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Abstract—We give conditions on f involving pairs of discrete lower and discrete upper solutions
which lead to the existence of at least three solutions of the discrete two-point boundary value problem
Yk+1 — 2Uk + Y1 + f(k yk,vk) =0, for k=1,....n — 1, yo = 0 = yn, where f is continuous and
v = Y — Yk-1, for k = 1,...,n. In the special case f(k,t,p) = f(t) > 0, we give growth conditions
on f and apply our general result to show the existence of three positive solutions. We give an
example showing this latter result is sharp. Our results extend those of Avery and Peterson and are
in the spirit of our results for the continuous analogue. (© 2002 Elsevier Science Ltd. All rights
reserved.

Keywords—Brouwer degree, Discrete two-point boundary value problems, Discrete lower solu-
tions, Discrete upper solutions.

1. INTRODUCTION

In this paper, we consider two-point boundary value problems for second-order difference equa-
tions of the form

Aypyy + flk,yk,vx) = 0, fork=1,...,n-1, (1.1)
Yo =0 =y, (1.2)

where f : {1,...,77,—1}><]R2 — R is continuous, AZka = Yk+1 — 22Uk +Yk-1,fork=1,...,n—1,
and vg = Yk — Yr-1, for k=1,...,n.
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We also consider the special case of {1.1)
A%ypi1 + flyr) =0, fork=1,...,n-1, (1.3)

where f > 0.

We give sufficient conditions on f for these boundary value problems to have three solutions;
by a solution y of (1.1), we mean a vector ¥ = (yp,...,yn) satisfying (1.1) for k=1,...,n - 1.

Leggett and Williams [1] developed a fixed-point theorem using the fixed-point index in or-
dered Banach spaces. They applied their fixed-point theorem to prove existence of three positive
solutions for Hammerstein integral equations of the form y = [, G(x, s)f(s,y(s)) ds, @ C R™, by
making use of suitable inequalities they imposed on the kernel G and on f. Green’s functions for
differential operators closely related to our problem satisfy these inequalities. Avery [2] used the
Leggett and Williams approach to study problem (1.3),(1.2}. Sun and Sun [3] gave an extension
of the Leggett-Williams multiple fixed-point theorem on ordered Banach spaces. They also used
the fixed-point index in ordered Banach spaces but gave no applications to differential equations.

Motivated by the papers of Leggett and Williams and of Sun and Sun, Anderson [4] applied
the integral equation approach to a third-order problem —z"’(t) + f(z(t)) = 0, z(0) = 2'(0) =
z”(1) = 0. Again the Green’s function satisfies inequalities similar to those in [1]. In [5], we
used this approach to study the n*h-order equation (™ + f(y) = 0, together with the boundary
conditions y¥(0) = 0 = y(1), for i = 0,...,n — 2, and also with the boundary conditions
y0)=0=9y""2(1), fori=0,...,n—2.

In the current work, we show there are three solutions if there exist two discrete lower solu-
tions oy and ap and two discrete upper solutions 3; and g8, for problem (1.1),(1.2) satisfying
ay < ap, By < Bo. In the special case f(k,t,p) = f(t) = 0, we give growth conditions on f which
guarantee the existence of three positive solutions. We give an example showing this latter result
is sharp.

We follow the approach we adopted in {6] for the continuous analogue of problem (1.1),(1.2) and
of problem (1.3),(1.2). There we modified f for y outside of [a1, 82} and formulated the modified
continuous analogues as integral equations. We used Schauder degree on a suitable open set in
function space to show there are three solutions. Here we proceed similarly modifying f for ¢
outside of [a1, 82] and formulate the modified problem (1.1),(1.2) as a summation equation. We
use Brouwer degree on suitable open set in R™*! to show there are three solutions. In the special
case of problem (1.3),(1.2), we construct discrete lower and discrete upper solutions and apply
our general result to show there are three positive solutions. A novel feature of our work is that
we do not require that 8y < ag on {0,...,n}. Further, we use Brouwer degree theory rather
than the Leggett-Williams or the Sun-Sun fixed-point theorems and allow the right-hand side to
depend on k and vg. Moreover, it would have been possible to give a proof modelled on that in (7,
Example 2.4.2] which uses [7, Corollary 2.4.2] and is based on monotone mappings in ordered
Banach spaces. Using this approach, we could not allow f to depend on v, although we could
allow it to depend on k. On the other hand, the monotone mappings approach has the advantage
of providing a convergent sequence of approximate solutions which provide reasonable accuracy.

