and
Hermite--Fejér interpolation at the zeros of generalized Jacobt polynomials. When
applicable. our result (essentially) mcludes the previously known results, while
many corollaries are new. ¢ 1990 Academic Press. Inc

I. INTRODUCTION

In recent ycars, many results have been proved concerning the rate of
convergence of various approximation processes for functions of bounded
variation [1, 4 12, 16, 17]. A simple, yet typical result, which seems to
have motivated most of this research is the following theorem of Bojanic

[4].

TueoreM 1. Let f be a 2m-periodic function having bounded variation
on [ —m, ] and for integer n 21,5 (1) denote the nth partial sum of the
(trigonometric) Fourier series of f. Then, for xe [ —7m, ],

b —

3 H 7
s fox)— {_/"(.\'+)+/'(xv)}|<72 v’(g“[o.fh. (1.1)
n, =\ k

where
g =fx+ 0+ f(x=1) - f(x+) = f(x—)

and V(g.. [0, v]) denotes the totul variation of g on [0, v]. re [0, 7]
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Theorem 1.1 is asymptotically unimprovable. What we find very interest-
ing is also the fact that this thcorem provides a link between the two most
classical convergence criteria for Fourier series; the Dirichlet-Jordan test
and the Dini test. Indeed, if /'is a continuously differentiable function, then

Vg . [0,y D<s2v L0, (1.2)
Thus, for n> 3. (1.1) becomes

. . . 6n L 1 - lO’H .
A=< Y 2, <12 R

k=1 h

i (1.3)
In view of the equivalence between the modulus of continuity and a
K-functional, estimate (1.3} is equivalent to the Dini-Lipschitz test (cf.
[137). This suggests that it would be interesting to examine the rate of
convergence of Fourier series for functions in interpolation spaces between
the class of continuous functions and the class of functions with bounded
variation. Unfortunately, this approach using the K-functional is not
applicable for an estimate of the form (1.1). For the classical Fourier series,
we used in [187 an explicit evaluation of the relevant K-functional due to
Bergh and Peetre [3] and the explicit form of the Dirichlet kernel to
obtain an estimate of this nature in terms of the K-functional.

In this paper, we investigate this problem for the aperiodic case, when we
do not have an explicit structure afforded by the Dirichlet kernel. We shall
consider approximation processes for bounded real valued functions f on
[ —1. 1] which are of the form

Al

U,(f x):= K, (x, ) f(t) du, (1), (1.4)

I

where «, is a kernel function satisfying certain technical conditions to be
described in the next section and p, is a positive Borel measure. Typically,
i, would be either absolutely continuous with respect to the Lebesgue
measure or a discrete measure. For a bounded function f and xe(—1,1)
for which both f(x+) and f(x—) exist, we shall estimate U,(f, x)—
(f{x+)+ flx—))/2. For continuous functions f, this estimate will be in
terms of the K-functionals between the spaces Cl[a, ] and BV [a, b] (the
class of functions having bounded variation on [a, #]) where [a, b] <
[ —1.1]. In particular, our estimate will be valid for a large class of
orthogonal polynomial expansions, as well as the Lagrange and
Hermite-Fejér interpolation processes at certain generalised Jacobi nodes.
For functions having bounded variation on [—1,1], our estimate
{essentially) includes the corresponding previously known results in [5, 6].
For functions in intermediate classes such as the Wiener classes ¥/, or the
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Waterman classes {n”} — BV, our estimates are new, to the best of our
knowledge.

Although we cannot apply the K-functional directly with an estimate of
the form (1.1), we will, nevertheless, use similar 1deas. Thus, our proof will
consist of estimating U,(f — g x) and U,(g, x) for a judiciously chosen
function ¢ having bounded variation on [ —1.1]. The particular form of
the cstimates, together with the explicit expression of the proper
K-functional given by Bergh and Pectre [3] will then help us to arrive at
the final result.

In Section 2, we introduce most of the necessary notations and defini-
tions. The main theorem and the applications are described in Section 3.
The main theorem itself is proved in Secction 4, while in Section 5, we
prove that the various operators belong to the class for which the main
theorem is stated. In the process, we shall obtain certain technical estima-
tions and complete the proofs of the remaining theorems.

2. PRELIMINARIES

Throughout the rest of this paper, we adopt the following conventions
concerning constants. All constants will be independent of the variables not
explicitly listed. The constants denoted by small case letters can have
different values at different occurences of the same letter, even within a
single formula. The constants denoted by capital letters will retain their
values.

The following dcfinition describes the various properties of the
approximating operators which we wish to study.

