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SUMMARY

Accumulating evidence suggests that many brain
diseases are associated with defects in neuronal
migration, suggesting that this step of neurogenesis
is critical for brain organization. However, the molec-
ular mechanisms underlying neuronal migration
remain largely unknown. Here, we identified the
zinc-finger transcriptional repressor RP58 as a key
regulator of neuronal migration via multipolar-to-
bipolar transition. RP58�/� neurons exhibited severe
defects in the formation of leading processes and
never shifted to the locomotion mode. Cre-mediated
deletion of RP58 using in utero electroporation in
RP58flox/flox mice revealed that RP58 functions in
cell-autonomous multipolar-to-bipolar transition,
independent of cell-cycle exit. Finally, we found
that RP58 represses Ngn2 transcription to regulate
the Ngn2-Rnd2 pathway; Ngn2 knockdown rescued
migration defects of the RP58�/� neurons. Our find-
ings highlight the critical role of RP58 in multipolar-
to-bipolar transition via suppression of the Ngn2-
Rnd2 pathway in the developing cerebral cortex.

INTRODUCTION

Proper neuronal migration is critical for brain organization. It is

known that defects in neuronal migration during embryogenesis

are related not only to brain malformation but also to psychiatric

disorder (Kähler et al., 2008; Verrotti et al., 2010; Liu, 2011).

However, the genetic and developmental pathways that regulate

neuronal migration remain to be elucidated. During glutamater-

gic neurogenesis, newborn neurons migrate from the ventricular

zone (VZ) toward the pial surface. This process comprises

several steps: proliferation of progenitor cells in the VZ and their
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cycle exit and differentiation, multipolar migration in the subven-

tricular zone (SVZ) and intermediate zone, and radial migration in

the cortical plate after multipolar-to-bipolar transition. Many

genes reportedly participate in each step of neurogenesis

(Hevner et al., 2006; Guillemot, 2007; Barnes and Polleux,

2009). In particular, many transcription factors play key roles

as molecular switches in regulating the gene expression of

downstream effectors to control this process. For example,

Pax6 (Georgala et al., 2011) and Sox2 (Hutton and Pevny,

2011) are expressed in neural progenitor cells. Ngn2 plays an

important role in the specification of glutamatergic neurodiffer-

entiation (Fode et al., 2000) and regulation of neuronal migration

(Hand et al., 2005; Ge et al., 2006; Heng et al., 2008). It activates

downstream effector genes Tbr2(Eomes) andNeuroD in interme-

diate progenitor cells and postmitotic neurons (Hevner et al.,

2006; Seo et al., 2007; Ochiai et al., 2009). Besides Ngn2,

Brn1/2 and REST are also involved in neuronal migration

(Sugitani et al., 2002; Mandel et al., 2011). Each of these tran-

scription factors is expressed in certain cell populations during

neurogenesis. Therefore, in normal cortical development, every

step of neurogenesis involves precise temporal regulation of

the gene expressions of downstream effectors. However, the

molecular mechanisms underlying such regulation are not yet

clearly understood.

RP58, a zinc-finger transcriptional repressor belonging to the

BTB/POZ-domain family (Aoki et al., 1998), is highly expressed

in the developing cerebral cortex (Ohtaka-Maruyama et al.,

2007). RP58 is a downstream target of Ngn2 (Seo et al., 2007)

and is prominently activated in multipolar migrating cells in the

embryonic cortex. Here, we report that RP58 controls neuronal

migration via the regulation of multipolar-to-bipolar conversion

in the developing cerebral cortex, in addition to its role in cell-

cycle exit of progenitor cells (Okado et al., 2009; Hirai et al.,

2012). RP58�/� brains show severe defects in neuronal migra-

tion through failed repression ofNgn2 as a downstream effector.

Ngn2, a proneural basic-helix-loop-helix (bHLH) transcriptional

activator, is known as amaster regulatory factor in glutamatergic
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neuronal differentiation. It is transiently expressed in committed

neuronal progenitor cells (Ochiai et al., 2009) and downregulated

in postmitotic neurons after activating many target genes,

including RP58 and Rnd2 (Seo et al., 2007; Heng et al., 2008;

Gohlke et al., 2008). Our study reveals that negative feedback

regulation of Ngn2 transcription by RP58 is important for main-

taining the Ngn2-Rnd2 pathway at an appropriate level and plays

an essential role in promoting normal neuronal migration in the

developing cerebral cortex.

RESULTS

RP58 Controls Neuronal Migration in the Developing
Cerebral Cortex
RP58 is strongly expressed in the developing cerebral cortex,

especially on E15–16, during which extensive neuronal produc-

tion, as well as migration of new cortical neurons, occurs

(Ohtaka-Maruyama et al., 2007; Figure S1A). RP58 is expressed

in a fraction of progenitor cells, and it is specifically expressed in

excitatory glutamatergic neurons from the embryonic stage to

adulthood (Ohtaka-Maruyama et al., 2007; Okado et al., 2009).

Birthdating experiments with bromodeoxyuridine (BrdU) sug-

gest the involvement of RP58 in cell-cycle exit of neural progen-

itor cells and neuronal migration of late-born neurons (Okado

et al., 2009; Figures S1B and S1C). The mechanism underlying

cell-cycle exit has been elucidated elsewhere (Hirai et al.,

2012), whereas the details of its function in migration remain

unknown.

To clarify the role of RP58 in neuronal migration, we first inves-

tigated neuronal migration in RP58�/� mouse brains by in utero

electroporation. Green-fluorescent-protein (GFP)-positive elec-

troporated cells showed severely impaired migration compared

with wild-type (WT) cells (Figure 1A). Few GFP-positive cells had

reached the pial surface 3 days after electroporation in RP58�/�

brains. However, this defect was completely rescued by coelec-

troporation of RP58-expression plasmids (Figures 1A and S1F).

