
An International Journal 

computers & 
mathematics 
with applications 

PERGAMON Computers and Mathematics with Applications 43 (2002) 1239-1248 
www.elsevier.com/locste/camwa 

Existence of Multiple Solutions for 
Second-Order Discrete 

Boundary Value Problems 

J. HENDERSON 
Department of Mathematics, 218 Parker Hall 

Auburn University, Auburn, AL 36849-5310, U.S.A. 
hendej2Qmail.auburn.edu 

H. B. THOMPSON* 
Centre for Applied Dynamical Systems, Mathematical Analysis and Probability 

Department of Mathematics, The University of Queensland 
Brisbane, Queensland 4072. Australia 

hbtQmaths.uq.edu.au 

(Received January 2000; revised and accepted August 2001) 

Abstract-we give conditions on f involving pairs of discrete lower and discrete upper solutions 
which lead to the existence of at least three solutions of the discrete two-point boundary value problem 

y/k+l - 2yk + y/k-l + f(k, yk,uk) = 0, for k = 1,. ,n - I, yo = 0 = y,, where f is continuous and 

01, = gk - yk-_l, for k = 1,. ,R. In the special case f(k, t,p) = f(t) 2 0, we give growth conditions 
on f and apply our general result to show the existence of three positive solutions. We give an 
example showing this latter result is sharp. Our results extend those of Avery and Peterson and are 
in the spirit of our results for the continuous analogue. @ 2002 Elsevier Science Ltd. All rights 
reserved. 

Keywords-Brouwer degree, Discrete two-point boundary value problems, Discrete lower solu- 
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In this paper, we 

tions of the form 

1. INTRODUCTION 

consider two-point boundary value problems for second-order difference equa- 

A2yk-tl + f (k, Yk, vk) = 0, forIc=l,...,n-1; (1.1) 

Yo=o=Yll, (1.2) 

wheref: {l,...,n-l}xR2 +~iscontinuous,A2yk+~ =Yk+l-2Yk+Yk-1,for~=1,...,?1-1, 

and vk = Yk - Y&l, for Ic = 1,. . . ,n. 
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We also consider the special case of (1.1) 

where f 2 0. 

A2Y!X+1 + f(N) = 0, fork=l,...,n-1, (1.3) 

We give sufficient conditions on f for these boundary value problems to have three solutions; 

byasolutionyof(l.l),wemeanavectory=(y~,... , yn) satisfying (1.1) for k = 1, . . , n - 1. 

Leggett and Williams [l] developed a fixed-point theorem using the fixed-point index in or- 

dered Banach spices. They applied their fixed-point theorem to prove existence of three positive 

solutions for Hammerstein integral equations of the form y = sQ G(z, s)f(s, y(s)) ds, R c !P, by 

making use of suitable inequalities they imposed on the kernel G and on f. Green’s functions for 

differential operators closely related to our problem satisfy these inequalities. Avery [2] used the 

Leggett and Williams approach to study problem (1.3),(1.2). S un and Sun [3] gave an extension 

of the Leggett-Williams multiple fixed-point theorem on ordered Banach spaces. They also used 

the fixed-point index in ordered Banach spaces but gave no applications to differential equations. 

Motivated by the papers of Leggett and Williams and of Sun and Sun, Anderson [4] applied 

the integral equation approach to a third-order problem -z”‘(t) + f(z(t)) = 0, ~(0) = x’(0) = 

cc”(l) = 0. Again the Green’s function satisfies inequalities similar to those in [l]. In [5], we 

used this approach to study the nth -order equation ycR) + f(y) = 0, together with the boundary 

conditions Y(~)(O) = 0 = y(l), for i = O,... , n - 2, and also with the boundary conditions 

y(?)(O) = 0 = ~(‘~-~)(l), for i = 0,. . . ,n - 2. 

