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Abstract Good understanding of mechanical properties of rock formations is essential during the

development and production phases of a hydrocarbon reservoir. Conventionally, these properties

are estimated from the petrophysical logs with compression and shear sonic data being the main

input to the correlations. This is while in many cases the shear sonic data are not acquired during

well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated

using available empirical correlations or artificial intelligent methods proposed during the last few

decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran

were used to estimate the shear wave velocity using empirical correlations as well as two robust arti-

ficial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation

Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated

values are not very precise and considering the importance of shear sonic data as the input into dif-

ferent models, this study suggests acquiring shear sonic data during well logging. It is important to

note that the benefits of having reliable shear sonic data for estimation of rock formation mechan-

ical properties will compensate the possible additional costs for acquiring a shear log.
ª 2014 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics.
1. Introduction

In rock engineering, methodologies based on wave velocity are
increasingly used to determine the dynamic properties of rocks

(Singh et al., 2012). In Petroleum engineering context, this is
mainly due to very sparse or no borehole-based rock mechan-
ical data being acquired during drilling phase. This is while

having this information is essential for reservoir development,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nrjag.2014.05.001&domain=pdf
mailto:Sh.Maleki.Ch@gmail.com
http://dx.doi.org/10.1016/j.nrjag.2014.05.001
http://www.sciencedirect.com/science/journal/20909977
http://dx.doi.org/10.1016/j.nrjag.2014.05.001


Prediction of shear wave velocity 71
management, and prospect evaluation in exploration areas
(Ameen et al., 2009). The direct measurements of the geome-
chanical properties of formations need testing core samples

in the lab. However, limited number of samples can be taken
from the whole wellbore interval (of few thousands meter)
due to cost and technical issues. In addition to the fact that

lab experiments are time consuming and also expensive to be
conducted, the results obtained from testing only few number
of samples cannot provide a good estimation of mechanical

properties of formations crossed by the wellbore. Indeed, it
would be ideal to have continuous logs, similar to petrophysi-
cal logs, representing elastic and strength properties of differ-
ent formations.

According to the studies carried out to estimate mechanical
properties of subsurface layer, having shear velocity data is nec-
essary to make reliable calculations (Ameen et al., 2009;

Boonen et al., 1998; Eissa and Kazi, 1988; Rasouli et al.,
2011; Zoback, 2007). However, in practice the shear sonic is
not included in the set of acquired logs but only compressional

sonic is available. In such occasions, several methodologies
have been proposed to make an estimation of shear sonic data
from other available data. For example, Wantland (1964)

assumed Poisson’s ratio for reservoir rocks and estimated shear
wave velocities. However, Poisson’s ratio is changing in a wide
range in practice; hence the accuracy of estimated shear sonic
data is questionable (Carroll, 1969). Another approach is to

measure elastic properties of rocks through acoustic measure-
ments of Vp and Vs using pulse transmission techniques in lab-
oratory (Birch, 1960; Christensen, 1974; Kern, 1982; Burlini

and Fountain, 1993; Ji and Salisbury, 1993; Watanabe et al.,
2007). However, few lab data are available for Vs measure-
ments compared to those of Vp (Ji et al., 2002). This is mainly

due to the difficulties of Vs measurements at low pressures, as
the transmission of shear wave through the sample requires a
firm contact between the transducers and the end surfaces of

the specimen. Since variations of shear wave velocity are related
to the rock type, mechanical properties and loading conditions,
the laboratory measurements cannot ideally simulate downhole
field conditions (e.g. in situ stresses and fluid content). The use

of a large range of empirical correlations has been reported dur-
ing the last decades to estimate shear wave velocity from rock
physical parameters (Castagna et al., 1993; Brocher, 2005,

2008; Ameen et al., 2009; Yasar and Erdogan, 2004). However,
these correlations have been developed for a specific area and
their use in other fields is subjected to uncertainties.

In recent years, artificial intelligence (AI) methods have been
used widely for prediction purposes (Feng, 1995; Mohammadi
and Rahmannejad, 2009; Zhang et al., 2009). Once the network
has been trained, it can make prediction, based on its previous

learning, about the output related to new input data set of
similar pattern. Support Vector Regression (SVR) is usually
used as an efficient machine learning methodology for predic-

tion of rock properties (Annan and Chunan, 2008; Kang and
Wang, 2010; Niu and Li, 2010; Rechlin et al., 2011; Wenlin
et al., 2011). The SVR relies on the statistical learning theory

enabling learning machines to generalize the unseen data. This
technique has proven to have superior performances in a vari-
ety of problems due to its generalization abilities and robust-

ness against noise and interferences (Steinwart, 2008). SVM is
a device for finding a solution which uses the minimum possible
energy of the data (Martinez-Ramon and Cristodoulou, 2006;
Cristianini and Shawe-Taylor, 2000). In general, there are at
least three reasons for the success of SVM: its ability to learn
well with only a very small number of parameters, robustness
against the error of the model, and its computational efficiency

compared with several other methods such as neural network
and fuzzy network (Martinez-Ramon and Cristodoulou, 2006).

In this paper, petrophysical logs corresponding to a well

drilled in the southern part of Iran are used to estimate the
shear wave velocity using empirical correlations as well as
novel AI techniques.

