Pharmacokinetics of SPI-1620 in a Phase I, open label, ascending dose study of the safety, tolerability, pharmacokinetics and pharmacodynamics of the endothelin B receptor antagonist, SPI-1620, in recurrent or progressive carcinoma

Guru Reddya, Anthony Tolcherb, Anil Gulatic, Shanta Chawlad, Lee F. Allene

aSpectrum Pharmaceuticals, Irvine, CA, USA
bSouth Texas Accelerated Research Therapeutics, San Antonio, TX, USA
cMidwestern University, Downers Grove, IL, USA
E-mail address: guru.reddy@sppirx.com (G. Reddy)

Objective: The primary objective of the Phase I study was to assess the safety and tolerability of SPI-1620 administered to patients with recurrent or progressive carcinoma who had failed all standard therapy. Secondary objectives were to assess PK and PD profiles of SPI-1620, and to identify the optimum dose of SPI-1620 to be used in future Phase II studies. The pharmacokinetic properties of SPI-1620 will be presented. Methods: Eligible patients received SPI-1620 by intravenous infusion over 1 min in an accelerated dose escalation scheme. SPI-1620 doses ranged from 0.5 μg/kg to 15.1 μg/kg. Serial blood samples were collected from each patient prior to infusion (0 min) and at pre-specified intervals from the start of the infusion. Human plasma samples were analyzed by a validated HPLC–MS/MS method. Descriptive PK parameters were determined by standard model independent methods based on the concentration–time data of each subject. Results & conclusion: The highest concentration of SPI-1620 was achieved by the end of infusion. SPI-1620 C max increased proportionally as a function of SPI-1620 dose while the AUC (0–T) increased in a more than dose proportional manner. The SPI-1620 T 1/2 was short and ranged from 4.38 min to 8.29 min. SPI-1620 had a low systemic clearance and small VD (approximately equal to the intravascular volume).

Endothelin-1-induced β-arrestin signalosome is linked to chemoresistance, EMT and stem-cell like properties in ovarian cancer cells

Laura Rosano', Roberta Cianfrocca, Piera Tocci, Elisa Semprucci, Francesca Spinella, Valeriana Di Castro, Anna Bagnato

Experimental Research Center, Regina Elena National Cancer Institute, Italy
E-mail address: rosano@ifo.it (L. Rosano')

The epithelial–mesenchymal transition (EMT) is known to play a crucial role in the aggressiveness of epithelial ovarian cancer (EOC), contributing to chemoresistance and cancer stem cell populations. In this tumor, the endothelin (ET)-1/endothelin A receptor (ETAR) axis, by regulating EMT and invasion, endows EOC cells with an increased chemoresistance. Here we examined whether β-arrestin-1 (β-ar1) can act as a nuclear hub orchestrating nuclear signaling in ETAR-driven EMT and chemoresistance. A significant higher expression of β-ar1 and ET-1/ETAR and the stronger presence of β-ar1 in the nuclear compartment upon ETAR activation are present in chemoresistant cells, compared to sensitive cells. In the nuclei, β-ar1 robustly interacts with β-catenin to form a nuclear complex localized on the ET-1 promoter region, leading to transcription of ET-1, demonstrating that β-ar1 drives the positive inter-regulation of ET-1 itself. This autocrine circuit is involved in β-ar1-driven appearance of EMT features and acquisition of stem-cell like properties. Moreover, at functional level, chemoresistant cells, with high nuclear β-ar1, display higher invasive potential and increased resistance to chemotherapeutic drugs. These effects were inhibited by ET-1 receptor blockade with macitentan, or by β-ar1 nuclear mutant.