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Abstract

Characterizations of multivariate distributions has been a topic of great interest in applied statistics
literature for the last three decades. In this paper, we develop characterizations of multivariate lifetime
distributions by relationship between multivariate failure rates (reversed failure rates) and the left (right)
truncated expectations of functions of random variables. We, then, discuss the application of the results to
derive a multivariate Stein type identity.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Characterization of lifetime distributions by relationship between failure rate (reversed failure
rate) and the left (right) truncated expectations of functions of random variables has been a
fertile area of research during the last two decades. The various results in this connection
in the univariate case deal with specific distributions like normal [15], gamma and negative
binomial [26], beta, binomial and Poisson [3], gamma [13], mixture of exponentials [23], gamma
and chi-square [2], mixtures of exponential, Lomax and beta [1], discrete models [18], families of
distributions like Pearson system [19] and its extension [32], exponential family [8], exponential
type [9] and some general classes of distributions that include most of the lifetime models used in
practice [29,24,4,10,20]. The general form of the relationships employed in most of these papers
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is of the form

E[B(X)|X > x] − µ = h(x)g(x), (1)

where B(X) is a suitably chosen function of a continuous random variable X , µ = E(B(X)),
h(x) = f (x)/F(x), the failure rate of X and g(x) a differentiable non-negative real-valued
function. One can write an equivalent form of Eq. (1) in terms of reversed failure rate λ(x) =

f (x)/F(x) as

µ − E[B(X)|X ≤ x] = λ(x) g(x). (2)

When (1) or (2) is satisfied for all x , the density f (x) of X is uniquely determined as

f ′(x)

f (x)
=

µ − B(x) − g′(x)

g(x)
, (3)

where prime denotes the derivative, and hence for a fixed B(x), the g(x) function characterizes
the distribution of X . Apart from identifying the distribution through (1) or (2), these
relationships form necessary and sufficient conditions for deriving lower bounds to the variance
of any absolutely continuous functions C(X) of X . Moreover, such lower bounds compare
favourably with their counterparts like the Cramer–Rao and Chapman–Robbin inequalities
in estimation theory, under conditions of validity of the latter [21,22]. While the search
for identities of the form Eqs. (1) and (2) is well documented in the univariate case, there
are no comparable developments to augment these in the multivariate case other than the
pioneering works by Ruiz and Navarro [30] and Kotz et al. [14]. They point out that there
exist multivariate distributions which do not satisfy their general relationship and further that
the matrix function involved there can be chosen in different ways. With the advancement of
complex equipments and systems consisting of several components with dependent lifetimes,
multivariate failure rates and mean residual life and the analysis of their behaviour becomes
essential to understand equipment reliability and to model lifetime distributions. Motivated by
these considerations, the present paper attempts to propose a general framework through which
relationships between multivariate failure rates and conditional expectations of functions of
random variables can be explored. Though it is possible to have several types of extensions
to the multivariate case, the focus here is to discuss those generalizations that reduce
to (1) for univariate models in view of the considerable interest generated in the latter
formulation.

Since the concept of failure rate in the univariate case lends itself to different definitions
in higher dimensions, the characteristic properties (1) and (2) can be generalized to varying
forms corresponding to the definition used. Accordingly in Section 2 we use the vector-valued
multivariate failure rate of Johnson and Kotz [12] and in Section 3, the scalar failure rate is
employed to derive the relevant results. In Section 4 we discuss the applications of our results to
derive a multivariate Stein type identity.

2. Relationships for vector failure rates

Let X = (X1, X2, . . . , X p) be a random vector in Rp supported by the p-dimensional
rectangle Sp = {x| − ∞ ≤ ai < xi < bi ≤ ∞, i = 1, 2, . . . , p}, with absolutely continuous
survival function F(x) = P(X > x), distribution function F(x) and density function f (x),
where the ordering implied in X > x is lexicographic. The vector-valued multivariate failure rate
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of Johnson and Kotz [12] is defined as

h(x) = −∇ log F(x), (4)

where ∇ = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂x p

) is the p-dimensional gradient operator. Analogously, the
multivariate reversed failure rate has the definition