To determine whether small-interfering-RNA (siRNA)-medi-

ated knockdown ofRP58 affects neuronal migration inWT brains

(Figures S1D and S1E), we chose two small-hairpin RNA (shRNA)

constructs (#30 and #36) that effectively inhibited RP58 expres-

sion (Figure S1D), performed in utero electroporation on E14,

and harvested the brains on E17 (Figure S1E). RP58 knockdown

resulted in migration defects, suggesting that RP58 has cell-

autonomous functions in neuronal migration. GLAST and nestin

immunostaining suggested that radial glial fibers of RP58�/�

brains remained intact (Figures 1B and S1G). Magnified images

revealed that RP58�/� brains coelectroporated with the RP58-

expression plasmids had normal cell shape and migration

(Figure 1C).

One characteristic of the defects observed in RP58�/� brains

is the increased population of Pax6-positive neural and Tbr2-

positive immature intermediate progenitor cells (Okado et al.,

2009), suggesting that RP58 controls the neural progenitor

kinetics. Ki67 and Tbr2 immunostaining revealed that the

increased population of Ki67- and Tbr2-positive cells in the VZ

of RP58�/� brains was normalized by electroporation of the

RP58-expression plasmids (Figures 2A and 2C). This normaliza-

tion occurred only in the GFP-positive electroporated regions
C

(Figure S2B). To confirm the rescue of the increase in neural-

progenitor proliferation, BrdU immunostaining was performed

2 hr before harvesting E17 brains (electroporated on E14). The

increased ratio of BrdU-positive cells to GFP-positive cells

normally observed in RP58�/� brains normalized in the brains

electroporated with the RP58-expression plasmids (Figure S2).

These results suggest that extrinsic expression of RP58 rescues

the abnormal increase in neural-progenitor proliferation ob-

served in the RP58�/� VZ.

GFP-positive RP58�/� cells located above the VZ were Ki67

negative (Figure 2B), suggesting a functional role for RP58 in

neuronal migration. However, the migration defect of RP58�/�

neurons may be attributable to impairment of neural-progenitor

proliferation, as migration occurs after progenitor proliferation.

Therefore, it is difficult to distinguish whether RP58 functions in

neuronal migration independently of cell-cycle exit by using

conventional RP58 knockout mice. To clarify this issue, we

next used conditional knockout mice to generate a situation in

which RP58 is deleted only in migrating cells.

RP58 Has Cell-Autonomous Functions in Multipolar-
to-Bipolar Transition
We generated conditional knockout mice (RP58flox/flox) and

examined the migration defect following complete deletion of

RP58 by in utero electroporation of Cre-expression plasmids.

RP58�/� neurons showed dramatic migration defects, with

migrating cells exhibiting migration arrest in the middle of the

cortex (Figure 3A). Again, this phenotype was completely

rescued by electroporation of RP58-expression plasmids (Fig-

ure 3A). Immunostaining confirmed that RP58 expression is

responsible for this dramatic phenotype (Figures 3B and 3C),

indicating that RP58 has cell-autonomous function in neuronal

migration.

A fewRP58-positive cells entered the cortical plate (CP), prob-

ably because of insufficient expression of Cre (Figures 3B and

3C, arrows). These results suggest that the migration of imma-

ture neurons is associated with a permissive boundary requiring

RP58 functions. MAP2 immunostaining revealed that the sub-

plate layer likely represents this boundary (Figure 3D), because

RP58�/� cells failed to cross this layer, thus accumulating under

the subplate and failing to enter into the CP. These migration-

arrested cells near the subplate layer showed Ki67 negativity

and Tbr1 positivity (Figure 3E). Detailed observation of cell

morphology revealed that RP58�/� neurons failed to undergo

multipolar-to-bipolar transition (Figures 3B, 3C, and 3E), sug-

gesting that they exited the cell cycle but failed to convert to

the bipolar morphology before entering the nascent CP because

of RP58 deficiency.

To examine cell-cycle exit in these migrating defective

neurons, BrdU was injected at E14, just after electroporation of

GFP, or GFP together with Cre expressing plasmids, into

RP58flox/floxmice. Embryoswere harvested 24 hr later and immu-

nostained with anti-BrdU and anti-Ki67 antibodies (Figure 3Fa

and 3Fb). As a result, no significant differences were observed

between control and Cre-electroporated brains regarding the

ratio of cell-cycle exit, which is estimated as the percentage of

Ki67� cells/GFP+BrdU+ cells (Figure 3Fc). We also performed

a BrdU pulse-labeling experiment before harvesting at 24 hr after
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Figure 1. Migration Defects in RP58�/� Brains
(A) GFP-positive cells did not reach to the pial surface of RP58�/� brains, but the migration defects were completely rescued by electroporation of mouse RP58-

expression plasmids (mRP58). Scale bars, 100 mm. Data represent the mean ± SD (n = 6 slices from three mice); *p < 0.05, **p < 0.01 (Student’s t test). See also

Figures S1B, S1C, and S1E.

(B) GLAST immunostaining revealed that radial glial fibers were not affected in RP58�/� brains. Scale bars, 50 mm. See also Figure S1G.

(C) Magnified images of (B) reveal that GFP-positive cells did not reach the pial surface of RP58�/� brains, but rescued cells migrated to the pial surface. Scale

bars, 25 mm.

See also Figure S1.
electroporation. The ratio of intermediate progenitor (IMP) and

BrdU-Tbr2 double positive cells to GFP-positive cells also did

not differ between control and Cre-electroporated brains (Fig-

ure S3A). This suggests that cell-cycle exit is not impaired in
460 Cell Reports 3, 458–471, February 21, 2013 ª2013 The Authors
RP58 flox/flox cells and that the effects of RP58 deletion by Cre

likely emerged after the exit of progenitor cells from the cell cycle

in this experimental condition. Immunostaining for RP58

confirmed that the level of RP58 proteins was diminished



A

C

B

Figure 2. Rescue of the Abnormal Increase in Neural Progenitor Proliferation Observed in RP58�/� Brains

(A) The number of Ki67-positive cells (arrows) in rescued RP58�/� brains decreased to the same level as that of GFP-positive cells in the upper VZ and SVZ

(asterisks) compared with control RP58�/� brains. See also Figure S2A.