In the current work, we show there are three solutions if there exist two discrete lower solu- 

tions CY~ and ~2 and two discrete upper solutions PI and p2 for problem (l.l),( 1.2) satisfying 

~1 2 CQ, o1 5 fl2. In the special case f(k,t,p) = f(t) > 0, we give growth conditions on f which 

guarantee the existence of three positive solutions. We give an example showing this latter result 

is sharp. 

We follow the approach we adopted in [6] for the continuous analogue of problem (1.1) ,( 1.2) and 

of problem (1.3),( 1.2). There we modified f for y outside of [QI, p2] and formulated the modified 

continuous analogues as integral equations. We used Schauder degree on a suitable open set in 

function space to show there are three solutions. Here we proceed similarly modifying f for t 

outside of [cY~, ,021 and formulate the modified problem (1.1),(1.2) as a summation equation. We 

use Brouwer degree on suitable open set in IR +’ to show there are three solutions. In the special 

cr2se of problem (1.3),( 1.2), we construct discrete lower and discrete upper solutions and apply 

our general result to show there are three positive solutions. A novel feature of our work is that 

we do not require that PI 5 (~2 on (0,. , n}. Further, we use Brouwer degree theory rat,her 

than the Leggett-Williams or the Sun-Sun fixed-point theorems and allow the right-hand side to 

depend on k and vk. Moreover, it would have been possible to give a proof modelled on that in [7, 

Example 2.4.21 which uses [7, Corollary 2.4.21 and is based on monotone mappings in ordered 

Banach spaces. Using this approach, we could not allow f to depend on ‘Uk, although we could 

allow it to depend on k. On the other hand, the monotone mappings approach has the advantage 

of providing a convergent sequence of approximate solutions which provide reasonable accuracy. 

Our results extend those of Avery and Peterson [8] who studied problem (1.3),(1.2) using the 

Sun-Sun fixed-point theorem. For more information on multiple solutions of problem (1.1),(1.2), 

its continuous analogue, and related results, see [2,7,8] and the references therein. For more 

information on difference equations, see the books by Agarwal [9], Elaydi [lo], and Kelly and 

Peterson [ll], and the references therein. 

2. BACKGROUND NOTATION AND DEFINITIONS 

In order to state our results, we need some notation. 
We denote the closure of a set T by 7 and its boundary by dT. As usual, C”(A; B) denotes t,he 

space of m times continuously differentiable functions from A to B endowed with the maximum 
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norm. In the case of continuous functions, we abbreviate this to C(A; B). In the case 3 = R. 

we omit the B. Let n/ be the nonnegative integers. If n E N and I C IR is an interval, then by 

n E I we mean n E I n N. We let Ni,j = {k E N : i 5 k 5 j} and N,, = No,,. For any vector 

s = (so,. . . , s,) E lRn+r, we set S = max{sk: : k E N,}, 2 = min{sk : k E N,}, As, = sk - s~_~, 

for k E n/l,,, and A”sk+i = A(Ask+i) = sk+i - 2sk + sk_1, for k E Nl,,,_l. We write s 5 z if 

sk 5 zk, for k E NT,, where z = (20,. . . , z,) E RWn+‘. If c E lR is a constant, then we identify c 

and (ce, . . , cn), where ck = c, for all k E N,, and the meanin g is clear from the cont,ext. For 

y E IWn+l we define the maximum norm, ]]y]], by ]]y]] = max{jykj : ?/ = (YO,. ,yTL), k E N,,}. Let 

lR ;+l={yEIRn+‘:y=(O,yi,... , yn-1, 0)). If A is a bounded open subset of IwTL+‘, p E EP+l: 

F E C(A;IP+‘), and p 4 F(aA), we denote the Brouwer degree of F on A at ?-, by d( F, A. p). 

It is common in the proofs of existence of solutions of two-point boundary value problems 

for (1.1) to modify f. We will do this making use of the following functions (see [6]). 

If c 5 d are given, let r : lR -+ [c, d] be the retraction given by 

7r(y, c, d) = max{min{d, y}? c}. 