λ(x) = ∇ log F(x). (5)

Notice that the i th components of the vectors h(x) and λ(x) are respectively obtained as

hi (x) = −
∂ log F

∂xi
and λi (x) =

∂ log F

∂xi
. (6)

Further assume that Bi (X i ), i = 1, 2, . . . , p are real-valued non-constant functions satisfying
E(Bi (X i )) < ∞. Write

mi (x) = E(Bi (X i )|X > x) (7)

and

ri (x) = E(Bi (X i )|X ≤ x). (8)

Then the multivariate mean residual life E(X − x|X > x) has its i th component derived from (7)
by substituting Bi (X i ) = X i − xi in (7) and similarly the i th component of the reversed mean
residual life E(x − X|X ≤ x) is the special case of (8) when Bi (X i ) = xi − X i .

With these definitions and notations, we establish characterizations of multivariate
distributions by relationship between failure rates and conditional expectations.

Theorem 2.1. A necessary and sufficient condition for the p-dimensional random variable X
defined above to satisfy the relationship

gi (x)hi (x) = mi (x) − µi , i = 1, 2, . . . , p (9)

for all x in Sp, some positive real-valued function gi (x) defined on Sp and differentiable in each
of the arguments and µi = E(Bi (X i )|X∗

i > x∗

i ), is that the distribution of X is determined from

∂ F

∂xi
= −Ci (x∗

i ) exp

[∫ xi

ai

(
µi − Bi (ti ) −

∂gi (xi ,ti )
∂ti

g(xi , ti )

)
dti

]
, i = 1, 2, . . . , p, (10)

where Ci (x∗

i ) is determined such that F(x) is a distribution function, x∗

i = (x1 . . . xi−1 xi+1
. . . x p) and (xi , ti ) is the vector x in which the i th component xi is replaced by ti .

Proof. To prove the necessary part, we assume (9) and observe that

mi (x) = E(Bi (X i )|X > x) =
[
F(x)

]−1
∫ b1

x1

. . . ,

∫ bp

x p

Bi (ti )(−1)p ∂ p F

∂t1 . . . , ∂tp
dt1 . . . , dtp

= −
[
F(x)

]−1
∫ bi

xi

Bi (ti )
∂ F(xi , ti )

∂ti
dti .

Hence condition (9) is equivalent to

gi (x)
∂ F

∂xi
=

∫ bi

xi

(Bi (ti ) − µi )
∂ F(xi , ti )

∂ti
dti
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which on differentiation with respect to xi yields

gi (x)
∂2 F(x)

∂x2
i

+
∂ F(x)

∂xi

∂gi (x)

∂xi
= (µi − Bi (xi ))

∂ F(x)

∂xi
. (11)

One solution of the second-order partial differential equation (11) is F as a function independent
of xi , which is inadmissible for our purpose. For the other solution, set Gi (x) = −

∂ F
∂xi

to write

∂ log Gi (x)

∂xi
= [gi (x)]−1

(
µi − Bi (xi ) −

∂gi (x)

∂xi

)
.

Integration over (ai , xi ) leads to (10). By retracing the above steps, the sufficiency part is
established and this completes the proof. �

Remark 1. The distribution of X is found by solving the p simultaneous equations (10). As seen
from (10), for a fixed Bi (X i ), the functional form of gi (x) characterizes the distribution

Examples
1. The multivariate Weibull distribution with

F(x) = exp

[
−

p∑
i=1

λi xαi
i −

∑
i< j

λi j xαi
i x

α j
j − · · · − λ12...,pxα1

1 xα2
2 · · · x

αp
p

]
,

xi , αi , λ > 0

the choice, Bi (X i ) = Xαi
i leads to

gi (x) = xi/αi

[
λi +

∑
j

λi j x
α j
j + · · · + λ12...,px

α j
j . . . , x

αp
p

]
, i, j = 1, 2 . . . p, i < j.

When the α’s are taken to be unity the above result reduces to that of Gumbel’s multivariate
exponential distribution with hi (x) independent of xi and αi = 2 gives multivariate Rayleigh
model with marginal linear failure rates.