(B) Magnified images of a part of the nonrescued intermediate zone. Ki67 immunostaining revealed that the migration-impaired GFP-positive cells in nonrescued

RP58�/� brains were Ki67 negative (arrows).

(C) The number of Tbr2-positive cells decreased in rescuedRP58�/� brains. The increased number of Tbr2-positive cells in the VZ ofRP58�/� brains normalized in

brains electroporated with RP58-expression plasmids. All electroporation experiments were performed in utero on E14 and tissues were harvested on E17.

Data represent the mean ± SD (n = 6 slices from two to three mice); **p < 0.01 (Student’s t test). Scale bars, 100 mm.

See also Figure S2.
between 2 and 3 days after electroporation. Many GFP-positive

E16 Cre-electroporated cells still expressed the RP58 proteins

(Figure S3B). This suggests that there is a time lag between

Cre expression and complete loss of expression of RP58

proteins, and that Cre-electroporated cells may exit the cell

cycle normally together with endogenous RP58 proteins.

However, by E17, cells exhibited a complete loss of expression
C

of the RP58 protein, showed a severe defect inmultipolar-bipolar

conversion, and were not able to cross the subplate layer (Fig-

ure S3B). Fixation of the Cre-electroporated RP58 flox/flox mouse

brain 5 days after electroporation at E19 revealed that RP58-

deficient cells still had not entered into the cortical plate, sug-

gesting that the migration defect is not simply due to their

migrating speed (Figure S3C).
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Figure 3. Striking Migration Defects by Acute Deletion of RP58

(A) Coelectroporation of Cre-expression plasmids with GFP in E14mouse brains homozygous for a conditional null mutant allele of RP58 (RP58flox/flox) resulted in

acute deletion of RP58 and prevented neurons from entering the CP. Coelectroporation of RP58-expression plasmids completely rescued these migration

defects.

(B and C) RP58 immunostaining confirmed that all the stagnating cells were RP58 negative. Migrating cells that entered the CP (arrows) and RP58-rescued cells

expressed RP58 (B, right panels). Scale bars, 100 mm.

(D) MAP2 immunostaining revealed that the permissive boundary was the subplate layer. Magnified images show that RP58�/� cells failed to enter the CP and

stagnated immediately under the subplate layer. SP, subplate.

(E) RP58�/� cells failed to undergo multipolar-to-bipolar transition and possessed multiple thin neurites. These cells were Ki67 negative and Tbr1 positive.

(F) The exit of progenitor cells from the cell cycle was not impaired in Cre-electroporated GFP-positive cells. GFP plasmids were coelectroporated with or without

Cre-expression plasmids into brains of RP58flox/flox mice at E14, and BrdU was injected just after electroporation. Embryos were fixed 24 hr later and the brain

sections were immunostained with Ki67 and BrdU antibodies. There was no significant difference in the ratios of Ki67 negative cells to BrdU and GFP-double-

positive electroporated cells between control and Cre-introduced cells in the VZ. Data represent the mean ± SD (n = 6 slices from two individuals); ns > 0.05

(Student’s t test).

See also Figures S3A and S3B.
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Figure 4. Failure of RP58�/� Cells to Cross

the Subplate Layer

(A)MAP2 immunostaining revealed that the subplate

layer (arrowheads) of RP58�/� brains was disorga-

nized compared with that of WT brains. GFP-

positive migration-defective cells failed to enter the

CP by crossing the disorganized subplate layer.

Scale bars, 100 mm. See also Figure S4A.

(B) Magnified images of each area and tracings

of GFP-positive electroporated cells revealed ab-

normal morphology of RP58�/� neurons. Scale bar,

100 mm.
RP58 Regulates Neuronal Cell Morphology
The results of the conditional knockout experiment prompted us

to reexamine the migration defect of RP58�/� neurons from this

standpoint. MAP2 immunostaining revealed that the subplate

layer of RP58�/� brains was disorganized and that GFP-positive

electroporated cells could not enter into the CP, similar to

RP58flox/flox cells (Figure 4A). BrdU labeling at E11 and BrdU

andNeurocan immunostaining at E15 supported the observation

that the subplate layer of RP58�/� brains is disorganized (Fig-

ure S4A). RP58�/� neurons also failed to convert from the multi-

polar morphology to the bipolar morphology, as in the case of

RP58flox/flox cells (Figure 4B). Furthermore, multipolar cells

located in the SVZ and intermediate zone did not have the

same morphology as WT cells: they harbored thinner and longer

neurites than did icontrol cells (Figure 4B). In a previous study,
Cell Reports 3, 458–471
immunostaining of Tuj1, which is immuno-

reactive in neurites, was found to be

decreased in RP58�/� cortices (Okado

et al., 2009; Figure S2), suggesting the

involvement of RP58 in the regulation of

axonal and dendritic development.

To examine the development of neurites

of RP58�/� neurons, we prepared dissoci-

ated primary cultured neurons from E14

WT and RP58�/� hippocampal regions.

Tau-1 immunostaining of these neurons

on DIV7 revealed that RP58�/� cells

extended shorter and thinner axons than

did WT cells (Figure S4B). Next, we exam-

ined the development of dendrites of

primary cultured neurons prepared from

WT and RP58�/� cerebral cortical cells by

MAP2 immunostaining on DIV3, DIV5,

and DIV7. In comparison with WT cells,

which extended thick and long dendrites

in reticular formation on DIV7, RP58�/�

neurons extended poor and thin dendrites

at the same stage (Figure S4C). It is worth

noting that although equal cell numbers

were plated on DIV0, fewer neurons were

observed in the RP58�/� dishes (Fig-

ure S4C, arrows), supporting previous

observations that apoptosis is enhanced

in the RP58�/� cerebral cortex (Okado
et al., 2009; Figure 6). Taken together, these results support

the notion that RP58 functions in axonal and dendritic growth,

as well as in neuronal survival.