For each E > 0, let K E C(R) satisfy 

(i) tK(t,~) < 0, for all t # 0, 

(ii) K(O,e) = 0, and 

(iii) ]K(t, E)] < 6 for all t. 

(2.1) 

If c 5 d and 6 > 0 are given, let T E C(R) be given by 

T(Y>c,~, E) = WY - ~(Y,c,~,E). 

We will need the Greens function for the problem 

(2.2) 

A2 Ykfl + S’k = 0, for k E Np--1, (2.3) 

Yo =o, Yn = 0, (2.4) 

where g = (91,. . . ,gn_i) E IR”-’ and the solution y E !RP+l. The Greens function: Q : N,, x 
Nl.n-l + IL?, is given by 

for all 0 5 i 5 k 5 n, 

&(k,i) = 

1 

(n - k):, 

k 
(72 - i) ;, for all 0 5 X- 5 i < n. _ 

Thus, we define C : EV-’ ---f IPf’ by 

n-1 

C($)k = ~Q(k, W, for k E NT,, 
i=l 

(2.5) 

for all C#J E W-i. Thus, y is a solution of problem (2.3),(2.4) if and only if 

y-C(g) = 0. (2.6) 

Moreover, C is continuous. 

DEFINITION 2.1. We call cy a strict discrete lower solution for (1.1) if there is y > 0 sucl, that 

a”ak+l + f(k, ak, u) > 7% (2.7) 

for ah k E Nl,,_l and u 2 uk, where tiLLI, = Aok for all k E Nl,,. 
Similarly! we call ,D a strict discrete upper solution for (1 .I) if we replace (2.7) by 

A2Pk+l + f(k Pkr w) 5 -7, (2.8) 

for all k E Nl,,_ 1 and w 5 wk, where wk = A/&, for all k E Nl,,, 
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IVe say a (p) is a strict discrete lower (a strict discrete upper) solution for (1.1),(1.2) if in 

addition CYO 5 0 and (Y, 5 0 (pa 2 0 and /3, 1 0). If y = 0, we omit the word “‘strict”. 

If there exist a discrete lower solution, Q, and discrete upper solution, p, for (1.1) ,( 1.2) satisfying 

(Y 5 p, then we define p and a by 

p = max{Pk : k E A&}, 

a = min{ak : k E N,}, 

and 

respectively. 

We need the discrete maximum principle and the remark following it; we include them for 

clarity. 

THEOREM 2.2. Let f : NI,n-l x lR2 + R satisfy 

(i) f(k,a,, u) < f(k,t, ‘u), for all t < o!k, ‘u 2 ‘uk, 

(ii) f(k,Pk,U) > f(h&U), fOrad t > pk, 7f 2 Wkt 

where cx is a strict discrete lower solution and p is a strict discrete upper solution for prob- 

lem (1.1),(1.2) satisfying Q 5 p, Uk = Aaik, and wk = A@,, for k E Nl,+l. If y is a solution of 

problem (1.1),(1.2), then Q 5 y 5 p on Nn. 

PROOF. Suppose that y is a solution of (1.1),(1.2). We show that Q 5 y < p. Suppose, for 

example, that y3 < crj for some j E Nl,,_l. From the boundary conditions, we may assume 

that Q - y attains its positive maximum at k E Nl,n-l. Thus, uk = Aaik > Ayk = vk, and 

?_&+I = Aok+, 5 Ayk+i = ?&+I, SO that uk - vk 2 0, ?&+I - ?&+I I: 0, SO that A2yk+l = 

Yk+l -&+?/k_l >%+I -2ffk+Qk-1 = A2ffk+l. 

Since cy is a strict discrete lower solution for (l.l), yk < CQ, and uk 2 uk, it follows that 

A2yk+i = Yk+i - 2Yk + Yk-1 = -f(k, Yk, vk) P.9) 

< -f(k, ak, vk) (2.10) 

5 @+l - 2% + ok-1 = A2ak,i, (2.11) 

a contradiction. Thus, cy < y. Similarly, y 5 /3, and the result follows. 