2. The Lomax law

F(x) =

(
1 +

p∑
i=1

αi xi

)−β

, xi , αi , β > 0

has a reciprocal linear failure rate that increases with each xi and a decreasing linear mean
residual life. In this case, when Bi (X i ) = X i ,

gi (x) =

(
1 +

∑
αi xi

)
[αi (β − 1)]−1xi , β > 1.

3. Multivariate beta distribution

F(x) =

(
1 −

∑
αi xi

)β

, 0 < x1 <
1
α1

, . . . , x p <

1 −

p−1∑
i=1

αi xi

αp
, αi , β > 0

with decreasing reciprocal linear failure rate and increasing linear mean residual life satisfies
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gi (x) =

(
1 −

∑
αi xi

)
[αi (β + 1)]−1xi

when Bi (X i ) = X i .

Remark 2. The identity connecting the mean residual life and the failure rate is

E(X i − xi |X > x) = gi (x)hi (x) − xi + E(X i |X∗

i > x∗

i ), i = 1, 2, . . . , p.

By appropriately choosing gi (x), the characterizations of Roy [28] and improved version of these
by Asadi [6] of the bivariate exponential, Lomax and beta models arise as particular cases of the
above expression.

Remark 3. When X1, X2, . . . , X p are independent random variables, Eq. (10) reduces to the
marginal distributions of each X i , with gi (xi ) replacing gi (x). The resulting expression is
evidently of the form Eq. (1) and subsumes most of the univariate results, see [20] for details.

Theorem 2.2. The relationship

qi (x)λi (x) = µ∗

i − ri (x), i = 1, 2, . . . , p (12)

is satisfied for all x in Sp and some positive real-valued function qi (x) defined on Sp and
differentiable in each xi if and only if

∂ F

∂xi
= Ki (x∗

i ) exp

[∫ bi

xi

(
µ∗

i − Bi (ti ) −
∂qi (xi ,ti )

∂ti

qi (xi , ti )

)
dti

]
, i = 1, 2, . . . , p, (13)

where µ∗

i = E(X i |X∗

i ≤ x∗

i ).

The proof is similar to that of Theorem 2.2 and therefore omitted.

Remark 4. For p = 1, it is seen from (9) and (12) that q1(x1) = g1(x1), but in higher dimensions
qi and gi need not be the same.

3. Scalar failure rates

In this section, we consider functions Bi (X i ) defined in Section 2 and functions ui (x) defined
on Sp, positive, real-valued and differentiable. Instead of vector failure rates, we look at scalar
conditional failure rates

ai (xi |x∗

i ) = fi (xi |x∗

i )/F i (xi |x∗

i ),

where

F i (xi |x
∗

i ) = P(X i > xi |X∗

i = x∗

i ), i = 1, 2, . . . , p.

Theorem 3.1. A necessary and sufficient condition that a p-dimensional random vector with
support Sp and conditional failure rates ai (xi |x∗

i ) satisfies

ai (xi |x∗

i )ui (x) = E(Bi (X i )|X i > xi , X∗

i = x∗

i ) − ei , i = 1, 2, . . . , p, (14)

where ei = E(Bi (X i )|X∗

i = x∗

i ) is that the density function f (x) has the form

f (x) = ci (x∗

i ) exp

[∫ xi

ai

(
ei − Bi (ti ) −

∂ui (xi ,ti )
∂t

ui (xi , ti )

)
dti

]
, i = 1, 2, . . . , p. (15)
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Proof. Assume that (14) is satisfied for all x in Sp. Then

ai (xi |x∗

i )ui (x) =
[
F(xi |x∗

i )
]−1

∫ bi

xi

Bi (ti ) f (ti |x∗

i )dti − ei

f (xi |x∗

i )ui (x) =

∫ bi

xi

(Bi (ti ) − ei ) fi (ti |x∗

i )dti

or f (x)ui (x) =

∫ bi

xi

(Bi (ti ) − ei ) f (xi , ti )dti . (16)

Differentiating (16) with respect to xi ,

∂ f

∂xi
ui + f

∂ui

∂xi
= [ei − Bi (xi )] f (x)

or

∂ log f

∂xi
=

(
ei − Bi (xi ) −

∂ui

∂xi

)/
ui (x).