DerFNiTION 2.1, Let #2 1 be a positive integer. An operator U, acting
on bounded, real valued, measurable functions fon [ — 1, 1] will be said to
be of type B if it can be expressed in the form

-
U fixd=|  wulx 0) /1) du, (o), (2.1)
b f

where u, 1s a positive, unit, Borel measurec on [ —1, 1], n,:[—1,1]x
[—1,1]7 >R is continuous in v, p,-integrable in 7z and, in addition,
satisfies each of the following conditions.

(P1)

<1

| kv O0de =1, ve[—1.1]
h 1
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(P2)
B7 n( ) .
[k, (x, 1) <min <nB, ,(x), | y M, (1), xle[—L 1] (22)
X -
(P3) There exists a partition
—1 =V, < Von ) <,“1An<.\‘().n::l
such that
D, ¢y D,
—<| Mndp (<= (2.3)
noody "
(P4) We have
‘A M, (u) di (1) < C(x) (1 — x), —l<x<r<l (2.4a)
lA M (1) du, (1) < Clx) v —1), —1I<r<x<l. (2.4b)
vyt
(PS) Suppose Ihat Xe (.1,/+ fons _r/.n] & [.Vn 2on }.2411]' Thcn
(f A, (x
|kl ) du,(u) <¢, —1<1<y,,,, (2.5a)
Jo nlx—1
al A (x
| KX, 1) dyg,,(u) <—"@—. v se<L (2.5b)
~, nix—t

We pause here to describe three examples of operators of type B. We say
that w: [ —1, 1] - [0, o) is a weight function if

|l de < x n=0,1, ... (2.6

1

With a weight function 1w we can construct a unique system of orthogonal
polynomials [14]

paw, x)=:p(x)=:7, n (x—x4,), n=0,1, .., (2.7a)

where

0. —l<x,< - <x,<l, n=01,. (2.7b)

‘}II

p,,(\) Polx)w(x)dx=9,,,. nm=01, .. (2.7¢)
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If fis a bounded, real valued, measurable function on [ —1. 17, then we
can define the following three approximating processes for /: the partial
sums s,(/) of the orthogonal expansion of f, the Lagrange interpolation
polynomials L,(f) and the Hermite-Fejér interpolation polynomials H,( /)
at {x,, . More explicitly, we set

-1
Wl ) i=apw. f) = | FUr) po) wie) dr. k=0,1, .. (2.84)
|

no1

Sulfox)i=s,0n fox) =) a,(f) pelx), n=12 .. xeR (2.8b)

k=0

The polynomial L,(/) 1s the unique polynomial of degree at most n- |
such that

Lo X, = flxg,), k=1...n n=12 .. (2.9)

The polynomial H,(/) is the unique polynomial of degree at most 2n — |
such that

Hn(.f; >\‘kn):_fl('\.kn)~ H;r(f* 'YA'}I) = 0 ’/\ - ls s 1 h= ]~ 2~, (210)

Under suitable conditions on w, which will be described in Section 5, each
of the operators s, L, H, will be of type B. In particular, these conditions
are satisfied when w(x)=(1—x)" (1 +x)". 2 = — (in the case of H,,.
even when a. ff> —1).

We now turn our attention to the description of the K-functional which
we will be (indirectly) using. Let B[a, b] denote the class of all bounded,

real valued, measurable functions on [«, b]. When fe€ Bl a. b]. we write

[l wey =supilflx)ixe[a. h]) (2.11a)

Vif, [a, b]) :—sup{ Z [ —flte Diityi=a<t, < - <t, ::h}.
A=
(2.11b)

The class BV[a, b] then consists of all f:[a.h]—R for which
V(f. [a. b]y< . The K-functional between B[a.h] and BV[a, b] can
then be defined by

K(f.0. [a, b]):=inf{ || f—hll o0, + 0V [a. h]) ], 0>0, feBla bh].
(2.12)

where the inf is over all e BV[a, b].
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If 7 is a subinterval of [—1, 11 and f/:[—1.1]—> R, we sct
osc(f, D) :==supl|flo)—fu):,uell. (2.13)
For [a.h]<[—1.1] and 4 >0, we put

Q(f.0, [a,b]):=supo Z osc( f. 1), (2.14)

le . d

where the sup is over all the families .# of subintervals of [, b] such that

card(.#) ;= number of intervals in.¥ <J ' (2.15a)
U I=1[a b] (2.15b)
ie.d

the members of .7 are pairwisce disjoint. (2.15¢)

When feC[ =1, 1] [a.b]c[—1, 1], Q2(/, 0, [a, b]) gives the order of
magnitude of the K-functional K(f, d, [a, h]). More precisely, we have

THuroREM 2.2 [3]. LetfeC[—1. 1], [a.b]=[—1,1], and 6 > 0. Then,
108, [a. b)) < K(f. 0. [a, h])<4Q( /. 8. [a, b]). (2.16)

In [ 18], we have verified that the constants are, indeed, independent of

[a, b].
We will state our results in terms of Q. In applications. however. we
would like an expression which is also increasing. Towards this end, we set

Q*(£.6. [a. b]) :=sup{Q(f 1. [a. h]).0<t< 3. (2.17)

Since the K-functional is increasing, we see from (2.16) that, when
feC[—1.1],

YO8, [a BN < K(f. 0. [a. b]) <4Q*(f.0. [a. b]).  (2.18)

The following proposition summarizes some of the obvious propertics of
and Q%*.