RP58 Represses Ngn2 Transcription by Directly Binding
to Its Transcriptional Regulatory Regions
Ngn2 is a master transcriptional activator for glutamatergic neu-

rogenesis in the cerebral cortex (Fode et al., 2000; Guillemot,

2007); it is also involved in regulating neuronal migration (Hand

et al., 2005; Ge et al., 2006; Heng et al., 2008). RP58 is a down-

stream target gene of Ngn2 (Seo et al., 2007; Gohlke et al., 2008;

Yokoyama et al., 2009). We also confirmed by luciferase re-

porter assay that Ngn2 activates RP58 promoter activity in

Neuro2A cells (Figure 5A). Moreover, we confirmed the induc-

tion of RP58 expression in dissociated cerebral cortical cells
, February 21, 2013 ª2013 The Authors 463



Figure 5. RP58 Binding to the Ngn2 Promoter and 30-Downstream Enhancer Region

(A) Ngn2-mediated RP58 promoter activation was detected by luciferase reporter assay. The promoter was activated by the Ngn2 WT but not the Ngn2-AQ

mutant plasmid, which lacks transactivation activity. Data represent the mean ± SD (n = 6 transfections); ***p < 0.001 (Student’s t test).

(B) WT and RP58�/� brains were double-stained with RP58 and Ngn2 antibodies to determine the number of Ngn2-positive cells. Ngn2-positive (solid arrow-

heads), Ngn2-and-RP58-double-positive (arrows), and RP58-positive cells were observed in the WT brains. However, in the RP58�/� brains, an increased

number of Ngn2-positive cells (solid arrowheads) were observed in the upper part. Scale bar: 100 mm.

(legend continued on next page)
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transfected with Ngn2-expression plasmids (Figure S5A). These

results suggest that Ngn2 activates RP58 expression in primary

cultured neurons.

To examine whether induced RP58 functions as a transcrip-

tional repressor, BS10-Luc plasmid (10 3 RP58-binding sites)

(Aoki et al., 1998) was cotransfected into these cells. The

repressor function of induced RP58 was confirmed by

measuring the decreased luciferase activity (Figure S5A). We

also confirmed colocalization of Ngn2 and RP58 in some VZ cells

by immunostaining (Figure 5B). From the immunostaining

pattern, we noticed that Ngn2 expression is transient: first,

Ngn2 was expressed in neuronal committed progenitor cells

(Figure 5B, solid arrows); then, induced RP58 colocalized in

a subpopulation of VZ cells (Figure 5B, arrows), and thereafter,

Ngn2 expression was not detected in the RP58-expressing cells

(Figure 5B, open arrows). Moreover, RP58�/� brains immuno-

stained for Ngn2 showed an increase in the population of

Ngn2-expressing cells, which was located ectopically above

the VZ (Figure 5B). This unexpected result suggests that Ngn2

induces the expression of RP58, which then represses Ngn2

expression.

To examine this possibility, we first performed in situ hybrid-

ization (ISH) and quantitative PCR. Ngn2 mRNA levels were

increased in both E16 and E18 RP58�/� cerebral cortices

(Figures 5C and 5D, and S5B), and Ngn2 expression was ectop-

ically upregulated in the upper regions of the VZ (Figures 5C and

S5B, arrows). By luciferase reporter and chromatin immunopre-

cipitation (ChIP) assays, we next examined whether RP58

represses Ngn2 transcription by directly binding to regulatory

elements of the Ngn2 genomic region. When we searched the

RP58-binding type E box in the 50- and 30-flanking regions of

Ngn2, we identified two RP58-binding sites: one located in the

50-flanking region (the previously identified E2 region [Scardigli

et al., 2001]) and the other located in the 30-flanking region (the

previously identified E3 region). We constructed reporter plas-

mids with two genomic fragments including these binding sites

(pNgn2 promoter [�2145/+51]-pGL3B and pNgn2-30frg-pGL3-

P) and tested their functions in the presence or absence of

RP58. The luciferase activities of both reporter plasmids were

repressed by RP58 in cotransfected cultured cells compared

with empty vector controls (Figure 5E).

Next, we examined the effects of RP58 overexpression on

endogenous Ngn2 expression in vivo. ISH of specimens fixed

at 20 hr after electroporation of RP58-expression plasmids

revealed that ectopic RP58 overexpression disturbed endoge-

nous Ngn2 transcription (Figure 5F). Moreover, ChIP assay of
(C and D) The mRNA level of Ngn2 was upregulated in RP58�/� brains (C) and w

100 mm. Data represent the mean ± SD (n = 3); *p < 0.05 (Student’s t test). See a

(E) RP58mediated transcriptional repression of luciferase linked to themouseNgn

in COS-7 cells cotransfectedwithNgn2 reporters andRP58-expression vectors. R

represent the mean ± SD (n = 6 transfections); ***p < 0.001 (Student’s t test).

(F) Ectopic expression of RP58 caused derangement of the endogenous Ngn2 e

plasmids were electroporated into E14 cortices and fixed on E15. Ngn2 mRNA l

(G) ChIP assay of lysates prepared from E14 cerebral cortices by using RP58 ant

Ngn2 enhancer and promoter regions.

(H) Ngn2-expressing plasmids driven by the b-actin promoter were electropora

migration. Data represent the means ± SD (n = 6 slices from two individuals); *p

See also Figure S5.

C

E16 brain extracts with RP58 antibody confirmed direct RP58

binding to the RP58-binding type E boxes in the Ngn2 genomic

region (Figure 5G). Therefore, we concluded that RP58 directly

represses Ngn2 transcription in vivo.

If upregulation of Ngn2 is a major cause of the migration

defects of RP58�/� neurons, Ngn2 overexpression in WT brains

should also yield a similar phenotype. To examine this, we per-

formed electroporation of Ngn2-expression plasmids into WT

brains. When we used Ngn2-expression plasmids with the

b-actin promoter, migration defects were observed (Figure 5H).

