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Abstract Point mutations in mitochondrial (mt) tRNA genes
are associated with a variety of human mitochondrial diseases.
We have shown previously that mt tRNALeu(UUR) with a
MELAS A3243G mutation and mt tRNALys with a MERRF
A8344G mutation derived from HeLa background cybrid cells
are deficient in normal taurine-containing modifications
[sm5(s2)U; 5-taurinomethyl-(2-thio)uridine] at the anticodon
wobble position in both cases. The wobble modification defi-
ciency results in defective translation. We report here wobble
modification deficiencies of mutant mt tRNAs from cybrid cells
with different nuclear backgrounds, as well as from patient tis-
sues. These findings demonstrate the generality of the wobble
modification deficiency in mutant tRNAs in MELAS and
MERRF.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Mitochondrial DNA (mtDNA) mutations are responsible

for a wide spectrum of human diseases caused by mitochon-

drial dysfunction [1]. An A to G mutation either at nucleo-

tide position (np) 3243 in the tRNALeu(UUR) gene or at np

8344 in the tRNALys gene has been shown to be responsible

for mitochondrial myopathy, encephalopathy, lactic acidosis,
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and stroke-like episodes (MELAS) and myoclonus epilepsy

associated with ragged-red fibers (MERRF), respectively.

These mutations, which are responsible for two major sub-

groups of the mitochondrial encephalomyopathies [2–4], were

demonstrated to be the direct cause of reductions in oxygen

consumption and mitochondrial protein synthesis [1] using

a cybrid cell system in which mutant mtDNAs derived from

patients were intercellularly transferred into recipient cells

lacking mtDNA (q0 cells) [5]. Several cybrid cell lines have

been constructed with different nuclear backgrounds, includ-

ing 143B osteosarcoma, HeLa and A549 lung carcinoma cells

[5–7].

We have previously shown that several disease-associated

mitochondrial tRNA gene mutations are associated with a lack

of taurine wobble base-modification in the mutant tRNAs. In

HeLa cybrid cells homoplasmic for pathogenic mtDNA muta-

tions, the taurine-containing modified uridine (sm5U; 5-tauri-

nomethyluridine) [8], which normally occurs at the anticodon

wobble position of mt tRNALeu(UUR), remains unmodified in

mt tRNALeu(UUR) bearing either the A3243G or T3271C

MELAS mutation (Fig. 1) [9]. Similarly, the mt tRNALys with

the A8344G MERRF mutation also lacks normal taurine-

modification (sm5s2U; 5-taurinomethyl-2-thiouridine) at the

wobble position (Fig. 1) [8,10]. It is known that uridine mod-

ification at the wobble position is responsible for precise and

efficient codon recognition [11–13]. In the case of MERRF,

we previously showed that the mutant tRNALys lacking the

wobble modification loses translational activity for both

AAA and AAG codons [14]. In the case of MELAS, we re-

cently reported that the mt tRNALeu(UUR) lacking the tau-

rine-modification showed severely reduced UUG translation

but no decrease in UUA translation [15,16]. We thus con-

cluded that the UUG codon–specific translational defect of

the mutant mt tRNALeu(UUR) is the primary cause of MELAS

at the molecular level. This result could explain the defective

translation of UUG-rich genes, such as ND6, leading to com-

plex I deficiency as observed clinically in MELAS. These find-

ings strongly suggest that lack of the wobble modification is

the primary molecular pathogenesis causing these mitochon-

drial diseases. However, the possibility remains that the
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Cloverleaf structure of human mitochondrial tRNALeu(UUR)

and tRNALys. The wobble modified uridines in the wild-type
tRNALeu(UUR) and tRNALys are 5-taurinomethyluridine (sm5U) and
5-taurinomethyl-2-thiouridine (sm5s2U), respectively [8]. The MELAS
andMERRF point mutations, A3243G in tRNALeu(UUR) and A8344G
in tRNALys, respectively, are shown. The U on a round black
background indicates the unmodified uridine present in the mutant
tRNAs. The other modified nucleosides were determined previously:
1-methyladenosine (m1A), N6-threoninocarbonyladenosine (t6A),
1-methylguanosine (m1G), 2-methylguanosine (m2G), pseudouridine
(W), ribothymidine (T) dihydrouridine (D), and 5-methylcytidine
(m5C) [9,10,35].
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wobble modification deficiency depends on the nuclear back-

ground of cybrid cell lines and does not reflect the situation

in vivo, because behavior of mtDNA often depends upon the

nuclear background in cybrids [17,18].