ProposITION 2.3. Ler f,geB[—1,1], [a.b]lc[—1.1]. dela b].
0<d,<d,, 6>0, A>0. Then,
(a) Q*(/[,9, [a, b)) is increasing in o, b and decreasing in a.

Q%(f, 02, [a, b]) _Q*(f.0,, [a b])
(53 = (51

()  Q*(f.8, 405 [ b])<Q*(f.5,. [a, b])+ Q*(f. 05, [a. b])

(b)
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(d) Q£ 48, [a, b1V < (14 2) Q*(£. 0, [a, bT)
(c) QUf 4+ 22,0, [a, b 1)< QS 0. [a, h])+ AQ(g. 0. |a. b])
(f) QL0 [a, h)KQUL 0, [ad )+ (1.0, [d. b])

<20(/1.0, [u. b]).

Next, we describe the order of magnitude of Q*( /1. 8, [«. h]) for a few
function classes. First, we note that the definition of € is directly related to
the Chanturiya classes V(v) investigated in some detail in connection with
the convergence of Fourier series (cf. [1, 2. and the references therein]).
Given a nondecreasing, concave scquence v. the Chanturiya class
Viv, [a, h]) 18, in fact, defined to be the class of functions /'€ B[«, b] for
which

Q8. [u.b])=0 (M)
0o

ni=138 '] (2.19)
Obviously. if fe V(v, [a, b]). and [¢. d] < [a, b], then fe V(v, [¢, d]) also.

DerINITION 24, Let A :=1{4,} be an increasing sequence, | < p< .
For f: [a. b] — R, we set

Vil la.b]) ::sup{ Z (M} (2.20)
koot Lk
H ]/:
P [a,h]):—sup{ > (ose(f, mv’} . (2.21)
Lot

1

where the sup is over all the pairwise disjoint intervals [/, )7 ., whose
union is [«, h]. The classes ABV[a, b] and V ,([a, b]) are then defined by

ABV(La, b)) =1 f [ h] >RV (f. [a. b]) < = | (2.22)
Valla.b]) = fila, b1 >RV (. [a. b]) < x §. (2.23)

We have the following estimates [2].
Q.. [a..h])<< S Uk VARTaRll m=lo 1L 224)
kool

QUf. 0. [a b1 <" 7V, (s [ ), (2.25)

Finally, we make some observations which will simplify the statement of
our main theorem. If fe B[ -1, 1], xe(—1,1)and f(x"')and f(x ) exist,
then we set

Sy —flx—) if —I<r<x<l;
g (r):=<0 if 1=x; (2.26)
) —f(x+) il —l<x<r<gl.
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If we then let
—1 f —I<r<x<l;
(1) = 0 if 1=x; (2.27)
1 if —l<x<rgl,
then, for 7 # x, we have

(flx+)+ flx—) )+g\(1)+ﬂ'¥%/~\—")w (r). (2.28)

flo=

T\)\v—-

For convenience, we shall assume that f is regulated at x, 1.e, (2.28) holds
even for 1= x. Hence, if U, 1s an operator of type B, {2.2) implies that

1 .
U f. x) 3 (flx+)+/(x—))
= U8, x) +% U . x). (2.29)

The asymptotic behavior of U, (., x) as n — = is perhaps a fairly difficult
problem. The solution is known only for a few particular operators (e.g.,
[5, 17]). Since our objective is to investigate the effect of the smoothness
of /" (as measured by the quantity £ defined in (2.14)) on the convergence
of U,(f. x), we concentrate on estimating U, (g.. x). Thus, it is enough for
us to estimate U, (g, v) where ge B[ —1, 1], g(x)=0 and x is a point of
continuity of g.