Ngn2KnockdownRescuesMigrationDefects inRP58�/�

Brains
Given that Ngn2-induced RP58 represses Ngn2 transcription,

RP58 may be normally responsible for the transient expression

of Ngn2 in vivo. Therefore, the ectopic expression of Ngn2 in

postmitotic neurons of RP58�/� brains may disturb their migra-

tion. We tested this possibility by knockdown of ectopic Ngn2

expression with RNAi in RP58�/� brains. We used shRNA for

Ngn2 (Figure S6A) in the conditional knockdown driven by

RP58 promoter (RP58-Cre) (Ohtaka-Maruyama et al., 2012)

and observed that Ngn2 knockdown rescued the defects in

migrating distance and cell morphology (Figure 6). Because

RP58�/� cells cannot enter the CP by crossing the subplate

layer, we evaluated the extent of rescue of migrating distance

from the subplate layer by dividing the CP into three parts (i.e.,

upper, middle, and lower). As shown in Figure 6A, shNgn2

electroporation in RP58�/� brains partially rescued migration

above the subplate layer. Magnified images revealed that

migration-rescued cells also had rescued morphology (Fig-

ure 6B). In comparison with WT CP neurons, RP58�/� neurons

possessed mostly thin multipolar neurites (Figure 6B, arrows).

However, shNgn2-rescued RP58�/� neurons possessed leading

processes similar to WT neurons (Figure 6B, lower panel).

To quantitate the extent of rescue, we measured the width of

the cell body and thickness of the leading process or leading-

process-like neurite measured from the basal region of the

process. Figure 6B shows the tendency of shNgn2-rescued

RP58�/� neurons to have thicker leading processes. Fode

et al. (2000) reported that loss of Ngn2 results in misspecifica-

tion of projection neurons into interneurons. To exclude the

possibility of respecification of GFP-positive rescued cells by

shNgn2 electroporation into cortical interneurons, we performed

Dlx2 immunostaining to identify interneurons: shNgn2-electro-

porated GFP-positive cells were negative for Dlx2 expression

(Figure S6B).
as confirmed by quantitative PCR at the E16 and E18 stages (D). Scale bars,

lso Figure S5B.

2 promoter region and 30-enhancer region. Luciferase activities weremeasured

EST, used as the negative control, did not repressNgn2 enhancer activity. Data

xpression pattern in the embryonic cortex. RP58 expression vectors and GFP

ocalization was detected by ISH. Scale bars, 100 mm.

ibody confirmed the direct binding of RP58 to RP58-binding sequences in the

ted on E14 and fixed on E17. Ngn2 overexpressing cells exhibited impaired

< 0.05 (Student’s t test). Scale bar, 100 mm.
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Figure 6. Rescue of Migration Defects in

RP58�/� Brains by Sh-Ngn2

(A) Knockdown of Ngn2 by using sh-loxP-STOP-

loxP-Ngn2 expressed by RP58 promoter-driven

Cre plasmid rescued the migration defect of

RP58�/� neurons. The extent of rescue was ap-

preciable by MAP2 immunostaining. In compar-

ison with RP58�/� cells, sh-Ngn2-rescued cells

migrated farther in the CP after crossing the

subplate layer. Data represent the mean ± SD

(n = 6 slices from three individuals); *p < 0.05, **p <

0.01, ***p < 0.001 (Student’s t test). Scale bars,

100 mm. See also Figure S6.

(B) Ngn2 knockdown in RP58�/� brains

rescued themorphology of the migrating neurons.

Magnified images reveal that the migration-

defective cells did not possess typical leading

processes with a single thick basal part (arrows in

WT image). Instead, multiple thin neurites were

observed (arrows in GFP RP58�/� images). Sh-

Ngn2-electroporated neurons showed rescue of

the formation of leading processes (arrows in sh-

Ngn2 RP58�/� images). The thickness of the

leading processes or thickest neurite of RP58�/�

neurons was measured at one third of the entire

length and recorded as b. The ratio of (b) to the

width of the cell body (a) was calculated and is

represented graphically. The rescued cells tended

to have thicker leading-process-like neurites than

nonrescued RP58�/� neurons. Over 150 cells

were counted in three brains per condition. ***p <

0.01(Student’s t test). Scale bar, 50 mm.

See also Figure S6B.
Ectopic Ngn2 Expression Induces Migration Defects
Mimicking those of RP58 Deficiency
To examine whether the effects of Ngn2 overexpression depend

on its DNA-binding properties, we used an Ngn2-AQ mutant

plasmid (pCAG-Ngn2-AQ), which abolishes DNA binding to

direct target promoter sequences (Sun et al., 2001; Lee and

Pfaff, 2003). When CAG-Ngn2 plasmids were electroporated

on E14 and fixed on E17, GFP-positive neurons stagnated below

the subplate layer, similar to the case for RP58�/� neurons (Fig-

ure 7A). Ectopic Ngn2 expression was confirmed by Ngn2 immu-

nostaining (Figure S7). Magnified images revealed that the

cells with migration defects possessed thin neurites similar to

RP58�/� or RP58flox/flox neurons (Figures 1B, 1C, 3E, and 7B).

However, electroporation of the Ngn2-AQ mutant plasmid did

not affect neuronal migration (Figure 7A), suggesting that the

effects of Ngn2 overexpression on neuronal migration depend

on its DNA-binding activities.
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Ngn2 overexpression reportedly

increases the proportion of cells re-

cruited to the SVZ and neurons initiating

radial migration and accumulating in the

CP (Hand et al., 2005; Ge et al., 2006).

We obtained similar results, because

GFP-positive cells quickly migrated to

the SVZ, but their speed decreased in

the CP following Ngn2 overexpression
(Figure 7A). Therefore, ectopic Ngn2 expression induces migra-

tion defects mimicking those of RP58�/� cells (Figure 7E).

