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Glucocorticoids have been used in clinical oncology for over half a century. The clinical applications of
glucocorticoids in oncology are mainly dependent on their pro-apoptotic action to treat lymphoprolifer-
ative disorders, and also on alleviating side effects induced by chemotherapy or radiotherapy in non-
hematologic cancer types. Researches in the past few years have begun to unveil the profound complexity
of glucocorticoids signaling and have contributed remarkably on therapeutic strategies. However, it
remains striking and puzzling how glucocorticoids use different mechanisms in different cancer types
and different targets to promote or inhibit tumor progression. In this review, we provide an update on
glucocorticoids and its receptor, GR-mediated signaling and highlight some of the latest findings on
the actions of glucocorticoids signaling during tumor progression and metastasis.
� 2016 The Authors. Published by Elsevier Inc. This is anopenaccess article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Glucocorticoids and glucocorticoid receptor

Natural glucocorticoids (GCs), named after their role in main-
taining glucose homeostasis, are cholesterol-derived hormones
secreted by the adrenal glands [1]. The release of GCs into circula-
tion has systemic roles in immune responses, metabolism, cell
growth, development, and reproduction. Most, if not all, of these
actions are mediated through the glucocorticoid receptor (GR), a
member of the nuclear receptor superfamily of transcription
factors [2]. There are two isoforms of GR, GRa and GRb, which are
generated by alternative splicing of a single gene. GRa is ubiqui-
tously expressed in nearly all cell types, and is responsible for
the induction of most GCs-target genes. In contrast, GRb does not
bind any GCs evaluated so far, and its function remains unclear.

The GR contains an N-terminal transactivation domain (NTD), a
central DNA-binding domain (DBD), a C-terminal ligand-binding
domain (LBD), and a flexible hinge region in between the DBD
and the LBD [3]. The binding of GCs to GR induces a conformational
change in the GR, which releases the receptor from the heat shock
proteins (HSPs) complex [4], exposing nuclear localization
sequences on the GR, and leading to the nuclear translocation
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Fig. 1. Schematic representation of the molecular interactions triggered by glucocorticoids (GCs). Once binding to GCs, the cytoplasmic GR undergoes dissociation from
accessory proteins, such as heat shock proteins (HSPs), and translocate into nucleus. In the nucleus, GR activates or represses transcription of genes by directly binding to
glucocorticoid-response elements (GREs) or negative GREs, or by tethering to other transcription factors (TFs), or as a result of a composite regulation where GR binds to the
GREs and interacts with other TFs.
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[5]. In the nucleus, GR can activate or repress gene transcription by
directly binding to specific glucocorticoid-response elements
(GREs) or negative GRE. Alternatively, GR is able to negatively reg-
ulate gene expression by interacting functionally with other tran-
scription factors (TFs) through a mechanism known as tethering,
without binding directly to DNA. This tethering activity of GR is
often considered as the major basis of the immunosuppressive
effects of GCs. For some other TFs, GR needs to bind both to a
GRE and to the TFs at an adjacent promoter region as a result called
composition to affect gene transcription (Fig. 1) [2].

In addition to the classic slow mode of GCs actions mainly via
their transcriptional regulation of genes, increasing evidences sug-
gest that GCs can also act rapidly through non-genomic signaling
mechanism, which does not require nuclear translocation of GR
and GR-mediated transcription. These effects are thought to occur
by the membrane-bound of GR or the cytoplasmic GR [6,7]. GR has
been shown to interact with and alter the activity of several
kinases, including JNK [8], Src [9], ERK1/2 [10,11], phosphatidyli-
nositol 3-kinae (PI3K) [12], and protein kinase C (PKC) [13]. On
the other hand, these effects can also be caused by the physio-
chemical interaction of GCs with the cell membrane, leading to
the impaired cation transport through the plasma membrane and
increased proton leak of the mitochondria [7], and thus resulting
in immunosuppressive effects [14,15]. Although currently the
mechanisms of non-genomic GCs signaling are not well
understood, these rapid responses may play important roles in
the actions of GCs and may provide novel therapeutic targets for
GC-related diseases in the future.
2. Inflammation and glucocorticoids