By an almost identical proof, we have the following remark. 

REMARK 2.3. Let f : JV~,+~ x R2 --+ R, and let y be a solution of problem (l-1),(1.2). If a: is 

a strict discrete lower solution for problem (1.1),(1.2) with cy 5 y on N,, then cr < y on Nl,n-l. 
Similarly, if /3 is a strict upper solution of problem (1.1),(1.2) with y 5 /3 on N,, then y < fl on 

Ni,n-1. 

3. EXISTENCE OF SOLUTIONS 

THEOREM 3.1. Let f : Nl,n-l x IR2 ---f E% and assume that there exist two strict discrete lower 

solutions CYI and cv2 and two strict discrete upper solutions 01 and 02 for problem (1.1),(1.2,) 

satisfying 

(i) ~1 I a2 I P2, 

(ii) cri i Pi 502, and 
(iii) cti2 $ pi. 

Then problem (1.1),(1.2) has at least three solutions x, y, and z satisfying ~1 5 x 5 ,!?I, CPJ 5 

Y I ,&, and t $ Pi and 2 L o2. 

PROOF. We modify f for y not between crl and ps to obtain a second difference equation and 

reformulate the new problem as a summation equation. We show that solutions of the modified 
problem lie in the region where f is unmodified and hence are solutions of our problem. We 
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use Brouwer degree theory to prove existence of three solutions for the modified problem and 

compute the required Brouwer degrees using a homotopy and further modifications. 

Let L = p2 - g1 + 3 so that L > max{lAcu,,k/, IA&,1 : k E NI,,, i = 1,2}. Let 

dkYk>P) = f(~,~(YkrQ1.1;,P2,k),~(p,--L,L)) +T(y,Nl,li,~2,k,l): (3.1) 

where 7r and T are given by (2.1) and (2.2), respectively. Thus, k : til,,_, x R* + !A? satisfies 

!?(k &PI > f(k W,k, 4P, -L L)), for t < oi,~, p E R, (3.2) 

S(k, 6 Pi < f(k, PZ.k, +& -L, L)), for t > hk, p E R, and (3.3) 

Ig(k,t,P)l I M, for (k:t,p) E Ni.,_i x pS2, (3.4) 

and some constant M. Moreover, we may choose M so that Icrr/, I,& < 111 on N,,. 

Consider 

yk+l - 2Yk + Yk-1 + dkc, Y?i, vk) = 0, for all k E Nl,n_l_ (3.5) 

together with (1.2). It suffices to show that problem (3.5),(1.2) has three solutions n:, y, and z 

satisfying ai L .z I Pr, cr2 I y < 02, and z $ PI, 2 2 fy2 and CYI I t I ,& and lArn,/: jay,), 

lAi& 5 L for all k EN,,,, since f and g coincide in this region. 

Suppose that y is a solution of (3.5):(1.2). W e s h ow that y is a solution of (1.1). It suffices t,o 

show that cri < y 2 02 and that lAyk[ < L, for all k = 1,. ,u. 

From (3.2) and (3.3), it follows that g satisfies the assumptions of Theorem 2.2 with o1 = o 

and ,& = /?. It follows that cri < y 5 82. Thus, IAykj = Iyk - yfi-11 < p2 - ai < L for all 

k E Nl.,, so that y is the required solution. Similarly, 5 and z satisfy 01 < .z‘, z < 112 on N,,. 

Let a = {y E lP$+’ : llyl/ < n2M + L} and define K : !P+’ + R”-l at k E NL,7)-, by 

Thus, y E R n+l is a solution of (3.5) and (1.2) iff (I - CK)(y) = 0. Moreover, it is easy to see 

that CK(fi) c St. Thus, d(1 - CK, s1,O) = 1. 

Let fia2 = (y E n : y > a2 on n/l,,-,} and Ofi = {y E n : y < Pi on Nl,,_l}. Since o2 $ ,8,, 

a2 > -A/l, and /3i < M, it follows that Ofi1 # 0 # n,,, sip’ nafi2 = 0, and sl\{n,, u W} # 0. 