Our results extend those of Avery and Peterson [8] who studied problem (1.3),{1.2) using the
Sun-Sun fixed-point theorem. For more information on multiple solutions of problem (1.1),(1.2),
its continuous analogue, and related results, see [2,7,8] and the references therein. For more
information on difference equations, see the books by Agarwal [9], Elaydi [10], and Kelly and
Peterson [11], and the references therein.

2. BACKGROUND NOTATION AND DEFINITIONS

In order to state our results, we need some notation.
We denote the closure of a set 7" by T and its boundary by 7. As usual, C™(A; B) denotes the
space of m times continuously differentiable functions from A to B endowed with the maximum
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norm. In the case of continuous functions, we abbreviate this to C(4; B). In the case B = R,
we omit the B. Let A be the nonnegative integers. If n € A" and I C R is an interval, then by
nelwemeann € INN. Welet N;j ={keN i<k <j}and N,, = Ny,. For any vector
§=(Sp,...,8,) € R"1 we set 5 =max{sy: k € N}, s =min{sg : k € N}, Asp = sg — Sp—1,
for k € M n, and AZ%spq = A(ASkt1) = Sgp1 — 28k + Sk—1, for k € Np 1. We write s < z if
sy <z, for k € N, where z = (z9,...,2,) € R**L. If ¢ € R is a constant, then we identify ¢
and (cg,...,cn), where cx = ¢, for all k € N, and the meaning is clear from the context. For
y € R**! we define the maximum norm, |ly||, by |ly]| = max{|yk| : y = (yo.....un), k € Ny,}. Let
Rt = {y e R"! iy = (0,y1,...,Yn—1,0)}. If A is a bounded open subset of R*+!, p € R*+!
F € C(A;R™1), and p ¢ F(DA), we denote the Brouwer degree of F on A at p by d(F, A,p).

It is common in the proofs of existence of solutions of two-point boundary value problems
for (1.1) to modify f. We will do this making use of the following functions (see [6]).

If ¢ < d are given, let 7 : R — [¢, d] be the retraction given by

m(y, ¢, d) = max{min{d, y},c}. (2.1)

For each € > 0, let A € C(R] satisfy
(i) tK(t,€) <0, for all t # 0,
(ii) K(0,¢) =0, and
(iit) |K(t,€)] < e for all t.
If ¢ < d and € > 0 are given, let T' € C(R) be given by

T(y,c.d,e) = K(y — w(y,c,d),¢). (2.2)

We will need the Greens function for the problem

A2yk+1 +9c =0, for k € NI,nAl, (2.3)
Yo =0, Yn =0,

where g = (g1,...,9n-1) € R*™! and the solution y € R"*'. The Greens function, Q : N, x
M n-1 — R, is given by

(n—k)—, forall0<:<k<n,

S|

Q(k, 1) =

3|

(n—1)
Thus, we define C : R*~! — R**! by

, forall0<k<i<n.

n—1
C(@) =D Q(k,i)pi,  for k€N, (2.5)

i=1
for all ¢ € R*~1. Thus, y is a solution of problem (2.3),(2.4) if and only if
y—Clg) =0. (2.6)
Moreover, C is continuous.
DEFINITION 2.1. We call « a strict discrete lower solution for (1.1) if there is v > 0 such that
Aoy + fk,on,u) > 7, (2.7)

for all k € N1,-1 and u < ux, where up = Aoy, for allk € N .
Similarly, we call 3 a strict discrete upper solution for (1.1) if we replace (2.7) by

A26k+1 + f(kvﬁkv 'UJ) S -7, (28)

for all k € M1 ,-1 and w < wy, where wy, = ABy, for all k € N .,.
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We say a (8) is a strict discrete lower (a strict discrete upper) solution for (1.1),(1.2) if in
addition ag <0 and o, <0 (Bp > 0 and B, > 0). If vy = 0, we omit the word “strict”.