Integrating over (ai , xi ) the form (15) is obtained. Converse part follows by retracing the above
steps. �

Remark 5. When X1, . . . , Xn are independent, ai (xi |x∗

i ) = ai (xi ), the univariate failure rate of
X i and ui (x) = ui (xi ), giving the univariate result identical with that mentioned in Remark 3.

Remark 6. Taking Bi (X i ) = X i , E(X i |X i > xi , X∗

i = x∗

i ) = e(x) + xi where e(x) is the
conditional mean residual life studied in [31].

We now give examples of ui (x) that characterize some standard distributions and families.
The bivariate Pearson family discussed in [34] is defined for a random vector (X1, X2) by the
equations

∂ log f

∂xi
=

L i (x1, x2)

Qi (x1, x2)
, −∞ ≤ ai < xi < bi ≤ ∞, i = 1, 2, (17)

where L i and Qi are respectively linear and quadratic functions in x1 and x2 given by

L i = li x1 + mi x2 + ni

and

Qi = Ai x2
1 + 2Hi x1x2 + Di x2

2 + 2Gi x1 + 2Ki x2 + Ci , i = 1, 2

such that L i/Qi is irreducible and satisfies

∂

∂x2

L1

Q1
=

∂

∂x1

L2

Q2
.

Specialising to Bi (X i ) = X i , we have from Eq. (14) that

ai (xi |x j )ui (x1, x2) = E(X i |X i > xi , X j = x j ) − E(X i |X j = x j ),

i, j = 1, 2, i 6= j. (18)
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Theorem 3.2. The random vector (X1, X2) is distributed according to the bivariate Pearson
family Eq. (17) if and only if Eq. (18) holds with ui (x1, x2) as a quadratic function in (x1, x2).

Proof. Assume that (X1, X2) has a density satisfying (17). Then with Bi (X i ) = X i , in
Theorem 3.1, we have the relation

∂ log fi

∂xi
=

L i

Qi
=

(
ei − xi −

∂ui

∂xi

)/
ui

or

−ui (x1, x2)L i (x1, x2) = Qi
∂ui

∂xi
− (ei − xi )Qi . (19)

Further from equation (17) and the expression for L i and Qi , we obtain∫ bi

ai

Qi
∂ f

∂xi
dxi =

∫ bi

ai

L i f dxi , i = 1, 2.

Integrating the left-hand side by parts and assuming that Qi f tends to zero at the boundary points
of the probability domain,∫ bi

ai

(
L i +

∂ Qi

∂xi

)
f dxi = 0

which gives for i = 1,∫ b1

a1

[(l1x1 + m1x2 + n1) + (2A1x1 + 2H1x2 + 2G1)] f (x1, x2)dx1 = 0

that simplifies to

e1(x2) = −
1

(l1 + 2A1)
[(m1 + 2H1)x2 + (n1 + 2G1)]. (20)

Similarly

e2(x1) = −
1

(m2 + 2D2)
[(l2 + 2H2)x1 + (n2 + 2K2)]. (21)

The right-hand side of Eq. (20) being a cubic function in xi , the left-hand side also must be a
cubic leaving the only option that ui has to be a quadratic. The exact expression for ui is obtained
in practice by comparing the coefficients of like powers on both sides of (19). Conversely if
(19) is true with ui as quadratic functions, then ∂ log f

∂xi
is of the form L i/Qi and the proof is

complete. �

Special cases
1. If X is bivariate normal with

f (x) = exp
[
−

1

2(1 − ρ2)
(x2

1 − 2ρx1x2 + x2
2)

]
, −∞ < xi < ∞

then ei (x j ) = ρx j and ui (x) = 1 − ρ2. Thus ui (x) is constant (independent of x1 and x2)
characterizes the bivariate normal law.
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2. The bivariate gamma

f (x1, x2) =
ca+b

0(a)0(b)
xa−1

1 (x2 − x1)
b−1ecx2 , 0 < x1 < x2, a, b, c > 0

is characterized by

u1(x) =
x1

a + b
(x2 − x1)

and

u2(x) =
x2

c
+

2x1x2

b
−

b − 2
b(b − 1)

x2
1 .