To assess the generality of the modification deficiency in mu-

tant tRNAs, we analyzed the mutant tRNAs in actual tissues

of MELAS and MERRF patients. Here, we describe the con-

firmation of the wobble modification deficiency in mutant

tRNAs from cybrid cells with different nuclear backgrounds,

as well as from patient tissues.
2. Materials and methods

2.1. Cell lines and cell culture
An A549 lung carcinoma cybrid containing 99% mtDNA with the

A3243G mutation in the tRNALeu(UUR) gene [18] was cultured in Dul-
becco-modified Eagle�s medium (DMEM) with 10% fetal bovine serum
and uridine at 50 lg/mL. The 143B osteosarcoma cybrid lines used
were: R1–C3, carrying predominantly the A8344G mutation;
R2-1, the wild-type counterpart of R1–C3; 43B, carrying predomi-
nantly the A3243G mutation; 94I, the wild-type counterpart of 43B
[19,20]. The 143B cybrids were kindly provided by Dr. Attardi and
Dr. Chomyn (California Institute of Technology, Pasadena, CA) and
were cultured in DMEM with 10% fetal bovine serum.
2.2. Patient tissues
A patient died at the age of 22 in 1971 at Niigata University Hospi-

tal, Niigata, Japan and was reported as the first case of MERRF in
1980 [21]. The specimen from the autopsied liver (15 mg) of the
MERRF patient contained 76% mutant and 24% wild-type mtDNA.
Another patient was diagnosed with MELAS at Saigata National Hos-
pital, Saigata, Joetsu, Niigata, Japan and died at the age of 17. The
autopsied sample (34 mg) from the liver was maintained at �80 �C
and was also heteroplasmic, containing both the wild-type and 66%
np 3243 mutated mtDNA.
2.3. 3 0-End splint labeling of tRNA
Total RNA from frozen tissue sections or semiconfluent cybrid cells

was extracted using Isogen (Nippon Gene, Toyama, Japan), followed
by deacylation of aminoacyl-tRNAs [9]. Total RNA was first incu-
bated at 37 �C for 30 min in a reaction mixture containing 50 mM
HEPES–KOH (pH 7.5), 10 mM MgCl2, 5 mM DTT, and T4 polynu-
cleotide kinase for dephosphorylation of the 3 0-end of the tRNAs.
Subsequently, 3 0-end CCA repair of tRNAs was performed at 37 �C
for 1 h with recombinant human mitochondrial CCA-adding enzyme
[22] in the presence of 1 mM ATP, 1 mM CTP, and 100 mM KCl.
Then, the desired tRNAs were specifically labeled at their 3 0 termini
by the splint labeling technique [23]. Briefly, total RNA mixed with
20 pmol oligonucleotide probe was incubated at 75 �C for 2 min and
then cooled to 37 �C for annealing in 50 mM Tris–HCl (pH 7.5),
50 mM NaCl, 1 mM DTT and 0.5 mM EDTA. The probes used were
5 0-GTGGTCACTGTAAAGAGGTGTTGG-3 0 for tRNALys, 5 0-
GTGGTGTTAAGAAGAGGAATTGAACC-3 0 for tRNA-
Leu(UUR), 5 0-GTGGTATTCTCGCACGGACTACAA CC-3 0 for
tRNAGlu, and 5 0-GTGGCTAGGACTATGAGAATCGAACC-3 0 for
tRNAGln. After annealing, 10 mM MgCl2, 1.11 MBq [a-32P]dCTP
and 10 U of Sequenase (Amersham Pharmacia Biotech, Piscataway,
NJ) were added to the mixture and the reaction was incubated at
37 �C for 30 min. The 32P-labeled tRNA was separated by electropho-
resis in a 7 M urea-polyacrylamide gel and then eluted from the gel.

2.4. Sequencing of tRNA
The labeled tRNA was purified by gel electrophoresis and sequenced

as described previously [9] according to the methods of Donis-Keller
[24]. The gel was exposed on an imaging plate and the radio active
bands were visualized using a BAS5000 bioimaging analyzer (Fuji
Film, Tokyo, Japan).