3. MaIN RESULTS
Our main theorem is the following.
Throrem 3.4, Ler U, be an operator of twpe B, ge B[ — 11,

xe (=1, 1) be a point of continuity of g and g(x)=0. Let [ be the integer,
2<i<sn—=3 such that xe (y;, 1, Vi 1S (V0 as Vanl Then,

ILng\l<rl/1\)Z Q(g [1/ I‘,l'/ Y l)k;i])

+F2.n(-\’)Q(g~, Ly DD

M l
+F )I“
l-(\)A:;|2kA/-1

n—1

k—1-1
XQ<.¥~1~ LVl o o x.1+1-."/+2]). (3.1)
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where v, denotes v, and
4(C(x)
]_,,(;\‘) = (4411(»\.)+Dij_,,(»\.)) (32&)
D,
and
Fy (x):=3DB, (x)+24,(x) C(x)/D,. (3.2b)

In applications, when we have a good cstimate for the quantities | 1, ,].
we can use Proposition 2.3 to obtain a more elegant estimate. Theorem 3.1
thus prescribes a method to obtain estimates on the rate of convergence of
various processes for function classes intermediate to BV[—1.1] and
B[ —1, 1]: s0 as to include (directly) both the Dini-Lipschitz type criterion
and the Bojanic type ecstimate. We illustrate this for the operators
s,, L,, H, introduced in (2.8), (2.9), (2.10), respectively.

THEOREM 3.2, Let g, x satisfy the conditions of Theorem 3.1, Suppose
that

) w() 11— <e re[—1L 1], n=0.1 .. (3.3)

Then

Ul ’ I+ l—x
(x) s, (g. x) < y(x) Z *Q*(‘g’, k,"n,t\‘(‘ LXFC J) (3.4)
STk . k k
where as a function of x. ¢, is bounded on cvery closed subinterval of
(=1, 1).

Here, and elsewhere in this context, the various constants will depend
upon w even though this 1s not clearly indicated.

For the Lagrange interpolation process. we stale our conditions in terms
of the Christoffel function

1
\)—{Z /7(\)} (3.5)

and the numbers 0,, defined by cos ), :=x,,. We denote the Cotes
numbers £ ,(x,,) by A,

THEOREM 3.3, Suppose that g.x satisfy the conditions of Theorem 3.1,
We assume that each of the following conditions holds.

If te(—1.1) then ns, () = Wi, n=1.2. .. (3.6a)
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where W(t) denotes a positive “constant” depending on t, but independent of
1.

A, ¢ Mg pr (Axu)<c, k=1l.,n n=12,.  (3.6b)
ey <n0 0, <0 k=1,.,n n=12 . (3.6¢)
Then
1 k I +x [ —x
(g v <l {"’”“AZ, Q*( ;[vc v k‘D

1 14+ I—x
+ - Q* <g,l,[.v<' +Y,.\'+<' q)} (3.7)
n H I

In particular, the conditions (3.6) are satisfied by all the generalized
Jacobi polynomials (to be defined below) when the parameters o, i = —1/2.

DEeFINITION 3.4, The weight function w is a generalized Jacobi weight if
it can be represented as

=i (x)1 —x)* (14 x)7~, a f> —1 (3.8)

where ${x)>0, xe [ —1, 1] ¥ is continuously differentiable on [ —1.1]
and ' satisfies a Lipschitz condition on [ —1,17:

W) =) =0(x—1]), xre[—11]

In [19], 1t has been proved that if w is a generalized Jacobi weight, and
feC[—1,1], then the Hermite-Fejér interpolation process H,(f) at the
zeros of p,(x) (cf. (2.10)) converges uniformly to f on closed subintervals
of (—1.1). Theorem 3.1 applied to H, in this case gives

THEOREM 3.5. Let w be a generalized Jacobi weight, g, x as in
Theorem 3.1. Then

[H, (g x) <c(x { Pi(x) Z Q*< { l+'\“\ﬁ+(‘1ka>

A*]

1 | —x
4+ - 0Q2* (g,l,[\( + X LX+ ¢ \}>} (3.9)
n Iz

We note that g is not necessarily a continuous function on [ — 1, 1 ]. Our
theorem, except for the last term on the right hand side of (3.9), extends
a theorem of Bojanic and Cheng [67] which is for the case when w is a

630 62 1-9
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Chebyshev weight (ie. y =1, a=f= —1in (3.8)). It is proved in [6] that
even in this case, H,(g. x) does not converge to 0 if x is not a point of
continuity of g.

4. THE PrROOF OF THE MAIN THEOREM

A major step in this proof is to obtain an estimate on U, {g. x) In terms
of {osc(g, [V, 11> ¥,.n])} where the points { v, ,} are defined in the condi-
tion (P3) in Definition 2.1. Since # will be fixed throughout the proof, we
will omit it as a subscript in this section. For example, U(g, x) means
U,(g, x), y; means v, ,, etc. Suppose that xe [y, ,, v, J<= [y, 2. v2] We
set

gly,) if re(y, ] k<=2
h(r):=<0 d orelv, v 0] (4.1)
g0V 1) orelyg, ) k=242

Then /1 is a function of bounded variation. If we let
Gty = g(r)y— 1) re[—1 1], (4.2)
then, we have, in view of the fact that g(x)=0,

osclg, Lveya vy 1) relviias ¥y 0l (43)

G(r)| <
1G00)] {”-V"(é’ﬂ Evesos vl relviynn s k- di=z2

We shall first obtain a preliminary estimate on both U(G, x) and U(h, x).