If there exist a discrete lower solution, ¢, and discrete upper solution, G, for (1.1),(1.2) satisfying
a < 8, then we define 3 and o by

B =max{f: k€ N,}, and
a = min{ay : k € My},

respectively.
We need the discrete maximum principle and the remark following it; we include them for
clarity.

THEOREM 2.2. Let f : N1 n—1 x R? — R satisfy

(i) flk,ox,u) < f(k,t,u), for all t < oy, v < uy,

(ii) f(k,Bk,u) > f(k,t,u), for allt > fr, u > wy,
where o is a strict discrete lower solution and f3 is a strict discrete upper solution for prob-
lem (1.1),(1.2) satisfying o < 83, ug = Doy, and wy = Afy, for k € Nin—1. Ify is a solution of
problem (1.1),(1.2), then o <y < § on N,.
PROOF. Suppose that y is a solution of (1.1),(1.2). We show that @ < y < §. Suppose, for
example, that y; < o; for some j € Nin-1. From the boundary conditions, we may assume
that o — y attains its positive maximum at k € M 1. Thus, wx = Aoy > Ayx = v, and
Ups1 = Aagyr < Ayrs1 = Vg1, 50 that ug — vk 2 0, upyr — Uk < 0, so that A%yeyy =
Y1 — 20k + Yo—1 = Qg1 — 20k + ap_y = A%agqy.

Since « is a strict discrete lower solution for (1.1), yx < ag, and ux > vk, it follows that

A%yt = Yea1 — 20k + Yk—1 = —F (&, Uk, vk) (2.9)
< —f(k, o, vk) (2.10)
< @iyt — 200 + ap-1 = Aoy, (2.11)

a contradiction. Thus, o < y. Similarly, y < 3, and the result follows.

By an almost identical proof, we have the following remark.
REMARK 2.3. Let f: M1 x R2 — R, and let y be a solution of problem (1.1),(1.2). If o is
a strict discrete lower solution for problem (1.1),(1.2) with & <y on M, then & < y on My 1.

Similarly, if 3 is a strict upper solution of problem (1.1),(1.2) with y < 8 on A/, then y < 3 on
Nl,n—1~

3. EXISTENCE OF SOLUTIONS

THEOREM 3.1. Let f: Njp_q X R2 — R and assume that there exist two strict discrete lower
solutions a7 and oy and two strict discrete upper solutions (1 and (3 for problem (1.1),(1.2)
satisfying

(i) o1 < az < fo,

(i) ar £ B1 < Bq, and

(iii) a2 £ G1.
Then problem (1.1),(1.2) has at least three solutions x, y, and z satisfying cy <z < f1, a2 <
y < Bq, and z £ By and z Z 2.
PROOF. We modify f for y not between o; and $; to obtain a second difference equation and
reformulate the new problem as a summation equation. We show that solutions of the modified
problem lie in the region where f is unmodified and hence are solutions of our problem. We
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use Brouwer degree theory to prove existence of three solutions for the modified problem and
compute the required Brouwer degrees using a homotopy and further modifications.
Let L = B, — a; + 3 so that L > max{|Ac x|, |ABik| : b € Mn, i = 1,2}. Let

g(k7 yk’p) = f(k7 Tr(yka al,]ﬁ /62,1:)7 77(1), "Lv L)) + T(y, (117}5, ﬁ?f}c, 1) (31)

where 7 and T are given by (2.1) and (2.2), respectively. Thus, k: M} ,_; x R? — R satisfies

g(k‘vtvp) > f(kaal,k’ﬂ'(pv —L7L))7 fOI‘ t < al,lm p S Ra (32)
glk,t,p) < flk,Bax,m(p,—L, L)), fort > for, peER, and (3.3)
lg(k,t,p)] < M, for (k,t,p) € Nin_1 x R?, (3.4)

and some constant A{. Moreover, we may choose M so that |ay],|f82] < M on N,,.
Consider
Yol — 2ux + yr—1 + g{k, yr,vi) = 0, forall k € M, 1, (3.5)

together with (1.2). It suffices to show that problem (3.5),(1.2) has three solutions z, y, and z
satisfying oy <z < By, ap Sy < B, and 2 £ B, 2 2 o and o7 < z < By and Az, |Ayel,
|Azk| < L for all k € Ay, since f and g coincide in this region.