By Remark 2.3, there are no solutions y E an,, U L%%. Thus, 

d(l-CK, GO) = d (I- CK, s2 \ {%, u flfll}, 0) fd (I - CK, @‘, 0) +d (I - CK, 02,, , o) (3.6) 

Weshowthat d(l--CK,flol,O) = d(l-CK,f&,O) = 1. Tl~end(Z-CK,0\{~2,, U CFj1}:0) = -1. 

and there are solutions in n \ {&, U afll}, Oo1, and &,, as required. 

We show that d(I - CK, C12,, , 0) = 1. The proof that d(I - CK, 52;2a1, 0) = 1 is simiiar a.nd hence 

omitted. We define I - C.C, the extension to fi of the restriction of I - CK to fin.,. as follows. 

Let 

l(k, &P) = f(k, ~(6 Q2.k, i32.k), T(P, -L, L)) + T(t, ~2,k, B2.k. I), (3.7) 

for all (k,t,p) E Nl,n_l x IR2, where 7r and T are given by (4) and (5), respectjively. Thus, 

I : Nl..,-l x IR2 -+ IR satisfies 

l(k, t,p) > f(k,aa,,,, T(P, -L, L)), for t < @&k, p E iw, (3.8) 

l(k>t,p) < f(kh,k,@, -L,L)), for t > P2,k, P E R and (3.9) 

Il(k,t,p)l i M, for (k&p) E NI,+I x R2, (3.10) 

where M is given above. 
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Define C : RF+’ 4 RF’ at k E A!I,~_~ by 

Thus, y E R n+l is a solution of (I - CL)(y) = 0 iff y is a solution of 

Yk+l - %k + !/k-l + l(k,yk,Uk) = 0, for all k E NI,,-l, (3.11) 

together with (1.2). Arguing as before, y is a solution of (3.11),(1.2) iff y E &. Thus, d(1 - 

CL, 0 \ K, 0) = 0. Moreover, it is easy to see that CL(a) C Qt. Thus, d(1 - CL, fl,O) = 1. 

Thus, 

d(l-CK,f&,O) =d(I-CL,s&,,O) 

=d(I-CL,~\\a,,O) +d(l-CL,n2,,,0) 

=d(I-CL,~,O) = 1. 

Thus, there are three solutions, as required. 

As an application of Theorem 3.1, we have the followin, b = aeneralisation of Avery and Peter- 

son [8]. 

THEOREM 3.2. Assume there exist real numbers a, b, c, natural numbers e, n, a nonnegative, 

continuous function f, and let 02 be given by 

k E No,,, 

k E n/,,n-e, (3.12) 

where yk = b(-e2 + e + nk - k2)/(e(n - 2e + l)), for all k E N,. Assume that 

(i) 0 < a < b < c, 0 < e < n/2; 

(ii) f(y) < 8an -2 for all y E [4a(n - l)ne2, a], if n is even, and 

(ii)’ f(y) < 8a(n2 - 1)-l for all y E [4a(n + l)-‘,a], if n is odd; 

(iii) f(y) 2 2b/(e(n - 2e + l)), y E [b, b(n2 - 4e2 + 4e)/(4e(n - 2e + l))], if n is even, and 

(iii)’ f(y) 2 2b/(e(n - 2e + l)), y E [b, b(n2 - 4e2 + 4e - 1)/(4e(n - 2e + l))], if n is odd; 

(iv) f(y) 5 8cnW2 for all y E [4c(n - 1)n-2,c], if n is even, and 

(iv)’ f(y) 5 8c(n2 - 1)-i for all y E [4c(n + l)-r,c], if 7% is odd; 

(v) CQ is not a solution of (1.2),(1.3). 

Then problem (1.3),(1.2) has at least three solutions ~1, ~2, and y3 satisfying llyril < a, 02 1. y2, 

and I/y3/1 > a and ~3 L a2. 