Lemma 4.1.  We have

D, . d ose( gy [ Vi, 1+ W ])

(a) |U(G, x)] < — B,(x) ((x) -
Dl A‘-l)_‘/\z/,,j ‘kv/fl‘
+3D,B(x)oselg, [y 200 ] (4.4)

b) UG x) A { g ol L)

D, k—1—1]

kwOk (=2
+20sclg, [ vy, 2. vy ,])}. (4.5)
Proof of Lemma 4.1. (a) We express

UG, x)=:5S+5,+5, (4.6)
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where,

Z ] (x, 1) G(t) dulr) (4.7a)
k=0 Vi
Sy=| ]u.\-, 0 Gt di) (4.7b)
So= Y [ kw0 G duto). (4.7c)
k=112

In view of (2.2), (2.3), and (4.3).
\S3)<3D B( )(75( g [1/ s Vy ;]) (48)

Next, we estimate S,. Let 0<hk </—2. Then using (2.2), (4.3), and (2.3),

l ‘ ! K{x, 1) G(1) duln)

S

rc M1}

< Bylx)oselg. [ye, o 1) | —du(1)
< D, By(x) ose(g [Vii s Vel ) (4.9)
n Ve, —X
In view of (2.4a), (2.3), we get
] PULE
Vi m X2 C,('\_)j\ M{(1) dul1)
D,
22— (k-1 4.10
) { 2 (4.10)
Substituting from (4.9) and (4.10) into (4.7a), we get
D, ' ose(g, Dyin s v dd
S| €= B,(x) C(x Lol ) 4.11
1S D, 2(X) (\)k};0 ki { )
Similarly,
lsllgﬁgﬁ(x’)c(m . w (4.12)

D, - f T k—1—1

In view of (4.8), (4.11), (4.12), the estimate (4.4) is proved.
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(b) Using (4.1), we sec that

K(x, 1) du(r)

Ulth, x)= z (Vi)
ko d42 vk

Ll

o2 RN
+ Y gl | Rl 0 du). (4.13)

Ko Sun
We estimate the second sum first. In fact, this is the integration by parts
argument which is usually used to obtain estimates for functions of
bounded variation. Here, it takes the form of a summation by parts. Thus,
we set

koo [

Ay = Z ' K(x, t)du(t)= ] K(x, 1) dufr). (4.14)

0 Yt Vool

Then, (2.5b) and (4.10) imply that

A(x) < A(x) C{x)

A < < =
W(verr—3) D=k —1)

k=0, ...01-2 (4.15)

Thus,

AV

|

/o2
Z gy A, — A, 1)‘

k=0

K(x, 1) a’,u{t)‘

RYI

;2
Z glvy)
A -0

! 3
_'é’(."/ SAp A+ Z Lelri)—glye, )] AA‘
k

0 |
!

<lgly, A, o1+ Z () — gl I 1AL (4.16)
k

]

Since g(x)=0and xe [y, . v,], we see from (4.15) and (4.16) that

/o2 .
Z g(,U)J‘ K(x, 1) du(r)

k=0

[

A(x) C(. ' oseg [hupn y
$4(Y)D (Y){OS(‘(gs [Viias vy D+ Z o, [)A+l’}k])} (4.17)
1 [—1—k

k=0

We estimate the first term in (4.13) in a similar way to get (4.5).



APPROXIMATION IN INTERMEDIATE SPACES

COROLLARY 4.2, We have

U(g, ) < |U(G, x)[ + | Ulh, x)|

)

oselg, [yiais

123

» 1)

Y A+ DaBar) Y

< D
1 kO k T2

+[3D.B{x)+24(x) C(x

k—1 1]

)/Dy]ose(g. [ Vi)

o)) (418)

This is the aperiodic version of a corresponding estimate due to Bojanic
and Waterman [ 10] for periodic functions. One may use this to study the
convergence of U(g, x) when g is in the class AB}V introduced by Water-
man (cf. [21]). We will, however, proceed in a different direction. The
argument in the sequel is similar to the one in [21], but involves more

technical details. We write

¥ /ZZ ose(g, [ye o nd)

kw0 I—k—I
Loooselg [ves e v 1)
S¥ .= )
) A—;QZ k=1-1

To estimate SF, we introduce

Hry= ) osc(

nese sl 2

g Dy )