3. For the bivariate Type II b,

f (x1, x2) =
xn1−1

1 xn2−1
2

0(n1)0(−n1 − n2)
exp

(
−

x1 + 1
x2

)
, x1 > x2 > 0, n1 + n2 < 0

u1(x) = x1x2 and u2(x) = −(n2 + 2)−1x2
2 , n2 < −2.

Another example of characterization using Theorem 3.1 is that of the bivariate exponential
conditional of Arnold and Strauss [5],

f (x1, x2) = C exp[−λ1x1 − λ2x2 − θx1x2]

by ui (x1, x2) = xi/(λi + θx j ), i, j = 1, 2, i 6= j .
Analogous result for concepts in reversed time is the following, which is proved using similar

arguments as in Theorem 3.1.

Theorem 3.3. Let vi (x) be positive real-valued and differentiable functions defined on Sp. Then
a necessary and sufficient condition that X with reversed conditional failure rate

bi (xi |x∗

i ) = f (xi |x∗

i )/F(xi |x∗

i )

satisfies

bi (xi |x∗

i )vi (x) = E(Bi (X i )|X i ≤ xi , X∗

i = x∗

i ) − mi , i = 1, 2, . . . , p,

where mi = E(Bi (X i )|X∗

i = x∗

i ) is that

f (x) = Ci (x∗

i ) exp

[
−

∫ bi

xi

(
Bi (ti ) − mi −

∂vi
∂ti

(xi , ti )

vi (xi , ti )

)
dti

]
, i = 1, 2, . . . , p.

Example: The bivariate logistic model with

F(x) = (1 + ex1 + ex2)−1, −∞ < xi < ∞

is characterized by vi (x) = 1 + ex1 + ex2 , for a choice of Bi (X i ) = e−X i .

4. Stein type identities for truncated variables

In this section, we discuss the applications of Theorem 3.1 in developing Stein type identities
involving truncated expectations. Stein [33] established that for a normal random variable with
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parameters µ and σ 2 and a differentiable function g(x) satisfying E |g′(X)| < ∞,

E(g(X)(X − µ)) = σ 2g′(X).

Subsequently similar results, widely referred to as Stein type identities, were discovered for
continuous and discrete variables and distributions belonging to the exponential family in the
multivariate case. These results were applied to characterizations, probability theory, prediction
and inference. We refer to [11,27,7,16,25] for details. We now establish a Stein type identity
for truncated variables and give some examples. Apart from providing scope for applications
mentioned above, our results give an alternative methodology to compute truncated moments,
the importance of which is well documented in [17].

Theorem 4.1. Assuming that

E[(Bi (X i ) − ei )gi (X)|X∗

i = x∗

i ] and E

[
ui (X)

∣∣∣∣∂gi

∂xi

∣∣∣∣X∗

i = x∗

i

]
are finite, for a real-valued absolutely continuous function gi (x) defined on Sp with partial
derivatives ∂gi

∂xi
, the following statements are equivalent

(i) f (x) = Ci (x∗

i ) exp[
∫ xi

ai
(

ei −Bi (ti )−
∂ui
∂ti

ui (xi ,ti )
)dti ]

(ii) ui (x)ai (xi |x∗

i ) = E(Bi (X i )|X i > xi , X∗

i = x∗

i ) − ei

(iii) E
[
(Bi (X i ) − ei )gi (X)|X∗

i = x∗

i

]
= E[ui (X)

∂gi
∂ X i

|X∗

i = x∗

i ], i = 1, 2, . . . , p.