2.5. APM gel electrophoresis and Northern blotting for the detection of

the thiouridine modification
Total RNA containing 3 0-end splint labeled tRNALys, tRNAGlu, or

tRNAGln was electrophoresed in a 10% polyacrylamide gel containing
0.016 mg/mL [(N-acryloylamino)phenyl]mercuric chloride (APM) as
described previously [25–27]. This method was originally developed
by Igloi [28]. Radioactive bands were detected with a BAS5000 bioi-
maging analyzer (Fuji Film).
3. Results

3.1. Wobble modification deficiency in mutant mt tRNAs from

cybrid cells with different nuclear backgrounds

The mutant mt tRNALeu(UUR) was isolated by the solid

phase DNA probe method [26,29] from a large scale culture

of A549 lung carcinoma cybrid cells bearing 99% mtDNA with

the A3243G mutation. The purified tRNA was 5 0-end labeled

and subjected to enzymatic sequencing [24]. As expected, the

mutant mt tRNALeu(UUR) contained a G at position 3243

(Fig. 2, upper panel). In the anticodon region of the wild-type

mt tRNALeu(UUR) (Fig. 2, lower panel), the band at the wobble

position in the alkaline ladder was slightly up-shifted due to

the taurine-modification. In addition, no band was observed

in the RNasePhyM (A and U-specific) lane since sm5U34 is

resistant to RNase digestion [9]. However, no shift of the band

corresponding to the wobble position and a clear band of

RNasePhyM digestion could be observed in the mutant mt

tRNALeu(UUR). This result demonstrates that the wobble base

is an unmodified uridine. We also analyzed 143B osteosarcoma

cybrid lines with mutant mt tRNALeu(UUR) bearing the

A3243G mutation and found no modification of the wobble

base as observed in the mutant tRNA from the A549 lung car-

cinoma cybrid cells (see Supplementary Information). Further-

more, we analyzed the mutant mt tRNALys bearing the

A8344G mutation from 143B cybrid lines and found that the



Fig. 2. Sequence ladders obtained by the Donis-Keller method [24] for
5 0-end labeled wild-type and A3243G mutant tRNALeu(UUR) from
A549 lung carcinoma cybrid cells. Ladders from the regions around
the point mutation (upper panel) and anticodon loop (lower panel) are
shown. E, Al, T1, U2, PM, and CL3 indicate no treatment, and
treatments by alkali, RNase T1 (specific for G), RNase U2 (for A > G),
RNase PhyM (for A and U), or RNase CL3 (for C), respectively.
Arrowheads show the position of the MELAS 3243 mutation in the
upper panel. In the lower panel, arrows indicate the bands at
the wobble position. The wild-type tRNA shows an up-shifted band
in the alkaline ladder and no band in RNase PhyM lane due to the
taurine modification (sm5U), whereas the mutant tRNA shows a
normal ladder in the alkali lane and clear band of RNasePhyM
digestion corresponding to unmodified uridine (U).

Fig. 3. MELAS patient-derived tRNALeu(UUR) sequencing was com-
pared to the wild-type tRNALeu(UUR). Not only RNases T1 but also U2

and PhyM gave bands at the 3243 mutation point in the patient tRNA
(arrowhead), confirming the coexistence of the mutant and wild-type
tRNALeu(UUR). The wobble position is indicated by dots. The alkali
ladders around the anticodon loop are highlighted in the lower panel
(left) and a densitometric analysis is shown (right). tRNA numbering
was according to the usual method described in the literature [30].
Unusual up-shifting of alkali bands was observed at position 33 of the
wild-type tRNALeu(UUR) because of the wobble modification. Addi-
tionally, the AI ladders of the wild-type tRNALeu(UUR) gives clear
bands, whereas those of patient-derived tRNA is smeared at positions
31–33, suggesting the coexistence of unmodified and modified uridines
at position 34 (wobble position).
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wobble base remains unmodified (see Supplementary Informa-

tion). Together with our previous results using HeLa cybrid

cells [9,10], these data indicate that the wobble modification

deficiency of the mutant tRNAs from MELAS 3243 and

MERRF 8344 mutations is a universal phenomenon and does

not depend on the nuclear background of the cybrid cell lines.