Suppose that y is a solution of (3.5),(1.2). We show that y is a solution of (1.1). It suffices to
show that oy <y < 2 and that |[Ayy| < L, forall k=1,...,n.

From (3.2) and (3.3), it follows that g satisfies the assumptions of Theorem 2.2 with a; = a
and B2 = 8. It follows that oy < y < Bo. Thus, |[Ayk| = |yx — yr-1] < By — oy < L for all
k € Nin, so that y is the required solution. Similarly, z and z satisfy a; < z, z < % on N,,.

Let Q@ = {y € R;*' . ||y|| < n?M + L} and define K : R**! — R* 4 at k € A, by

K(d)k = gk, dx, Adr).

Thus, y € R™*! is a solution of (3.5) and (1.2) iff (/ — CK)(y) = 0. Moreover, it is easy to sce
that CK(€2) C . Thus, d(I — CK, Q2,0) = 1.

Let o, ={y € Q:y>aonNi,1}and Q% = {y € Q:y < B on Vi ,_,}. Since as € 31,
ay > —M, and §; < M, it follows that % # 0 # Q.,, 07 N8, =0, and O\ [0, UQE] £ 0.

By Remark 2.3, there are no solutions y € 8Q,, U 8Q°t. Thus,
d(I-CK,Q,0) =d (1 —CK,Q\ {Q, UQBY, 0) +d (I - CK,Q%,0)+d (I - CK,Q,,.0). (3.6)

We show that d(J-CK,2%',0) = d(I-CK, Qq,,0) = 1. Then d(I-CK, Q\{Q,, UQ} 0) = —1
and there are solutions in Q \ {24, U2}, QP and Q,,,, as required.
We show that d(I —CK, Q,,,0) = 1. The proof that d(I — CK, 21,0} = 1 is similar and hence
omitted. We define I — CL, the extension to € of the restriction of I — CK to QM, as follows.
Let

N

l(k, t,p) = f(/f7 7r(t, a9k, ﬂg{k), 7r(p, —-L, L)) + T(t, a3k, B2k, 1), (37)

for all (k,t,p) € Nin_y x R?, where 7 and T are given by (4) and (5), respectively. Thus,
[: Nin_1 x R? = R satisfies

l{k,t,p) > f(k,opk,7m(p,—~L,L)), fort <opy, peR, (3.8)
I(k,t,p) < f(k, B2k, m(p,—L, L)), fort > fak, peR, and (3.9)
[k, t,p)] < M, for (k,t,p) € M n1 x R, (3.10)

where M is given above.
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Define £ : R*"*! - R Yat ke M, by
L(P)r = Uk, r, D).
Thus, y € R®*! is a solution of (I —CL)(y) = 0 iff y is a solution of
Yet1 — 2Uk + Yp—1 + Lk, Yk, vi) = 0, for all k € M n_1, (3.11)

together with (1.2). Arguing as before, y is a solution of (3.11),(1.2) iff y € Q,,. Thus, d(I —
CL, 0\ Q,,,0) = 0. Moreover, it is easy to see that CL(2) C €. Thus, d(I — CL,9,0) = 1.
Thus,

d(I - CK,Q,,0) = d(I - CL,y,,0)
=d(I-CL,R\ Dy, 0) +d(I - CL, Ny, ,0)
=d(I -CL,0,0) =1.

Thus, there are three solutions, as required.