Then F is a decreasing function and, in view of (2.14),

1

F(’)S(/—l—’”)Q(é”ms

A summation by parts yields that

5

S Flk/n)— F({k + U)/n)

s¥= Y

o [—1—k
F(k/n)
/—1 Z 1 i—h
/’]F (!—1—k)n)
/~1 Z kik+1)
[+ 1 F(0) : —k)/n)

<4.___
ST 22

RYARE Yo ])

~ A+l)

(4.19a)

(4.19b)

(4.20)

(4.21)

(4.22)
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Using (4.21), we see that

F0) / 1 \
g o—— [y, o 1] 423
1 Q(& /1 Ly ]) ( )
Moreover, since F is decreasing, we get, using (4.21) again,
{2 F—1—=k)n)
S¥, = —_—
N AZ] (k+1)°
1 ct- v F((I—1)/n—1
<~ Mdi
Yy -
P /-1 ( 1
<— F | ——
o ()
‘1 k
< Tl ved) e
Substituting from (4.24) and (4.23) into (4.22), we get
. /o2 1 / .1\ B
Sx<4229(g-,/7]-[."/ A Y 1;/\‘})- (4.25)
k— N - /
We estimate S¥ in a similar manner to get
no o1 l /\ §
S§<<4 Z EQ<£’, *[.Vun I)A4+/~|-r.1‘/¢1])< (426)
Pt n—1 )
Since
osc(g [y oe v (DS L Lyyeas vy D (4.27)

Theorem 3.1 is proved in view of (4.25), (4.26), (4.27), (4.24), and (4.18).

5. APPLICATIONS

Let 77, denote the class of all polynomials of degree at most n, w be a
weight function, and {p,}, {x,,} be as in (2.7).

First, we prove that under the condition (3.3), s, is of type B. It is well
known that [20]

al
s.(f x)= | St) K, (x, 1) w(t) dt, (5.1)

e 1
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where

0o 1
K, (v 1):= Z PilX) pilt)
k (4]

i 1_p,,(x)p,,,‘(’)ﬂf"“)p" 153} (5.2)
. X —

We therefore, show that s, is of type B with n, = K,, and du,,(¢) = w(¢) dt.

LEMMA 5.1, Suppose thar (3.3) holds. Then s, is of tyvpe B. For
xe(—1, 1Y and n large enough, we have the following estimates.

A, )< p )+ p, (O <cpn(v) T2 1 (53a)

B, (xX)=B, (x)=clw(x)T—x"] ' (5.3b)

M ()= twir) J1 1) (5.3¢)
Yoa=cos(jm/(n+1)) (5.3d)

D, =n/2. D.=m (5.3¢)
Clx)<(l—x") 17 (5.3f)

Ifxelvioin Y dSye s Vol then
n+1l — n+1

V(1 +x)2 (5.3g)

=1z J1—x)2. n—Iz
T

YU S+l =x)ik, tsksi=2 (5.3h)
Vi nageio =Xl x)k, I+2<k<n

Proof of Lemma 5.1. The estimate (5.3a) is proved in [5] (cf. also
[17]). The rest of the estimates involve only elementary computations
using (3.3), (5.2}, which we omit. |

In view of Lemma 5.1, Theorem 3.2 follows as a simple application of
Theorem 3.1 and Proposition 2.3.

Next, we show that the Lagrange interpolation operators L, are of type
B.

LEMMA 5.2. Let w satisfy the conditions (3.6). Then L, is of tvpe B and
we have the following estimates.

A ()< c|p,(x)] (5.4a)

10

B, (x)<cW(x) '- (5.4b)
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Bl.n(-\.) < ¢ ‘,)N('\.)‘
M (1)=1
.“l).u = 17 1‘/,u = >\A/rl~ /: ] I'I, ,‘.H + 1.0 = ]

D,=1. D,=3

Clo)<e(l —x%) '

If Xe€ [,V/+ Ione .v[.n] & [.“n 2o .VZ.n]‘ fh(’n

[—12cn'l— \, n—1>=cn \,r”"l +x
Yoo u o Syl = xyk, I<k<gi-2
»l'Un [)'/‘»J+/+1>x4()(l +\)/\~ /+2</\<H

Proof of Lemma 5.2. 1t is well known [20] that

Ln(_f; -\‘) = Z _f(»“krl) /An(x) - ' f([) KH('\.’ I) d/.l,,(/).
kool Co

where
/An(x) = pn('\’ ) { ('Y - ’\‘/\n) p;x(-\’/\'n) :
= {n/k,,(.\') if r=x,,. k=1 ..n
X, [

0 otherwise

and for Borel subsets B of [ -1, 17,

1
f,(B) :=— (number of x,,’s in B).
n

(5.4¢)
(5.4d)
(5.4¢e)
(5.4f)
(5.4g)

Property (Pt) in Definition 2.1 is immediate. We prove property (P2).