3.2. Wobble modification deficiency of mutant mt tRNALeu(UUR)

in MELAS patient tissue

Since a limited amount of patient tissues were available, di-

rect isolation of the mutant mt tRNA for nucleotide modifica-

tion analysis was impractical. Specific labeling of the mutant

tRNA was achieved instead using the 3 0-end splint labeling

technique [23]. This approach to labeling the tRNAs allowed

us to work directly with unfractionated total RNA from a lim-

ited amount of patient tissue.

A liver autopsy specimen of a MELAS patient was hetero-

plasmic and contained both the wild-type mtDNA and 66%

np 3243 mutated mtDNA. Ninety micrograms total RNA

was isolated from 34 mg tissue. The mutant tRNALeu(UUR)

was 3 0-end labeled by the splint labeling technique (see Section

2). The labeled tRNA was subjected to enzymatic RNA

sequencing [24] and produced bands not only in the presence

of RNase T1 (specific for G), but also when treated with

RNase U2 (for A > G) and RNase PhyM (Fig. 3, upper panel),

indicating the coexistence of the mutant and the wild-type

tRNALeu(UUR).

In the anticodon region of the alkaline-treated ladders (Fig.

3), a band at the wobble position (position 34, according to the
tRNA numbering system [30]) in the wild-type tRNA was up-

shifted due to the taurine-modification as shown in Fig. 2. In

contrast, the wobble position from the MELAS patient�s tissue
reproducibly showed an irregular band pattern between posi-

tions 31 and 33 (Fig. 3, lower panel) and was clearly different

from the ladder pattern produced by the wild-type tRNA. The

fact that tRNALeu(UUR) from the patient�s tissue is a mixture of

the wild-type and the mutant tRNALeu(UUR) (A3243G), and

that the latter has been shown to lack the wobble modification

in three different nuclear background cybrids (this study and

[9]), suggests that this irregular band pattern in the mutant is

caused by the coexistence of RNA fragment containing

unmodified U from the tRNALeu(UUR)(A3243G) and fragment

containing sm5U from the wild-type tRNALeu(UUR). This band

pattern in the alkaline ladder was also observed in mutant

tRNALeu(UUR) obtained from a heteroplasmic HeLa cybrid

cell bearing 50% of the A3243G mutation (data not shown).

We could not observe a clear band after RNase PhyM diges-

tion of the mutant mt tRNALeu(UUR) due to the heteroplasmic

A3243G mutation (66%) and low labeling efficiency of the mu-

tant tRNA from the MELAS patient (Fig. 3).

3.3. Wobble modification deficiency in mutant mt tRNALys from

MERRF patient tissue

We obtained 50 lg total RNA from 15 mg of liver autopsy

tissue from a MERRF patient, whose mutation frequency in

mt DNA was determined to be 76% for mt tRNALys. Total

RNA was used for splint labeling of the 3 0-end of the mt

tRNALys. Sequence analysis revealed that the mutant tRNALys
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from the MERRF patient�s tissue had an A to G mutation at

np 8344, thereby directly demonstrating the existence of the

mutant tRNA in the mitochondria of the patient�s tissue

(Fig. 4A). In the anticodon region, the sequence ladders

showed that the wobble position of the patient-derived

tRNALys was sensitive to digestion by RNasePhyM, demon-

strating that the wobble base is an unmodified uridine (Fig.

4A). In contrast, the same position of the wild-type tRNALys

is resistant to this RNase due to the sm5s2U-modification

(Fig. 4A). This result is consistent with our previous observa-

tions in cybrid cells [10].

To confirm the absence of the wobble modification in the

mutant tRNALys from the MERRF patient�s tissue, we em-

ployed APM ([(N-acryloylamino)phenyl] mercuric chloride)

gel electrophoresis to separate the mutant tRNA from the

wild-type tRNA containing the 2-thio modification of sm5U

[25–28]. In this analysis, the electrophoretic mobility of the ma-

jor portion of tRNAs containing the thiolated nucleotide is sig-
Fig. 4. (A) RNA sequence ladders from 3 0-end labeled wild-type and
MERRF patient-derived tRNALys. The regions around the point
mutation and anticodon loop are shown. Arrowheads show the
position of the MERRF 8344 mutation. Bands corresponding to
unmodified uridine (U) are present at the wobble position in the
patient-derived tRNALys, whereas resistance against RNase PhyM
digestion was observed at the same position in the wild-type tRNALys