As an application of Theorem 3.1, we have the following generalisation of Avery and Peter-
son [8].
THEOREM 3.2. Assume there exist real numbers a, b, ¢, natural numbers e, n, a nonnegative,
continuous function f, and let ay be given by

kb
?7 k S No,e,

Q2 = Yk ke Ne,n—ea (3.12)
b_(nT_ki)-u k: E Nn—e,na

where v, = b(—e? + e + nk — k?)/(e(n — 2e + 1)), for all k € N,,. Assume that

(i) 0<a<b<ec 0<e<n/2;

(ii) f(y) <8an~? for all y € [da(n — 1)n=2,a, if n is even, and

(i) f(y) < 8a(n?—1)7! for all y € [da(n + 1)7,a}, if n is odd;

(i) f(y) > 2b/(e(n —2e+ 1)), y € [b,b(n? — 4e? + 4de)/(de(n — 2e + 1))], if n is even, and

(iily f(y) = 2b/{e(n—2e+1)),y€ b, b(n? — 4e? + 4e — 1)/(4e(n — 2e + 1))}, if n is odd;

(iv) f(y) <8cn=? for all y € [4c(n — )n=2,¢], if n is even, and

(iv) f(y) <8c(n?~1)"! for all y € [de(n+1)71, ¢}, if n is odd;

(v) a2 is not a solution of (1.2),(1.3).

Then problem (1.3),(1.2) has at least three solutions y1, y2, and y3 satisfying |[y1]| < a, aa < yo,
and |lys|l > a and ys 2 oo.

PROOF. Let a; = 0 and a2 be as given above. For even n, let f1x = 4ak(n — k)n‘z, and
Bax = 4ck(n — k)n~2, for k € N,. For odd n, let B4 = 4ak(n — k)(n? — 1)7', and foy =
4ck(n — k)(n® —1)71, for k € M.

Let u; p = Ak and w; g = AfByk, for i = 1,2 and k € M n. It is easy to check that 0 < 8y«
<aand 0 < oy <, for k € Ny ,,. Moreover, A28 11 = —8an™2, and A?fg 341 = —8en™2,
for n even and k € Ny 1, while A28 py1 = —8a(n? — 1)1, and A235 k41 = —8¢(n? — 1)71,
for n odd and k € N1 1.

It follows that [3; is a strict discrete upper solution and [, is a discrete upper solution for
problem (1.3),(1.2) such that 8; < B2 on My ,—1. Now v, = kb/e for k € {e —1,e} and
v = b{n —k)/e for k € {n — e,n — e + 1} so that oy satisfies Ay k1 = 0 > —flagk), on
Mie-1 UNp—etin-1, and A2ag 1 = —2b/(e(n — 2e + 1)) > —f(azx) on Nen_. so that az is
a discrete lower solution for problem (1.3),(1.2).
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We show that ag /2 > Binse if n is even and that ag (n_1y/2 > 81 (n-1)2 if n is odd. Since
1< e < (n—1)/2, it follows that (n—2e)2—~1 > 0, and thus 1 < (n?—4e?+4e—1)/(de(n—2e+1)).
If n is even, then as /0 > b(n® — 4e? +4e —1)/(de(n —2e + 1)) = b > a = By /2. If n is odd,
then ag (n_1)/2 = b(n? —de* +4e—1)/(de(n —2e + 1)) 2 b > a =B (n-1)/2.

Next we show that as < B,. First we show that vy < Bay, for k € Ne_1p—er1, when 1 <e <
(n—1)/2. Now e —e* <0andn—2e+1>1, so that

k(n —k)

_— for k e ln—edl- .
e(n_26+1), or k € N, 1n—etl (313)

Ve <

Moreover,

n—1
< =, for e € Ny (n— . 3.14
e(n_ze_*_l)r or e 1,( 1)/2 ( )

Assume first that n is even. By (3.13) and the definition of 3, for n even, it suffices to show that

b 4c

—_— < 3.15
eln—2e+1) = n? (3.15)

If b > 4e(n — 1)/n?, then
2b 4c
_— < fh < —
e(n —2e+1) s f0) = n?’