Ngn2 and its direct downstream effector Rnd2 play significant

roles in neuronal migration (Heng et al., 2008). Therefore, RP58

may control the Ngn2-Rnd2 pathway as a repressor to ensure

proper neuronal migration, including formation of thick leading

processes and entry into the CP for locomotion. Further, RP58

represses Rnd2 expression by directly binding to its 30-regula-
tory region (J.I.H., Z. Qu, C.O.-M., H.O., M.K., D. Castro, F. Guil-

lemot, and S.S. Tan, unpublished data). Therefore, Rnd2 expres-

sion is likely regulated by both Ngn2 and RP58. We confirmed

Rnd2 upregulation by ISH in the region above the VZ in E16

RP58�/� brains (Figure 7C). To confirm that Rnd2 upregulation

is responsible for the migration defects following Ngn2 overex-

pression, shRnd2 plasmids were coelectroporated with Ngn2-

expression plasmids to determine whether the migration defects

could be rescued. Electroporation of the conditional shRnd2



(Heng et al., 2008) vector with RP58-promoter-driven Cre

plasmid led to partial rescue of the migration defects (Figure 7A).

This confirmed that RP58 controls neuronal migration through

negative feedback regulation of Ngn2 transcription and Rnd2

expression (Figure 7D). Rnd2 is a major effector of Ngn2 in

neuronal migration and may regulate the cytoskeleton (Heng

et al., 2008; Figure 7D). Therefore, RP58 plays an essential role

in multipolar-to-bipolar transition and the following locomotion

step by regulating the Ngn2-Rnd2 pathway (Figure 7E).

DISCUSSION

Here, we have demonstrated that RP58 is indispensable to

neuronal migration during neurogenesis. RP58�/� neurons

neither convert to the normal bipolar morphology nor enter into

the CP. These defects are completely rescued by restoring

RP58, suggesting that its functions in neuronal migration are

cell autonomous.

RP58 shows a highly specific expression pattern in embryonic

brains: weak expression in the VZ and very strong expression in

the SVZ and migrating neurons (Ohtaka-Maruyama et al., 2007).

This suggests that RP58 has distinct functions in each region. As

previously reported, RP58 controls the division of progenitor

cells (Okado et al., 2009). This function is likely attributable to

its expression in progenitor cells in the VZ, whereas the regula-

tion of neuronal migrationmay be ascribable to its strong expres-

sion in migrating postmitotic neurons in the dorsal pallium.

In the in utero electroporation experiments, Cre-expressing

RP58flox/flox cells showed unambiguous phenotype compared

with RP58�/� cells, and this phenotype was completely depen-

dent on RP58 expression. MAP2 immunostaining revealed that

RP58 is important for neuronal entry into the CP. As the develop-

ment of RP58�/� brains is impaired in many aspects, the sub-

plate layer is also disorganized. Our results clearly show that

RP58 is indispensable for transition from themultipolar migrating

mode to the locomotion mode by altering the cell morphology. In

fact, RP58 is strongly expressed in the SVZ, in whichmanymulti-

polar cells are located at both the mRNA and protein levels (Oh-

taka-Maruyama et al., 2007, 2012; Okado et al., 2009). This result

suggests that RP58 plays an important role in multipolar

migrating cells, in which dynamic cytoskeletal reorganization

occurs for conversion to the bipolar morphology. A target gene

for such transition is Ngn2. Recently, we found that 5.3 kb

RP58 promoter activity is highly responsive to Ngn2: the

promoter activity was detected in a small population of VZ cells

with pin-like morphology and was prominently activated in multi-

polar migrating cells located in the multipolar cell-accumulation

zone (Tabata et al., 2009), which is the lower part of the SVZ

(Ohtaka-Maruyama et al., 2012). This suggests that the high

expression of RP58 in multipolar migrating cells is attributable

to regulation of RP58 promoter activity.

As RP58 is a transcriptional repressor, it represses

some downstream effectors at the transcriptional level. There-

fore, the phenotypes seen in RP58�/� or Cre-electroporated

RP58flox/flox mice should be the result of upregulation of the

downstream genes. In our search for candidate downstream

genes, we identified genes Id1–Id4. RP58 controls the progen-

itor-cell kinetics by repressing all Id genes, leading to p57 upre-
C

gulation (Hirai et al., 2012). This would be a candidate for the first

function of RP58 in progenitor cells, in which weakly expressed

RP58 promotes cell-cycle exit. Oscillatory expressions of Hes1

and Ngn2 in neural progenitor cells are important for maintaining

their proliferative state (Shimojo et al., 2008). As Ngn2 activates

RP58 transcription, RP58 may accumulate in response to

the varying Ngn2 expression to determine the timing of cell-

cycle exit.

The second function of RP58 during cortical development

begins in postmitotic migrating neurons. Massive rearrangement

of the cytoskeleton and other gene expressions for dynamic

morphological conversion should occur in this stage. Many

factors are reportedly involved in this step, including Rho and

GSK3 signaling-related factors (Barnes and Polleux, 2009;

Heng et al., 2010). Surprisingly, RP58�/� neurons do not have

typical leading processes at all; instead, they possess thin and

long neurites extending from the cell bodies. Besides the

complete rescue of this phenotype by electroporation of the

RP58 expression construct, we found that this phenotype is

also rescued by knockdown of Ngn2 ectopically expressed in

RP58�/� cells. Moreover, Ngn2 overexpression in WT cells

resulted in similar morphological abnormalities. Several down-

stream genes directly activated by Ngn2 have been identified,

including RP58 (Seo et al., 2007; Yokoyama et al., 2009),

NeuroD (Seo et al., 2007; Yokoyama et al., 2009), Rnd2

(Heng et al., 2008), and Tbr2 (Ochiai et al., 2009). Rnd2 is a

small GTP-binding protein that controls the actin cytoskeleton.