because of the sm5s2U modification (arrows). (B) Detection of
thiolated nucleotides in tRNA by APM gel electrophoresis. Total
RNA containing 3 0-end labeled tRNALys derived from the wild-type
cybrid cell (C), the MERRF patient tissue (P), and the 8344 mutant
cybrid cell (M), were separated by APM gel electrophoresis (origin at
top). The retarded, smeared band contains tRNALys with the wobble
modified sm5s2U, whereas the lower band contains tRNA without the
thiolated uridine and residual amounts of tRNA with the thiolated
uridine. The numbers in parentheses indicate the mutation ratio of
mtDNA in each sample. (C) 3 0-End labeled tRNAGlu and tRNAGln

derived from wild-type cybrid (C) or MERRF patient tissue (P) were
separated by APM gel electrophoresis. Both tRNAGlu and tRNAGln

showed equivalent extents of band retardation between the wild-type
cybrid and the MERRF patient sample, indicating the specificity of the
wobble modification deficiency in the mutant tRNALys from the
patient sample.
nificantly retarded in the presence of APM, due to a specific

interaction between the thiocarbonyl group and the mercuric

compound in the gel. As shown in Fig. 4B, the majority of

the wild-type mt tRNALys (C) in the gel is retarded due

to the 2-thio group of the sm5s2U at the wobble position,

whereas the mutant mt tRNALys (M) obtained from MERRF

cybrid cells containing 96% A8344G mutations in mt DNA

showed no retardation in the APM gel since the tRNA lacks

the 2-thio modification. In mutant mt tRNALys (P) obtained

from MERRF patient�s tissue with 76% A8344G mutations

in the mt DNA, a small portion of the tRNA was retarded

in the gel, but most of the tRNA showed normal mobility.

These results provide evidence that the mutant tRNALys in

the patient�s tissue specifically lacks the 2-thio modification

of sm5s2U at the wobble position. To rule out the possibility

that the wobble modification deficiency of the patient-derived

mutant tRNALys was caused by decreased activity of the

RNA-modifying enzyme responsible for 2-thio modification

of sm5s2U, we verified 2-thio modification of other mt tRNAs

that normally have a sm5s2U [8] using APM gel analysis. As

shown in Fig. 4C, mt tRNAs for Glu and Gln in the total

RNA from the MERRF patient tissue showed significant

retardation, similar to that of mt tRNAs from wild-type cells,

suggesting that the absence of the wobble modification in mt

tRNALys was the direct result of a pathogenic point mutation

and not a change in RNA-modifying enzyme activity. These

results demonstrate that mt tRNALys carrying the A8344G

mutation lacks the sm5s2U modification at the wobble position

in patient tissues.
4. Discussion

Since the behavior of mtDNA often depends upon the nucle-

ar background in cybrids [17,18], it is substantial to confirm

that the modification deficiency in mutant mt tRNAs is due

to the mutations even under the different nuclear backgrounds

and that the deficiency is not specific in cybrids. We here de-

scribe a wobble modification deficiency in the mutant mt

tRNALeu(UUR) (A3243G) from three different nuclear back-

ground cybrids, and in the mutant mt tRNALys (A8344G)

from two different nuclear background cybrids (this study

and [9,10]). The wobble modification deficiency in the mutant

tRNAs from MELAS and MERRF cybrid cells has been

firmly established.

The A3243G and A8344G mutations work as a negative

determinant for the biosynthesis of sm5U in tRNALeu(UUR)

and sm5s2U in tRNALys, respectively. This indicates that

the RNA-modifying enzyme responsible for the 5-taurinom-

ethyl group, which has not been identified, is a class of en-

zyme that recognizes the whole tertiary structure of tRNA,

because both the np 3243 and 8344 are far from the wobble

position (Fig. 1).

Studies using cultured cells have consistently demonstrated

the wobble modification deficiency, but confirmation that the

same phenomenon occurs in patient tissues has not been re-

ported previously. By overcoming the difficulty in sequencing

tRNAs from small amounts of tissue, we were able to show

that patient tissues lacked the wobble modification in the mu-

tant tRNALeu(UUR) (A3243G) and tRNALys (A8344G). This

finding provides the first link between our biochemical obser-

vations and clinical analysis, which is a necessary first step in
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the development of diagnostic procedures and possible thera-

peutic measures.