by (ii) and (iv), and (3.15) follows. If b < 4e(n — 1)/n?, then

b < de(n — 1) < 4c
eln—2e+1) 7 nle(n—2e+1) = n?’

by (3.14), and the result follows for n even.
Assume that n is odd. By (3.13) and the definition of 82 for n odd, it suffices to show that
b < 140 '

eln—2e+1) ~ n?-1

(3.16)

If b > 4¢/(n + 1), then

2b de
e(n—2e+1) < )= (n? -1y’

by (ii)" and (v)’, and (3.16) follows. If b < 4¢/(n + 1), then

b < dc < de (n—1) o de
e(n—2e+1) 7 (n+le(n—2e+1) " n2-—le(n—2e+1) ~ (n2-1)

by (3.14), and the result follows for n odd. It follows that as g = v < fHak on Noo1,—eq1.
Next we show that asr = v < 8o on Ny, and on N, .. Since ap and 3y are symmetric,
it suffices to consider k € My .. Now ang =0 = Bag, age =b =, < o, and

A*(Ba k41 — Q1) < 0, for k € Moy,

$0 B2k — oy > 0, for k € Ny, by the discrete maximum principle. Thus, as < 35 on N,,.
We show that there is no solution y of problem (1.3),(1.2) with y > a9 on M, and y = aap.
for some k € A}, _1. Assume there is such a solution y. Thus,

APyisr = —f(yk) = — flaag) < Alag gy,

and since yr = ag and y > oy, it follows that yx1 = az -1 and yp41 = awppr. Iterating
this argument, it follows that y = g, contradicting Assumption (v). Thus, yr # as for any
k € Ny n_1, as required.
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Thus, the conditions of Theorem 3.1 are satisfied and there are three solutions of prob-
lem (1.3),(1.2), as required.

REMARK 3.3. Now Ay = da(n — 1)/n?, for n even, and ABy; = 4a/(n + 1), for n odd, and
Ay, = bje. If bje < da(n —1)/n?, and n is even, or if b/e < 4a/(n + 1), and n is odd, then
Acang < APy so that ag # B on N, even though max{as i : k € N} > max{B 4 : k € N, }.
If b/e > da(n — 1)/n?, and n is even, or if b/e > 4a/(n + 1), and n is odd, then Aaz; > AB; 4,
and we can show that as > (7 on N,.

Thus, assuming that f is Lipschitz and independent of Ayy, our existence result follows from (7,
Corollary 2.4.2] by an argument similar to that in {7, Example 2.4.2], if b/e > 4a(n—1)/n?, and n
is even, or if b/e > 4a/(n + 1), and n is odd. It does not appear to follow by this argument if
b/e < da(n —1)/n?, and n is even, or if b/e < 4a/(n + 1), and n is odd.

REMARK 3.4. The conditions of the preceding theorem are sharp, as can be seen from the
following example.

EXAMPLE 3.5. We consider the case n and e are positive integers satisfying e = n/4.

Let 7 > 0 be given and ¢ satisfy 0 < ¢ < min{n/8,4/[n(n+4)]}. Let a =1,b =1+¢, and
e > 2n(l+¢€)/(n+2). Let as be given in Theorem 3.2, v = 2b/[e(n—2e+1)] = 16(1+¢)/[n(n+2)],
and 7 = max{ag : 0 < k <n} = (1+¢€)(3n+4)/(2n +4). Thus, the conditions of Theorem 3.2
hold everywhere except on [r — /2, 7], which is an interval of length less than 5, where n >-0
was arbitrary.

Let
0, for all y € (=00, 1],
-1

7_(-‘/_6_), for all y € [1,1+¢],

n
f(y) = PY’ for all y € l:l + er- _2‘} i (3.17)
(41 —n - 4y) 1.0
ST gorall — 5T T 7
1 , fora VG[T 2" 4]’
0, forallyG[T—gv(’O)'

Thus, f > 0 is Lipschitz continuous. Moreover, f(y) > v, for b <y <7 -1n/2, f(y) =0 <
8an~2, for 0 < y < a, and f(y) < v < 8n72, for 0 < y < ¢ Thus, all the conditions of
Theorem 3.2 are satisfied with e = n/4 except condition (iii), which fails on a subinterval of
(r ~n/2,7 —n), where > 0 may be chosen as small as we please.