GCs was first recognized in the 1940 s as potent anti-inflamma-
tory agents when Philip Hench successfully treated rheumatoid
arthritis with GCs [16], for which he received a Nobel Prize in
1950. Since then, both natural and synthetic GCs have become
the most prescribed immune suppression medications worldwide
[17]. GCs exert their anti-inflammatory role by acting on nearly
all cell types of immune system [18]. Acutely, GCs inhibit vascular
permeability that occurs following inflammation and decrease
leukocyte recruitment. They evoke immune cells by inducing
apoptosis, changing differentiation fate, inhibition of cytokine
release, inhibition of migration and other features [19]. The anti-
inflammatory and immunosuppressive actions of GCs mainly
result from the transrepression regulation of GR through tethering
to various DNA-bound TFs, including activating protein-1 (AP-1),
nuclear factor (NF)-jB, cAMP response element-binding protein
(CREB), interferon regulatory factor 3 (IRF3), nuclear factor of acti-
vated T cells (NFAT), signal transducer and activator of transcrip-
tion (STAT), T-box expressed in T cells (T-Bet), and GATA-3
[20,21]. Genes that are repressed by this tethering mechanism
include a vast number of pro-inflammatory molecules, such as
interleukin (IL)-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12, IL-18, cyclooxy-
genase (COX)-2, E-selectin, inducible NO synthase (iNOS), inter-
feron (IFN)-c, tumor necrosis factor (TNF)-a, intercellular
adhesion molecule (ICAM), monocyte chemoattractant protein
(MCP)-1, and vascular cell adhesion molecule (VCAM) [21]. Addi-
tionally, the induction of GRE dependent genes such as DUSP1 also
contributes to anti-inflammatory activities of GR [22]. The induc-
tion of DUSP-1 by GR reduces pro-inflammatory gene expression
by dephosphorylating JNK and p38 MAPK in some cells and in
animal models [23,24].
3. Glucocorticoids in current cancer therapy

For nearly 70 years, physicians have relied on GCs to treat
hematopoietic malignancies of the lymphoid lineage. Synthetic
GCs, such as dexamethasone (DEX), are routinely included in all
chemotherapy protocols to induce cell apoptosis in malignant lym-
phoid cancers, such as acute lymphoblastic leukemia (ALL), chronic
lymphocytic leukemia (CLL), multiple myeloma (MM), Hodgkin’s
lymphoma (HL), and non-Hodgkin’s lymphoma (NHL) [25]. The
GCs-induced apoptosis appears to be a complicated process involv-
ing multiple signaling pathways. They include transactivation of
apoptosis inducing genes, such as Bim [26], and the negative mod-
ulation of survival cytokines via transrepression mechanism
through inhibition of AP-1 and NF-jB mediated transcriptions
[27] (Fig. 2).

In non-hematologic malignancy, GCs monotherapy or combined
therapy with other cytotoxic drugs, such as 5-fluorouracil (5-FU),
had shown modest benefit in breast and prostate cancers, but
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Fig. 2. Current understanding of GCs signaling in tumor progression and metastasis. The response of cancer cells to GCs signaling is controversial. Here is the summary of
current findings on the role of GCs in tumor progression and metastasis (left: favorable part of GCs signaling; right: unfavorable part of GCs signaling in tumor inhibition or
promotion respectively).

86 K.-T. Lin, L.-H. Wang / Steroids 111 (2016) 84–88
not in other cancer types [28,29]. However, the addition of GCs to
other therapy does not change the long-term survival in advanced
breast cancer. Little is known about the molecular mechanism
underlying the actions of GCs in breast and prostate cancer
progression.