PROOF. Let ~1 E 0 and cq be as given above. For even n, let Pi,k = 4ak(n - k)nT2, and 

fl2,k = 4ck(n - k)nw2, for k E N,. For odd n, let /&,k = 4ak(n - k)(n2 - l)-‘, and fl2.k = 

4ck(n - k)(n2 - 1)-l, for k EN,. 

Let Ui,k = Aoz.k and Wi,k = A&k, for i = 1,2 and k E nil,,. It is easy to check that 0 5 ,#i,k 

5 a and 0 5 fi2,k 5 c, for k E Nl,,. Moreover, A2&,k+i = -8anm2, and A2,&,k+i = -8cn-‘, 

for n even and k E Nl,,+l, while A2pi.k+i = -8a(n2 - 1)-l, and A2p2,k+i = -8c(n2 - 1)-l, 

for n odd and k E Nl,,-l. 
It follows that pi is a strict discrete upper solution and 02 is a discrete upper solution for 

problem (1.3),(1.2) such that /3i < @2 on Nl,+l. Now yk = kb/e for k E {e - l,e} and 
Yk = b(n - k)/e for k E {n - e,n - e + l} so that o(2 satisfies A20is,k+i = 0 1 -f(os,k), on 

N,,-i u Nn-e+l.n-1, and A202,k+i = -2b/(e(n - 2e + 1)) 2 --f(os,k) on N,,,,_, so that cy2 is 
a discrete lower solution for problem (1.3),( 1.2). 
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We show that 02,n/2 > pl,np if n is even and that CY~.J,~_~J/~ > /31,(71_l)/2 if 11 is odd. Since 

11 e 5 (n-1)/2, it followsthat (7~-2e)~-l 2 0, and thus 15 (n2-4e2+4e-l)/(&(lz-2e+l)). 

If n is even, then ~2.~12 > b(n2 - 4e” + 4e - 1)/(4e(n - 2e + 1)) 1 h > a = /71:~~/2. If 77. is odd, 

then ~2.+-1)/2 - ( > b n2 - 4e2 + 4e - 1)/(4e(n - 2e + 1)) L b > a = Pl,cn_l),2. 

Next we show that cy2 5 /32. First we show that Yk 5 p2.1, for k E N,_1,,_,.+1, when 1 < e 5 

(n - 1)/2. Now e - e2 5 0 and n - 2e + 1 > 1, so that 

Moreover, 

ok L b 
k(n - k) 

e(n - 2e + 1) ’ 
for k E J%-I,~-~+I 

o< 
12 - 1 

e(n - 2e + 1) ’ 
for e E NL,(~~--~)/z 

(3.13) 

(3.14) 

Assume first thn.t n is even. By (3.13) and the definition of ,92 for 71 wen, it suffices to show that 

b < 4”. 
e(n - 2e + 1) - n2 

(3.15) 

If b >4c(n - 1)/n2, then 

by (ii) and (iv), and (3.15) follows. If b < 4c(n - 1)/n2, then 

b 4c(n - 1) 4c 

e(n - 2e + 1) ’ n2e(n - 2~ + 1) ’ 7’ 

by (3.14), and the result follows for n even. 

Assume tha.t n is odd. By (3.13) and the definition of /?& for 1). odd. it suffices to show that 

b 4c 

e(7z - 2e + 1) ’ n2 - 1 
(3.16) 

If b 2 4c/(n + l), then 
2b 

< f(b) I &, e(n - 2e + 1) - 

by (ii)’ and (v)‘, and (3.16) follows. If b < 4c/(n + l), then 

b 4c 4c (11. - 1) 4c 

e(n - 2e + 1) ’ (77. + l)e(n - 2e + 1) ’ n2 - 1 e(n - 2e + 1) ’ (7~~ - 1)’ 

by (3.14), and the result follows for n odd. It follows that n2.k = n/k < P2.k on Nf,_l,,,_F+l, 
Next we show that a2.k = -j’k < 132,k on N,., and on NT,_,.,,. Since ~k2 and j$ arr symmrtric, 

it suffices to consider k E No,,. Now cr 2.0 = 0 = 32.0: n2,p = b = ye 5 ,!&, a.nd 

A2(LG.2,k+~ - Q~.I;+I) IO> for k E Nl.e_lT 

so P2.k - c12.l; 2 0, for k E No.,, by the discrete maximum principle. Thus, 02 5 ,$ on N,,. 