Mitochondrial dysfunctions such as MELAS or MERRF

could have multiple causes, including impaired termination of

transcription, decreased RNase P processing, decreased tRNA

stability, aminoacylation, or abnormal conformations [31,32],

which would lead to decreased steady-state levels of the normal

aminoacylated tRNAs and result in reduced mitochondrial

protein synthesis. However, particularly in the case of MELAS,

the reduced mitochondrial protein synthesis in cells with these

pathogenic mutations cannot explain the decreased respiratory

activity or oxygen consumption, since the extent of the reduc-

tion in protein synthesis does not parallel the defective enzy-

matic activity [7,20,33,34]. Thus, reduced protein synthesis

caused by quantitative defects of the mutant tRNAs does not

appear to be the direct cause of the clinical symptoms presented

by MELAS. Qualitative defects are likely to arise from the

wobble modification deficiency, since the mutant tRNAs lack-

ing wobble modifications show codon-specific decoding disor-

ders [15]. This suggests that the lack of wobble modification

is a major causative factor of these mitochondrial diseases.

In conclusion, the present study excluded the possibility that

the modification deficiency of the wobble position is limited to

HeLa cybrids and confirmed that the wobble modification defi-

ciency occurs in patient tissues.

Acknowledgments: We thank Dr. A. Chomyn and Dr. G. Attardi (Cal-
Tech, Pasadena, CA) for providing 143B osteosarcoma cybrid clones,
and T. Nagaike (University of Tokyo) for the recombinant CCA-
adding enzyme. This work was supported by grants-in-aid for scientific
research on priority areas from the Ministry of Education, Science,
Sports, and Culture of Japan (to T.S. and K.W.), by a JSPS Fellowship
for Japanese Junior Scientists (to Y.K.), by a grant from the New En-
ergy and Industrial Technology Development Organization (NEDO)
(to T.S.) and by the Human Frontier Science Program (grant
RG0349) (to T.S.). I.J.H. and H.T.J. are supported, respectively, by
the UK Medical Research Council and the Academy of Finland.
Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.2005.

04.038.
References

[1] Schon, E.A., Bonilla, E. and DiMauro, S. (1997) J. Bioenerg.
Biomembr. 29, 131–149.

[2] Goto, Y., Nonaka, I. and Horai, S. (1990) Nature 348, 651–653.
[3] Kobayashi, Y., Momoi, M.Y., Tominaga, K., Momoi, T., Nihei,

K., Yanagisawa, M., Kagawa, Y. and Ohta, S. (1990) Biochem.
Biophys. Res. Commun. 173, 816–822.

[4] Shoffner, J.M., Lott, M.T., Lezza, A.M., Seibel, P., Ballinger,
S.W. and Wallace, D.C. (1990) Cell 61, 931–937.

[5] King, M.P. and Attardi, G. (1989) Science 246, 500–503.
[6] Hayashi, J., Ohta, S., Kikuchi, A., Takemitsu, M., Goto, Y. and
Nonaka, I. (1991) Proc. Natl. Acad. Sci. USA 88, 10614–10618.

[7] Dunbar, D.R., Moonie, P.A., Zeviani, M. and Holt, I.J. (1996)
Hum. Mol. Genet. 5, 123–129.

[8] Suzuki, T., Suzuki, T., Wada, T., Saigo, K. and Watanabe, K.
(2002) EMBO J. 21, 6581–6589.

[9] Yasukawa, T., Suzuki, T., Suzuki, T., Ueda, T., Ohta, S. and
Watanabe, K. (2000) J. Biol. Chem. 275, 4251–4257.

[10] Yasukawa, T., Suzuki, T., Ishii, N., Ueda, T., Ohta, S. and
Watanabe, K. (2000) FEBS Lett. 467, 175–178.

[11] Suzuki, T. (2005) in: (Grosjean, H., Ed.), Topics in Current
Genetics, vol. 12, pp. 24–69, Springer-Verlag, New York.

[12] Bjork, G.R. (1995) in: tRNA: Structure, Biosynthesis and
Function (Soll, D. and Rajbandary, U.L., Eds.), pp. 165–205,
ASM press, Washington, DC.

[13] Yokoyama, S. and Nishimura, S. (1995) in: tRNA: Structure,
Biosynthesis and Function (Soll, D. and Rajbandary, U.L., Eds.),
pp. 207–224, ASM press, Washington, DC.

[14] Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S. and Watanabe, K.
(2001) EMBO J. 20, 4794–4802.