In addition to use GCs as therapeutic reagents, GCs are widely
accepted as an adjuvant during chemotherapy or radiotherapy
for reducing side effects in many cancer types [25,30]. Treatment
of GCs increases appetite, decreases weight loss, reduces fatigue,
diminishes ureteric obstruction, and prevents vomiting. GCs are
also effective in alleviating pain associated with bone metastasis
by inhibiting the synthesis and release of prostaglandins [31]. In
advanced cancer, GCs are sometimes used in the treatment to
reduce side effects for general palliative care [25].

4. The role of glucocorticoid signaling in tumor progression and
metastasis in non-hematologic cancer

Whether the action of GCs promotes or inhibits tumor progres-
sion is controversial in non-hematologic cancer types. Prior studies
have demonstrated that GCs can suppress tumor progression and
metastasis [29,32–39], whereas other investigations reported that
GCs inhibit chemotherapy-induced cell apoptosis [40–51]. This
controversial phenomenon may result from different cancer
subtypes, differential GR levels, and the dosage of GCs given. This
section will discuss some recent research findings on GCs to pro-
vide new insights on the role of GCs signaling in tumor progression
and metastasis (summarized in Fig. 2).

4.1. Favorable part of glucocorticoids signaling in cancer treatment

GCs treatments have shown modest benefits on patient survival
in endocrine-responsive cancers, including breast and prostate
cancer, despite an incomplete understanding of the underlying
mechanism [29]. Preclinical data revealed that GR activation may
reduce estrogen-induced cell proliferation in ER-positive breast
cancer [32], and also attenuate androgen-activated AR gene
expression in AR-active prostate cancer [33], suggesting GR may
share cooperative nature with the other nuclear hormone
receptors-ER and AR to suppress these endocrine-responsive
tumor growth.

Cancer metastasis is responsible for most cancer-associated
mortality, yet the role of GCs in cancer metastasis had not been
well studied. In vitro cell model has shown that GCs suppress cell
migration/invasion through a number of different mechanisms,
such as down-regulation of RhoA [34], MMP2/9 and IL-6 [35], or
by induction of E-Cadherin [36]. In term of angiogenesis, studies
have shown treatment of GCs suppresses growth of new blood ves-
sels [37] by down-regulation of pro-angiogenic factors, including
IL-8 and VEGF [38]. Moreover, recent study provides a novel regu-
latory mechanism of GCs in suppressing cancer metastasis through
one of the metastasis suppressor microRNA (miRNA), miR-708
[39]. Treatment of synthetic GCs induces miR-708 transcription,
leading to the inhibition of Rap1B, resulting in the decreased can-
cer cell migration, adhesion and abdominal metastasis in an ortho-
topic xenograft mouse model. To date, little is known about the
regulation of microRNAs by GCs signaling, which could be impor-
tant to understand and treat diseases. The identification of miR-
708 as a GCs downstream target may help us to further elucidate
GCs-mediated gene regulation in tumor progression and metasta-
sis, and may provide additional therapeutic targets to tailor disease
treatment accordingly.
4.2. Unfavorable part of glucocorticoids signaling in cancer treatment

Some in vitro studies have observed treatment of GCs induces
resistance when used together with various cytotoxic anticancer
drugs and with radiotherapy in cultured cells or in xenograft
mouse model. This phenomenon has been found in many epithelial
cancer types, including prostate, kidney, testis, bladder [40], brain
[41,42], ovary, breast [43], cervix [44,45], colon, liver [46], lung
[47,48], and pancreas cancer [49], raising the concerns of using it
in combined treatment regimen. The GCs-mediated resistance to
cancer cell death by chemotherapy or radiotherapy was mainly
through up-regulation of serine/threonine survival kinase 1
(SGK1), mitogen-activated protein kinase phosphatase (MKP1/
DUSP1), and IjBa (negative regulator of NF-jB) [50,51]. However,
despite the emerging in vitro evidences of cancer cell apoptosis
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inhibition by GCs in different cancer models, currently no clinical
studies available to support those observations. A retrospective
study in ovarian cancer comparing patients who received
chemotherapy concurrently with GCs and those without and found
no adverse difference on patients outcome [52]. More investiga-
tions from retrospective clinical studies and animal model
experiments are required before the conclusion can be made.