Therefore, either overexpression or silencing of Rnd2 leads to

this morphological change. This suggests the importance of

maintaining normal Rnd2 expression in WT neurons. RP58 plays

a significant role in this regulation by repressing Ngn2 expres-

sion. Although it has recently been reported that RP58 represses

Ngn2 transcription by its direct binding to the promoter region

(Xiang et al., 2012), the functional significance of this feedback

regulatory circuit during corticogenesis was not clarified in that

study. Our current study reveals that the repression of Ngn2 by

RP58 plays a significant biological role.

Ngn2 is a neuronal determinant that specifies the neuronal

lineage (Fode et al., 2000). After this specification, Ngn2 expres-

sion decreases in postmitotic neurons (Miyata et al., 2004;

Kawaguchi et al., 2008), indicating that Ngn2 expression is tran-

sient and may be important in advancing immature cortical

neurons to the next steps in their development, including their

migration within the CP. By this study, we demonstrated that

Ngn2 is downregulated by RP58 for proper neuronal migration,

and that failure of this step leads to migration defects. Therefore,

in cortical neurogenesis, Ngn2 is a master transcriptional acti-

vator for specifying neuronal lineages of progenitor cells,

whereas RP58 is a master transcriptional repressor of Id genes

for the cell-cycle exit of progenitor cells (Hirai et al., 2012) and

multipolar-to-bipolar transition by negative feedback regulation

of the Ngn2-Rnd2 pathway.
EXPERIMENTAL PROCEDURES

All experimental protocols were approved by the Animal Care and Use

Committees of the Tokyo Metropolitan Institute for Neuroscience and the

Tokyo Metropolitan Institute of Medical Science.
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Figure 7. Impaired Neuronal Migration by Ngn2 Overexpression

(A) The impairment of neuronal migration byNgn2 overexpression depended on its transactivation activity. When the pCAG-Ngn2 plasmid was electroporated on

E14 and the embryos were harvested on E17, migrating neurons were stagnated beneath the subplate layer, mimicking RP58�/� neurons (see Figure 3D). See

also Figure S7. Electroporation of the pCAG-Ngn2-AQ plasmid did not affect their migration. Coelectroporation of shRnd2with pCAG-Ngn2 partially rescued their

(legend continued on next page)
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Plasmids

Cre-expression plasmid (pXCANCre; Kanegae et al., 1995) was gifted by Dr.

Izumu Saito (University of Tokyo). RP58 promoter-driven luciferase (5.3 kb,

RP58-Luc) and Cre (RP58-Cre) plasmids were constructed as described

before (Ohtaka-Maruyama et al., 2012). Reporter plasmids forNgn2 regulatory

sequences [pNgn2-30frg-pGL3-P and pNgn2 promoter (�2145/+51)-pGL3B]

were constructed as follows. The Ngn2 promoter fragment was amplified by

KOD polymerase and cloned into the NheI-NcoI sites of pGL3B-promoterless

luciferase vector (Promega). The 30-fragment (1935 bp) was amplified

and cloned into the SacI–XhoI sites of pGL3P luciferase vector

(Promega). BS10-Luc plasmid was constructed as described before (Aoki

et al., 1998).

For RP58-expression plasmid construction, the full-length coding sequence

ofRP58was cloned by RT-PCR using RNA isolated from the cerebral cortex of

E14 mice as the template and inserted into pAXCAwtit (pAXCA-mRP58) (Niwa

et al., 1991).Most of the adenoviral genomic region was deleted byNruI or SalI,

and a self-ligated plasmid was obtained as pCA-mRP58. For Ngn2-expression

plasmid construction, the full-length coding sequence of mouse Ngn2 was

cloned by RT-PCR using RNA isolated from the cerebral cortex of E14 mice

as the template and cloned into the EcoRI site of the CAG vector (pCAG-

Ngn2) or bA-GFP vector (pbA-Ngn2) after deletion of the enhanced GFP

(EGFP) fragment.

pCAG-EGFP and pbA-EGFP plasmids were donated by Dr. Kawaguchi

(Nagoya University) and Dr. Okabe (University of Tokyo), respectively. pCAG-

Ngn2-AQmutant plasmidswas constructed by using a KOD-plusmutagenesis

kit (Toyobo) in the inverse-PCR method. pREST was donated by Dr. Gail

Mandel (Oregon Health and Science University). shRNAmir for Ngn2 (Open

Biosystems) was used in this study: the clone (RMM4431-98725508) from

the GIPZ Lentiviral shRNAmir library was obtained along with a negative-

control shNC clone. To insert a loxP-STOP-loxP fragment for conversion to

a conditional expression vector, the CMV promoter-tGFP fragment of

pGIPZshNgn2mir was replaced with the bA-loxP-STOP-loxP-EGFP fragment

of pbA-loxP-STOP-loxP-EGFP plasmid, donated by Dr. Okabe (University of

Tokyo).

For sh-loxP-STOP-loxP-Rnd2 #1, the original shRnd2 plasmid (Heng et al.,

2008) was modified by inserting a loxP-STOP-loxP sequence between the U6

promoter and the shRnd2 sequence (J.I.H., Z. Qu, C.O.-M., H.O., M.K., D.

Castro, F. Guillemot, and S.S. Tan, unpublished data).

In Utero Electroporation

Pregnant C57/BL6 WT or RP58�/� mice were deeply anesthetized with pento-

barbital, and their embryos were surgically manipulated. For the RP58 shRNA

andRP58 orNgn2 overexpression experiments (Figures S1E, S2B, 5F, 5H, 7A,

and 7B), pregnant imprinting control region (ICR) mice (Japan SLC) were used.

The effector plasmids (shRNA andmouse RP58 or Ngn2-expression plasmids)

and 1/3 volume of EGFP (Clontech) expression vector with a modified chicken

b-actin promoter containing the CAG promoter (Niwa et al., 1991) were mixed

and introduced into the VZ of E14 embryos by in utero electroporation as

described previously (Tabata and Nakajima, 2001). For rescue experiments

(Figure 6), bA-loxP-STOP-loxP-shNgn2-IRES-EGFP and RP58 Cre plasmids

(Ohtaka-Maruyama et al., 2012) were coelectroporated. In RP58flox/flox mice,
migration defect. Data represent the mean ± SD (n = 6 slices from three individ

compare the control condition with the pCAG-Ngn2, pCAG-Ngn2-AQ, and pCAG

(B) Magnified images of Ngn2-electroporated cells near the subplate layer reveal

under the subplate (arrows).