We show that there is no solution y of problem (1.3),(1.2) with y > c\‘L on NT,. antI yk = o~,~. 
for some k E Nl,7L_-1. Assume there is such a solution y. Thus, 

A2z/e+, = -f(~k) = -f(az.~c) I A2a2.k+1. 

and since yk = cQ1, and g 1 ~2, it follows that ?/k-l = n2.k_1 and yk+l = CL~,~+~. Iterat,iug 

this argument, it follows that y = ~2. contradicting Assumption (v). Thus. yk # CL~,~. for all?- 

k E Nl,,_l, as required. 



1246 J. HENDERSON AND H. B. THOMPSON 

Thus, the conditions of Theorem 3.1 are satisfied and there are three solutions of prob- 

lem (1.3),(1.2), as required. 

REMARK 3.3. Now APi,1 = 4a(n - 1)/n2, for n even, and Apr,r = 4a/(n + l), for n odd, and 

Acrrz,r = b/e. If b/e < 4a(n - 1)/n’, and n is even, or if b/e < 4a/(n + l), and n is odd, then 

Acu2.r < Apr.1 so that ~2 2 pi on N,, even though max{cyz.lc : k E Nn} > max{Pi,k : k E N,}. 
If b/e 2 4a(n - 1)/n2, and n is even, or if b/e 2 4a/(n + l), and n is odd, then Acr2.i > Apr.i, 

and we can show that crz 2 /3r on N,. 
Thus, assuming that f is Lipschitz and independent of Ayk, our existence result follows from [7, 

Corollary 2.4.21 by an argument similar to that in (7, Example 2.4.21, if b/e 2 4a(?2- 1)/n’, and n 

is even, or if b/e 2 4n/(n + l), and n is odd. It does not appear to follow by this a.rgument if 

b/e < 4a(n - 1)/n”, and n is even, or if b/e < 4a/(n + l), and n is odd. 

REMARK 3.4. The conditions of the precedin g theorem are sharp, as can be seen from the 

following example. 

EXAMPLE 3.5. We consider the case n and e are positive integers satisfying e = n/4. 

Let 11 > 0 he given and E satisfy 0 < E < min{q/8,4/[n(n + 4)]}. Let a = 1, b = 1 + 6, and 

c 2 211(1+c)/(n+2). Let a2 he given in Theorem 3.2, y = 2b/[e(n-2e+l)] = 16(1+e)/[n(n+2)], 

and r = max{az,k : 0 5 k 5 n} = (1+ e)(3n + 4)/(2n + 4). Th us, the conditions of Theorem 3.2 

hold everywhere except on [T - q/2,7], which is an interval of length less than 77, where 77 >‘O 

was arbitrary. 

Let 
for all y E (-oo, 11, 

for all y E [I, 1 + E], 

forallyE l+e,.-51, 
[ 

I 

Y(4.r - 71- 4Y) rl ’ forallyE ~-z,r--t , [ 1 
for all y E [T - z, co) 

(3.17) 

Thus, f 2 0 is Lipschitz continuous. Moreover, f(y) > y, for b < y 5 T - v/2, f(y) = 0 < 

Sall-2, for 0 2 y 5 a, and f(y) 5 y I: 8cn- 2, for 0 5 y 5 c. Thus, all the conditions of 

Theorem 3.2 are satisfied with e = n/4 except condition (iii), which fails on a subinterval of 

(7 - q/2, T - q), where 77 > 0 may be chosen as small as we please. 

We show that y G 0 is the only solution of problem (1.3),(1.2). 