Proof. The equivalence of (i) and (ii) is proved in Theorem 3.1. Hence we first consider the case
when (ii) is true. Now

E[(Bi (X i ) − ei )gi (X)|X∗

i = x∗

i ] =

∫ bi

ai

(Bi (xi ) − ei )gi (x) f (xi |x∗

i )

= −

∫ bi

ai

gi (x)

[
∂

∂xi
( f (xi |x∗

i )ui (x))

]
dxi

on using (ii). Integrating by parts, the right-hand side becomes E[ui (X)
∂gi
∂ X i

|x∗

i ], in view of the
assumptions of the Theorem and hence (ii) implies (iii). Conversely assuming (iii), one can write
it as ∫ bi

ai

ui (x)
∂gi

∂xi
f (xi |x∗

i )dxi =

∫ bi

ai

(Bi (xi ) − ei )gi (x) f (xi |x∗

i )dxi

=

∫ bi

ai

(Bi (xi ) − ei )(gi (x) − α) f (xi |x∗

i )dxi ,

where α = E[gi (X)|X∗

i = x∗

i ]. Then∫ bi

ai

ui (x)
∂gi

∂xi
f (xi |x∗

i )dxi =

∫ bi

ai

(Bi (xi ) − ei )

(∫ xi

ai

∂gi (xi , ti )

∂ti
dti

)
f (xi |x∗

i )dxi

=

∫ bi

ai

∂gi

∂xi

∫ xi

ai

((Bi (ti ) − ei ) f (ti |x∗

i )dti )dxi ,

(on changing the order of integration)

=

∫ bi

ai

∂gi

∂xi

∫ bi

xi

(ei − Bi (ti )) f (ti |x∗

i )dti ,



N.U. Nair, P.G. Sankaran / Journal of Multivariate Analysis 99 (2008) 2096–2107 2105

since E[Bi (X i )|x∗

i ] − ei = 0. Setting first g j (x) = cos θx j and then g j (x) = sin θx j , where θ

can be a function of x∗

j , we can arrive at∫ b j

a j

eiθx j u j (x) f (x j |x∗

j )dx j =

∫ b j

a j

eiθx j

(∫ b j

x j

(e j − B j (t j )) f (t j |x∗

j )dt j

)
dx j .

Hence by the uniqueness of the Fourier transforms,

u j (x) f (x j |x∗

j ) =

∫ b j

x j

(e j − B j (t j )) f (t j |x∗

j ), for j = 1, 2, . . . , p

which is the same as (ii). Hence all the implications in the theorem are established. �

Remark 7. When X i ’s are independent

E(Bi (X i ) − ei )gi (X i ) = E

(
ui (X i )

∂gi (X i )

∂ X i

)
which is a univariate Stein type identity.

Examples
1. In the bivariate normal case discussed above, for every absolutely continuous gi (x),

E
[
(X i − mi )gi (X)|X j = x j

]
= (1 − ρ2)E

(
∂gi (X)

∂ X i

)
, (22)

with mi = ρx j , i, j = 1, 2i 6= j . In particular, when X1 and X2 are independent

E((X1 − µ1)g1(X1)) = E
∂g1(X1)

∂ X1

which is the Stein’s identity in the univariate N (µ, 1) case. Giving g1(X), the values X , X2 . . .,
all the higher-order truncated moments can be calculated recursively. Hence Theorem 4.1 offers
a simple method to calculate higher-order truncated moments other than the usual repeated
integration using the density function.

2. In the bivariate exponential conditional distribution of Arnold and Strauss [5] in Section 3

E
[
(X i − (λi + θx j )

−1)gi (X)|X j = x j

]
= E

(
X i

λi + θx j

∂gi (X)

∂ X i

)
, i = 1, 2.

5. Discussion

The present paper proposes some characterizations of multivariate life distributions using
relationship between conditional expectations and failure rates. The main application of these
results appears to be in reliability analysis in identifying the appropriate models, based on
relationship between the mean residual life (or other appropriate functions) and failure rate, either
postulated or empirically seen to be approximately holding for the given lifetime data. Further the
proposed Stein type identity encourages its use in multivariate analogues of applications in the
univariate case, we have mentioned earlier. Multivariate versions of lower bounds to the variance
of random vectors and its applications to estimation theory in the sense of [21] is being worked
out and is expected to be presented in a future work.
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