An alternative expression for /,,, is given by [14]

A/‘u 1 pu('\-)

T X Xygy

//\'n = bn Pu l('\’/\n) = Akn Kn('\—* Nen )

We note that, since w is supported on [ —1, 1], (cf. [14])

Using the Cauchy-Schwartz inequality and (3.6). we see that

2 . 22 s e 2 . 5 . 1
//\,”(.\)<Ak”K”(.\, '\/\'n) g/'/\'n[/‘w(-\)]

<ceWixy

(5.9)

(5.10)

(5.11)
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Thus,
IK,(x, 1)) <cenW(x) ! (5.12a)

Also. using (5.10) and (3.6b), we see that

IK(x. 1) < X)) (5.12b)

nlv—t

Property (P2) with the estimates (5.4b), (5.4c), and (5.4d) foliows from
(5.12). The estimates (5.4¢) to (5.41) and the properties (P3) and {P4) now
follow by making a few simple calculations.

The verification of property (P3) in Definition 2.1 is perhaps the most
difficult. We first estimate

n
A/\ = Z /"’HI/I pn ]('Ynm)

mo ok

"

= y /;“mu ]~A ('Ylllff) pn I(’YI)I/I )* (Sl 3 )

pa—

nree |l

where
. I if x,<r<l
IAU;{ .

14
0 otherwise. (3.14)

Freud [15] has shown that there exist polynomials @ and ¢ell
such that
P << D1, te[—1.1] (3.15a)

~1

J (D(1)— ()1 — %) "2dr<ein. (5.15b)
1

Using the quadrature formula [ [4] and the orthogonality of p, . we see
that

"

AA - Z }‘mn(rl\(xnm) - ¢(.Y/)1)1)) Py l('\‘mn)' (516)

mo= 1

Using (5.15a), (3.6b), (3.6c). we now get

iAA‘gc z T(()mn}(() -0

me— 1

i )s (5173)

mot o

where

T(0) = d(cos () — P(cos 0) (5.17b)
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is a trigonometric polynomial of order not exceeding n/4. Now, [rom the
formula

| Ty di= Tl —ar+ | (0—0 T di (5.18)

Ya

we get, using (3.6¢) and Bernstein’s incquality.

| an "
o Tde— S TW0L0, 0, 0,,)
‘iu(] mee |
" e
g Z | ' (()m¢ 1.n 'ﬂ[) 7‘(([)(/1‘
" 1 s
~‘ (1) di
o
<e| T (5.19)

<0

We then substitute from (5.19) into (5.17a) and use (5.15) to get
A< k=1 (5.20)
n

Now, let m be any integer such that v, < x. Then,

" |

Z /.“An Pu ]('\./\11)('V ) -\./\;1) I}

ko=
— Ay —xg,) ]l
A ! (] 1
="+ ) AA{ - L (5.21)
X=X, koo ] X=Xy X=Xy l.nJ
where A, _, :=0. In view of (5.20), (5.21) implies that
Z ;*Alz Py ](,\'/\,”)(.\‘7.\'/\,,’ : < (7 (-Vrrz/a <X)' (522)

”('\. — Yo )

k—m

Using the expression (5.9) in (5.7), it is now casy to see that (2.5a) is
satisfied with A, given by (5.4a). The estimate (2.5b) can be verified in
exactly the same way.

In order to prove Theorem 3.5, we need to recall certain facts about the
Hermite—Fejér interpolation process (cf. [19 and the references therein]).
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We write 4, for 2/(x,,) where 4, is defined in (3.5), and w,, for w(x,,)
Then, it is known that

H/z( g- »Y) - Z (g('\’l\n) l./\’n('\" 12/1('\‘)’ (52321)
k=1

where /,,, 1s given in (3.9} and
l‘AH('\A) =1- /):;('Ykrl)[[);l(’\.klr)] ! ('\A ~\.A’u) =1 + /:}«N/.‘Anl('\- o *\~A11)' (523b)

Thus, if we let

[/,,(.\', [): ’“‘/\/1('\-)//%)1('\-) if '\.e'[il' 1]* [:XAH (524)
0 otherwise
and pu, be the measure defined in (5.8). then
(‘]
Hg. x)=1] g)V,(x 1)dulr) (5.25)
v 1

In order to prove that H, is of type B, we need the following estimates
valid for the generalized Jacobi weights [191]. (Here, and in the sequel,
A~ B means that ¢, A< B<c,4). Let x,=:cos8,,.0,,,,=nr0,=0.
Then,

(}A+l.177{)/\./1~ ],”’”' (526)