Clearly, y = 0 is the only solution of problem (1.3),(1.2) with ]]y]] 5 1. Assume that y $ 0 

is a second solution with Ayi = 1. By the discrete maximum principle yk 2 0 for all k, since 

f 1 0, so yS = max{y, : 0 5 j < n} > 0. First, weshowthatl<y,<r--14. Ify,<l, 

then 0 5 yk 5 l? for all k = 0,. . . ,n, so A2yk+r = 0, for all k = 1,. . ,n - 1, so yk = lk, for all 

k = 0,. . . ,7x, a contradiction. 

If yS > r - 1714, then AyS 2 0 and A2yk+i = 0, while YI; 1 r - 7714. It follows that yk = 

yy + Ays(k - s), for k 2 s, a. contradiction. 

Thus, 1 < yS 5 r - 7714, and we may choose m > 0 such that yk < 1 for k 5 ‘rn - 1 and ym > 1. 

It follows as above that 

&y/c = 1, for 1 < k < m, 

yk = lk, for 0 5 k < m. 

Moreover, 

A’yk+l = -f(yk) 2 -y> (3.18) 
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so that 

AYk 2 1 - (k - m)y, and 

yk > lk - (k - ?rZ)(k - 771 + I);, 

(3.19) 

for all ‘In 5 k 5 n. (3.20) 

Let w satisfy 

A2wl,+, = 0, forl<k+; 

A2wl,+r = -7, for 12 < I;, 
4- 

4 
lug = 0, ATU, = - 

71 

Thus, 

4k 
?uk = -, 

n 

11 
forO<k< -. 

4 

fork>:, and 

fork>:. 

Therefore, 

‘G/z = { (2 + E) - 71(71+ 4)$} - 2E 

zz r-2E>7--rl 
4’ 

as E < 71/8. Moreover, 

A 
{ 

4(1 + E) n-Y 

> 

46 
w+ = ~-- __ 

71 4 71 

_Y 4E 

2 n 

We consider the cases 1 2 n/4 and 1 < 4172 separately. 

Assume 1 > 7114 so that m < n/4. We show that this leads to the contradiction Y,,~+,~/~ > 

T - q/4. Since I(nz + 11/4) 2 2, 

a contradiction. Thus, 2/n 5 1 < 4/n, so that 4/(71 + 4t) < 1 < 4/(7x + (t - 1)4), for t satisfying 

1 5 t 5 n/4 and, in particular, l(t - 1 + n/4) < 1 L I(t + 71/4). If yk > 7 - q/4, for some 

k _< n we are through, so assume that yk < r - 7214 for all k with 0 < k < II. J& &,~v 

that &A+ > y/2. Now AyYn/z = (Ayn/z - Awn,;?) + AuJ,,~, so that it suffices to show t,hat 
Aya/z - AuJ,,~ - 4~171 > 0. 

Now 

A~n/2 - Awn/2 - ; - >{l-[;-(t+;)]T}-{;-(5i)Y}-; 

by (3.19) and (3.21) as m = t + :, 
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4 

+z)-; 
=tr-4F 

I-L ’ as 1 2 (?X : 4t)’ 

> 32t(2t - 1) - 4cn(n + 4t) 
_ 

n(n + 4t)(n + 2) 

32 - 8cn2 

’ n(n + 4t)(n + 2) ’ 
since4tsn and t>l, 

> 0, 
4 

asc<---. 
n2 

Thus, ayn/2 > y/2, for 2/n < 1 < 4/n. If yk is a sohrtion with yk 5 r - n/4 for all k with 

0 2 k < 72, and uk = y+_k, for all k with 0 5 k 5 n, then u is a solution of problem (1.2),(1.3) 
satisfying uc = yn = 0, uk < r - 7714, and 

k/2 = -A~71/2+1 

= -Ayn/z + f(~n/z) 

<-;+5.=;, 

contradicting the previous argument. Since there are no solutions with ys 2 r - 714, it follows 

that there are no solutions y $ 0, as required. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 
10. 

11. 
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