[15] Kirino, Y., Yasukawa, T., Ohta, S., Akira, S., Ishihara, K.,
Watanabe, K. and Suzuki, T. (2004) Proc. Natl. Acad. Sci. USA
101, 15070–15075.

[16] Kirino, Y. and Suzuki, T. (2005) RNA Biol. 1 (in press).
[17] Holt, I.J., Dunbar, D.R. and Jacobs, H.T. (1997) Hum. Mol.

Genet. 6, 1251–1260.
[18] Dunbar, D.R., Moonie, P.A., Jacobs, H.T. and Holt, I.J. (1995)

Proc. Natl. Acad. Sci. USA 92, 6562–6566.
[19] Chomyn, A., Meola, G., Bresolin, N., Lai, S.T., Scarlato, G. and

Attardi, G. (1991) Mol. Cell Biol. 11, 2236–2244.
[20] Chomyn, A., et al. (1992) Proc. Natl. Acad. Sci. USA 89, 4221–

4225.
[21] Fukuhara, N., Tokiguchi, S., Shirakawa, K. and Tsubaki, T.

(1980) J. Neurol. Sci. 47, 117–133.
[22] Nagaike, T., Suzuki, T., Tomari, Y., Takemoto-Hori, C., Neg-

ayama, F., Watanabe, K. and Ueda, T. (2001) J. Biol. Chem. 276,
40041–40049.

[23] Schneider, A., McNally, K.P. and Agabian, N. (1994) Nucleic
Acids Res. 22, 3699–3705.

[24] Donis-Keller, H. (1980) Nucleic Acids Res. 8, 3133–3142.
[25] Shigi, N., Suzuki, T., Tamakoshi, M., Oshima, T. and Watanabe,

K. (2002) J. Biol. Chem. 277, 39128–39135.
[26] Kaneko, T., Suzuki, T., Kapushoc, S.T., Rubio, M.A., Ghazvini,

J., Watanabe, K., Simpson, L. and Suzuki, T. (2003) EMBO J. 22,
657–667.

[27] Umeda, N., Suzuki, T., Yukawa, M., Ohya, Y., Shindo, H.,
Watanabe, K. and Suzuki, T. (2005) J. Biol. Chem. 280, 1613–
1624.

[28] Igloi, G.L. (1988) Biochemistry 27, 3842–3849.
[29] Wakita, K., Watanabe, Y., Yokogawa, T., Kumazawa, Y.,

Nakamura, S., Ueda, T., Watanabe, K. and Nishikawa, K.
(1994) Nucleic Acids Res. 22, 347–353.

[30] Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. and Steinberg,
S. (1998) Nucleic Acids Res. 26, 148–153.

[31] Jacobs, H.T. (2003) Hum. Mol. Genet. 12 (Spec No 2), R293–
R301.

[32] Florentz, C., Sohm, B., Tryoen-Toth, P., Putz, J. and Sissler, M.
(2003) Cell Mol. Life Sci. 60, 1356–1375.

[33] Hayashi, J., Ohta, S., Takai, D., Miyabayashi, S., Sakuta, R.,
Goto, Y. and Nonaka, I. (1993) Biochem. Biophys. Res.
Commun. 197, 1049–1055.

[34] Flierl, A., Reichmann, H. and Seibel, P. (1997) J. Biol. Chem. 272,
27189–27196.

[35] Helm, M., Florentz, C., Chomyn, A. and Attardi, G. (1999)
Nucleic Acids Res. 27, 756–763.

http://dx.doi.org/10.1016/j.febslet.2005.04.038
http://dx.doi.org/10.1016/j.febslet.2005.04.038

	Wobble modification deficiency in mutant tRNAs in patients  with mitochondrial diseases
	Introduction
	Materials and methods
	Cell lines and cell culture
	Patient tissues
	3 prime -End splint labeling of tRNA
	Sequencing of tRNA
	APM gel electrophoresis and Northern blotting for the detection of the thiouridine modification

	Results
	Wobble modification deficiency in mutant mt tRNAs from cybrid cells with different nuclear backgrounds
	Wobble modification deficiency of mutant mt tRNALeu(UUR) in MELAS patient tissue
	Wobble modification deficiency in mutant mt tRNALys from MERRF patient tissue

	Discussion
	Acknowledgments
	Supplementary data
	References