If / 1s the index of the zero x,, which is (one of the) closest to x, then

[P~ i =, | Do)l =37t e] (527)
P ()]~ =g ) (5.28)
An~ 1w (1= xg ) (5.29)
Al <en M (1—x;,) 17 (5.30)
o X) =1 — (L —=x7) "[a~ B+ a+f+2) 0, 1(x— x4
<celx—x,,l, k=1, ..n xe[~11] (5.31)
In particular,

o) < el —x7,) k=1,.. n (5.32)

We note also that if re(x,,,,. X ]. and peR then
w1 =) ~wi, (1= x] ) ~wp oy (1= Xi)r (5.33)

The following lemma summarizes the estimates needed to prove that H, is
of type B.
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Lemma 5.3, Let w be a generalized Jacobi weight (¢f. Definition 3.4).
Then H, is of tvpe B, and we have the following estimates.

A ()< e(x) priy) (5.34a)
B, (x)<e(l—x7) ! (5.34b)
B, (x)<e(l—x7) "7 pi), (5.34¢)

Moreover. the estimates (5.4d) to (5.41) are also valid.

Proof of Lemima 5.3. We choose x, =}, where V', is defined in (5.24)
and y, to be the measure as in (5.8). Property (P1) in the Definition 2.1
is obvious. If x,, is (one of the) closest zero to x, then. using (in sequence)
(5.32), (5.9), (5.10), (5.29), (5.28), (5.27), and (5.33) we see that

; 2 ) ¢ e . B /)2(-\‘)
‘Ul\'n(-\’)//\n(’\)‘ g 1 .2 \; . o prt ]('\AN) R . R ]
i In - (v X n }

<c(l=x;) " Swl—x; )00 pie)v— v, -
<en w1l — .\',3”)1 Two o =Ny el
<e(l—x?) . (5.35)

If x, 1s not the closest zero to x, then an easy computation using (5.26)
yields that

njx—x,,|= \/,1 —x? (5.36a)

nyl—xg, = {5.36b)

Also, in view of (5.28), (5.29), and (5.30),
;'A'Il |pn l('\‘/\'u)‘ ~n ] [”‘/]\n:(] 7'\‘/:\?1)]4: (537)

Vi | el —x7 ) L (5.38)
Using (5.9). (5.10). (5.37), (5.36a), we get

pix)

2 ()<e T I
kn = IZZ(,\‘—.\‘A”); n kn

<e(l—x7) " pinlx—xl] " {5.39)

Similarly, using (5.38), (5.36b).

12

5 T . 2 - LI i - . t 1., _2
'/";{HA/\'II ('\ - '\kn)/kn('\)‘ St/),,(\.\)[ﬂ ;'\ - ‘\/\/1‘] n ‘\/\H(] B '\/\n)
> 2
< (’[’;(,\")[” ‘-\‘ - '\‘An‘ ] : H./\n‘ ] - 'XV/TH)

<oppolnly —xg 11 (5.40)
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In view of (5.23b), (5.39), and (5.40),
() L) S et —=x7) 7 poge)[n [x—xg, ] (5.41)

if x,, is not the closest zero to x. Property (P2) in Definition 2.1 and the
estimates {5.34b), (5.34c) follow from (5.35), (5.41). Propertics (P3) and
(P4) arc also now evident, as in the proof of Lemma 5.2. To prove the
property (P5), let xe[x,,,,,x,] and —1<x,, <1<y, |, <X/, 0,
Then. using (5.32), (5.37), (5.29), (5.9), (5.10), we get

~l

Vo (x, u) du,(u)

< Z |lAn /\H l

k=m
. ( 2 p;lz(x) 2 2 .30
¢ /\gm “ _'\‘Z'n) l (—:——\,\;_5 n _W/\’H(] o .‘(/:”)}
g(,p;,(-\‘) 2 Aen - (542)
h k—m ('\‘ — Xhn )~
It is elementary to check that if x, ,,,<u<x, . then
AR PR (5.43)
X=Xy,
Moreover, the Markov-Stieltjes inequalities [ 14] yield
A < w(u) du. {5.44)
Y S
In view of (5.43) and (5.44),
i ;“k)z
k—m ('Y - ’\‘/\’”)2
<eofl —x7) ! e vt n
o {x—u)
plx 12 ~¥m La v(u)
(1—x7) ! |:{ + } « J
' | Ju ) (x—u)
<e(x)+¢y(x) ' v Cdv

< C(’Y ),//:('\‘ - '\‘m 1‘11)
LX) (x—x

nLn )

Lelx)(x—r). (5.45)
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Substituting from (5.45) into (5.42), we get (2.5a) with 4,(x) as in (5.34a).
The estimate (2.5b) is proved similarly. |

Theorem 3.5 follows from Theorem 3.1 and Lemma 5.3 after a few simple
computations involving Proposition 2.3.
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