We show that i = 0 is the only solution of problem (1.3),(1.2).

Clearly, y = 0 is the only solution of problem (1.3),(1.2) with |ly|| < 1. Assume that y # 0
is a second solution with Ay; = . By the discrete maximum principle y > 0 for all k, since
f >0,s0y, = max{y; : 0 < j < n} > 0. First, we show that 1 <y, <7 —-n/d. Ify, <1,
then 0 <y, <1, forall k=0,...,n, so Ay =0, forallk =1,....,n—1, so yp = lk, for all
k =0,...,n, a contradiction.

If y, > 7 — 71/4, then Ays > 0 and A%yg;; = 0, while yr > 7 — /4. It follows that y =
ys + Ays(k — s), for k > s, a contradiction.

Thus, 1 < y, < 7—7n/4, and we may choose m > 0 such that y, < 1for k <m—1and y, > 1.
It follows as above that

Ay, =1, for1<k<m,
yr = Lk, for0<k<m.

Moreover,
Alyryr = —f(ye) = =, (3.18)
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so that
Ayp > 11— (k—m)y, and (3.19)
ye > 1k — (K —m)(k —m+ 1)%, forall m < k <n. (3.20)
Let w satisfy
Ay =0, for 1 < k < 14% -1,

n
Awey = —7, for 1 <k,

4
Wy = 0, Awl = —
n
Thus,
wk=4—k, forOSkSE,
n 4
4 n n
= = - B > :
Awy, - (k 4) Y, for k > T and
4k ny (k+1—n/4) n
A L S L) .7 S N A
k= (k 4) 3 o orr ey
Therefore,

Wpyg = {(2 +e) = n{n+ 4)%} — 2¢

ZT—26>T-E,

as € < /8. Moreover,

41 +¢e) ny 4e
A“’n/‘z:{ PR
7 e

2 n

We consider the cases I > n/4 and | < 4/n separately.
Assume [ > n/4 so that m < n/4. We show that this leads to the contradiction Ymtnjs >
T —n/4. Since I(m +n/4) > 2,

n{n/d4+ 1)y

1 >1 (m + n)
Yminj4a 2 1 )

2 Wy > T — Q.

1

a contradiction. Thus, 2/n <1 < 4/n, so that 4/(n +4t) <1 < 4/(n+ (t - 1)4), for ¢ satisfying

1 <t < n/4 and, in particular, [(t — 1+ n/4) <1 < (t+n/4). If p > 7 — /4, for some

k < n we are through, so assume that y, < 7 — n/4 for all k with 0 < k < n. We show

that Ay, /e > v/2. Now Ay, = (Aynse — Awyn) + Awy, o, so that it suffices to show that
AYns2 — Dwy, o — 4e/n> 0.

Now
4e n n 4 n n de
oo =vn =22 1= - (e )]} - {2 G-} - &
Yn/2 Wn/2 n—l 2 (+4>7 n 2 47 n
n

by (3.19) and (3.21) as m =t + 7
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4 4 de 4

Z(n+4t)—a:m-;{’ aLszz(nJr-ZhS)7
32t(2t — 1) — den(n + 4t)

- n(n+ 4t} (n+2)

32 — 8en? .
> m, since 4t <n and t>1,
>0, as € < -4—2

n

Thus, Aynse > v/2, for 2/n <1 < 4/n. If y; is a solution with yx < 7 —n/4 for all k with

0 <k <n,and vy = Yn—k, for all k& with 0 < k < n, then v is a solution of problem (1.2),(1.3)
satisfying vg = y, =0, vp <7 — /4, and

Avn/? = _Ayn/2+1

_Ayn/Z +f(yn/2)
T2
< 2 +7= 5

I

contradicting the previous argument. Since there are no solutions with ys > 7 — /4, it follows
that there are no solutions y # 0, as required.
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