(C) Rnd2 expression was upregulated in the SVZ of E16 RP58�/� brains. Scale b

(D) The Ngn2-Rnd2-RP58 pathway. Ngn2 activates RP58 and Rnd2, and RP58

proper neuronal migration.

(E) Schematic illustrating the RP58�/� phenotype. Radial glial progenitor cells pr

expression is initiated asymmetrically in one of the daughter cells (pin-like green

Ngn2, Rnd2, and other target genes. This repression contributes to the transien

occurs followed by locomotion in the CP. In RP58�/� brains, Ngn2 induces Rnd

decrease, resulting in failure of the multipolar-to-bipolar transition and hence no c

the regulation of Rho signaling is disorganized, axonal and dendritic formation is

with WT brains.

C

GFP-only or GFP with CAG Cre plasmid (pXCANCre) was used during electro-

poration. Embryos were sacrificed on E17, and the brains were dissected,

fixed overnight in 4%PFA at 4�C, and placed in 30% sucrose/13 PBS for cry-

oprotection. They were then frozen in OCT (Tissue-Tek) and sectioned coro-

nally at 20 mm thickness. To visualize the fluorescent signals more clearly,

GFP antibody was used for immunostaining.

Immunostaining

The primary antibodies used in this study were rabbit RP58 (Takahashi et al.,

2008) (1:500), GLAST (1:200, Chemicon), rabbit Ki67 (1:500, Novocastra), rat

BrdU (1:500, Abcam), rabbit Tbr2(1:500, Abcam), rabbit Tbr1 (1:500, Chem-

icon), rabbit MAP2 (1:500, Chemicon), mouse Ngn2(1:10, donated by

Dr. David Anderson), and chicken GFP (1:500, Abcam). IgG antibodies

conjugated to biotin (1:200, Vector Laboratories), HRP (1:200), and Alexa

Fluor 488, Cy3, or Cy5 (1:500, Molecular Probes or Jackson Laboratories)

were used as secondary antibodies. Images were acquired using a confocal

microscope (FV500, Olympus) and a fluorescence microscope (BIOREVO,

Keyence).

Generation of RP58flox/flox Mice

A genomic fragment containing RP58 was obtained from mouse strain 129.

The coding exon of RP58 was targeted by homologous recombination in

embryonic stem (ES) cells using a targeting vector containing a single loxP

site and an FRT/loxP-neomycin-resistant gene construct (neor-FRT/loxP) in

the upstream and downstream regions, respectively, of the coding exon. After

transfection of the targeting vector into 129 mouse ES cells, the cells were mi-

croinjected into ICR mouse blastocysts. The chimeric mice were crossed with

B6 mice expressing flippase to generate RP58flox/+ mice lacking neor. Then,

RP58flox/flox mice were generated by intercrossing RP58flox/+ mice. To delete

the RP58 coding exon in the developing neural cells of the cerebral cortex,

we performed in utero electroporation with the Cre-expression plasmid.

In Situ Hybridization

In situ hybridization was carried out using digoxigenin-labeled riboprobes as

described previously (Ohtaka-Maruyama et al., 2007). Coronal sections of

WT and RP58�/� brains (E12–E18) were used for this experiment.

Quantitative RT-PCR

Quantitative RT-PCR was performed as previously described (Ohtaka-Mar-

uyama et al., 2007) using total RNA isolated from the cerebral cortices of

E16 or E18 WT and RP58�/� mice. The specific primers were 50-GACAC

ATCTGGAGCCGCGTA-30 (forward) and 50-CGAGCCCAGCAGCATCAGTA-30

(reverse) for Ngn2 and 50-AAATGGTGAAGGTCGGTGTG-30 (forward) and

50-TGAAGGGGTCGTTGATGG-30 (reverse) for GAPDH.

Transfection and Luciferase Reporter Assay

Luciferase reporter assay was performed as described (Ohtaka-Maruyama

et al., 2012) using Neuro2A cells (Figure 5A) and COS7 cells (Figure 5E). Tran-

sient transfection was performed with Lipofectamine LTX and PLUS reagent

(Invitrogen).
uals); *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t tests were performed to

-Ngn2 + shRnd2 conditions). Scale bar, 100 mm.

that Ngn2-expressing cells harbored thin neurites and stagnated immediately

ars, 100 mm.

represses Ngn2 and Rnd2. This negative feedback regulation is important for

oliferate in the VZ (below the dashed line) by symmetrical division. Then, Ngn2

cell). In the WT, Ngn2 activates RP58 and Rnd2. Conversely, RP58 represses

t expression of downstream target genes and multipolar-to-bipolar transition

2 but fails to induce RP58. Consequently, Ngn2 and Rnd2 expressions do not

rossing of the subplate layer (pink) for locomotion in the CP. Probably because

impaired and multiple thin neurites are observed in RP58�/� brains compared

ell Reports 3, 458–471, February 21, 2013 ª2013 The Authors 469



ChIP Assay

ChIP assay was performed as previously described (Ochiai et al., 2009) using

E14 cerebral wall cells. Immunoprecipittion was carried out using anti-RP58

antibody (Takahashi et al., 2008). The primers used to recognize RP58-binding

sites in Ngn2 50- and 30-flanking regions were as follows: 50-RP58-binding site

(expected PCR product, 128 bp), 50-ACACCGTGCTCGGTTCCGGG-30

(forward) and 50-ACACTGCCTGCGAAGTGGAG-30 (reverse); 30-RP58-binding
site (expected PCR product, 94 bp), 50-CAGGTGAATCTCTATGCTAGC-30

(forward) and 50-CAATTAACAGATATGCAACA-30 (reverse).
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