On the other hand, recent studies have pointed to an interesting
observation on the effects of GR activity, which is dependent on
concomitant ER and AR activity. In early stage ER negative breast
cancer, high tumor GR expression correlates with poor prognosis
[53]. GR activation suppresses chemotherapy-induced apoptosis
in triple negative breast cancer xenograft tumors [54], and treat-
ment with GR antagonist can reverse these effects [55]. Similar
to the case in breast cancer, the effects of GR activity in prostate
cancer are also dependent on AR activation status. Clinical evi-
dence and animal model both indicate high expression of GR and
GR-downstream genes, including SGK1, in AR antagonist enzalu-
tamide resistant prostate tumors [56]. In fact, GR shares structural
similarity with AR, and they recognize nearly identical consensus
DNA binding motif, and thus regulate a subset of overlapping genes
[33,57], suggesting the possibility that GR signaling can replace AR
function in the presence of AR antagonist. In castration resistant
prostate cancer model, treatment of GR antagonist restored its sen-
sitivity to AR antagonism [56,58]. Although much remains to be
understood about using GR as therapeutic agents in breast and
prostate cancer, recent studies suggest whether GR activity
promotes or inhibits tumor progression is dependent on the
expression and activity of ER or AR.
5. Glucocorticoids-regulated microRNAs in cell biology and
diseases

GR is known as ligand-activated transcription factor that regu-
lates many gene transcriptions, however, currently it remains
unclear about the regulation of GR by miRNA(s) or conversely, reg-
ulation of miRNAs by GR-mediated signaling. Understanding these
regulations might be critical when treating diseases with GCs. Sev-
eral microRNAs were found to be up-regulated upon GCs treat-
ment, including miR-223, miR-15b, miR-16 [59], miR-23a [60],
and miR-708 [39], while some were down-regulated in the appear-
ance of GCs, such as miR-17�92 [61], miR-145 [62], and miR-132
[63]. The expression of GR was also found to be regulated by
miRNA wherein miR-18 and 124a suppress GR expression in brain
[64]. Those miRNAs regulated by GCs target different genes includ-
ing Rap1B in ovarian cancer [39], Bim in lymphoma [61], and
brain-derived neurotrophic factor (BDNF) in brain [63]. Since both
GR and miRNAs can regulate gene expressions, their interaction
within different cell types can be very complicated. Changes in
these interactions can have profound impact on the cells and ulti-
mately affect the outcome of the disease. More investigations
should be performed to further elucidate those signaling networks.
6. Conclusions

GCs are the first line of defense to treat inflammation and
chronic inflammatory diseases, and are commonly used in cancer
patients for a variety of different purposes. However, how GCs
function in the tumor progression is a question remain unan-
swered. This review is aimed to highlight the most recent findings
in the molecular mechanism of GCs and its receptor, GR, in inflam-
mation and in cancer research. We have discussed the complexity
and controversial observations when treating GCs in non-hemato-
logic cancer types. GCs treatment might favor the growth of malig-
nant solid tumors in certain cancer types, meanwhile, it might play
a suppressive role in tumor progression and metastasis in other
cancers. Simple cellular experimental models may not suffice to
accurately predict the therapeutic outcome. Different cancer types,
differential GR levels, the dosage of GCs given, and even the activ-
ity of other hormone nuclear receptors, such as AR or ER, have to be
taken into account to understand comprehensively of GCs-
mediated actions. The dosage of GCs given varies widely for differ-
ent proposes: for treating lymphocytic malignancy, virtually all
patients given synthetic GCs 50–100 mg daily [28]; for relieving
chemotherapy-induced nausea and vomiting, the dose of synthetic
GCs varies from 8 to 20 mg [28]; for induction of genes or
microRNAs in mouse xenograft model, the human equivalent dose
of synthetic GCs used can be as low as 0.1–0.3 mg [39]. Future
studies are needed to elucidate the optimal timing, duration,
dosage, as well as the choice of appropriate GCs among different
cancer subtypes to develop customized strategy to meet each
individual need.
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