2. Geology of field

This study uses the data belonging to an oilfield located in the

Iranian Province of Khuzestan, onshore of the Ahwaz region,
near the Iran-Iraq frontier (see Fig. 1). The field is a North–
South oriented gentle anticline, located in the Dezful

Embayment, which is a sector associated with the closing of
the Neo-Tethys sea and the Tertiary formation of the Zagros-
Taurus Mountains. The oilfield is close the Basrah area in the
west. The structures in the Basrah area consist of gentle anti-

clines showing a North–South general trend which is the same
to this field. The trend of these anticlines follows the old
North–South oriented basement lines. The presence of

Precambrian and Early Cambrian salt in Northern PersianGulf
area and Saudi Arabia is considered as a reason to explain the
possible origin of these structures. However the development

of these anticlines seems related to the reactivation of basement
faults which can be responsible for their structural evolution.
The structural growth of the field area may be already started
during the Mesozoic or earlier and continued through the time.

The Fahliyan Formation is well exposed in the Zagros
Mountains, in Fars province (James and Wynd, 1965). At
the same time of the sedimentation of the Fahliyan, in the area

located between the oilfield and the Khuzestan province, the
intra-shelf basin of the Garau Formation takes place. The cur-
rent oilfield area at the time of the Fahliyan sedimentation

must have belonged to an articulate carbonate ramp complex,
partly controlled by local tectonics, partly by sea level changes,
probably limited Eastward by a more subsiding area under-

went a deeper sedimentation. Argillaceous limestones and
shales of deep environment also develop in Offshore Kuwait,
suggesting that this area belonged to the same intra-shelf
basin. The sedimentation of these units is related to the signif-

icant sea level rise started during the late Tithonian and contin-
ued into the early Berriasian (Sadooni, 1993). The shallow
water sequences of Fahliyan and equivalent units of northern

Persian Gulf underlay the shale and bioclastic limestone of
the Ratawi Formation. Fig. 1 shows the approximate geo-
graphical location of the oil field in Iran.

The middle and upper Cretaceous sediments of the Dezful
Embayment form one of the richest petroleum systems in the
Middle East, with the presence of the Gurpi, Khazdumi and
Gadvan source rocks and the Lurestan, Asmari, Khuzestan

and Khami/Bangestan reservoirs (see Fig. 2).
3. Well A

The available well log data of the current study are belonging
to a vertical wellbore drilled into a carbonate reservoir in
southern part of Iran. The digitized well logs consist of dipole

shear sonic imager (DSI), compressional wave sonic log



Fig. 1 Geographical location of the study area.
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(DTCO), gamma ray log (CGR), density log (ROHZ),

effective porosity (PHIT), true formation resistivity log (RT),
and caliper logs (HCAL). Fig. 3 shows well logs used for the
purpose of this study.

The plot of shear wave velocity versus different conven-
tional well logs is shown in Figs. 4–6. As it is depicted in these
figures, a fair correlation was found between shear velocity and
density logs (Fig. 4). There was also a correlation coefficient of

0.39 obtained between shear wave velocities with gamma ray
(Fig. 5) while a correlation coefficient of 0.94 was observed
between shear and compressional wave velocities (Fig. 6).

It is obvious that there is a strong correlation between the
shear and compressional wave velocity data of this well. Hence
a correlation obtained by cross plotting of these two waves

may have application for other wells located in this field where
DSI data were not acquired for them. This correlation is pre-
sented as:

VS ¼ 0:4584VP þ 0:3904 ð1Þ

In this equation, Vs and Vp are, respectively, shear and
compressional wave velocities and unit of Vs and Vp is km/s
(kilometers to second).

4. Empirical correlations for shear-wave velocity estimation

Obtained results of specific shear wave velocities have shown
that significant variations of shear wave velocity are related
to material type, their condition (compaction, strength) and

structural loading conditions (Phil and Andy, 1990). To over-

come the difficulty of determining the shear wave velocity or

making an approximate value for it, laboratory measurement

was introduced in the first place. The major disadvantage of

determination of velocity on rock samples in the laboratory

is that the values obtained are only representative of a small

volume of the rocks. Unless the in situ conditions of stress,

fluid content etc., of the rock samples are considered. Hence,

measurements on samples in laboratory will differ significantly

from those values existed in situ. This is because the acoustic

properties of rock exhibit an environmental dependency par-

ticularly with respect to stress. Consequently, it is desirable

to determine a method of estimating the shear wave velocity

and at the same time avoid the associated cost of acquiring

it. In this regard, various empirical correlations have been pro-

posed based on regression analysis to predict shear wave veloc-

ity from compressional wave velocity (which is of course much

easier to determine) or any other petrophysical data.

Regression analysis is one of the widely applied statistical
tools for the investigation of relationships between a dependent

variable of interest and a set of independent (related predictor)
variables (Bailey, 1973). Regression equation gives an approx-
imation to the actual functional relationship between the

parameters of interest. Generally, regression analysis is applied
to naturally-occurring variables (parameters), as opposed to
experimentally gotten variables, although you can apply



Fig. 2 Lithostratigraphic section of Iran (Khuzestan and Lurestan provinces) showing the distribution of the major source reservoir

rocks.

Prediction of shear wave velocity 73
regression to experimentally acquired variables (Montgomery
et al., 2007). Regression analysis is either linear or non-linear.
In linear regression, the data are modeled using linear indepen-

dent variables or predictor functions, and unknown model vari-
ables are projected from the data. In non-linear regression data
are modeled by a function which is a non-linear combination of

the model parameters. This type of regression depends on one
or more independent variables (Montgomery et al., 2007).
For the purpose of the current study, various empirical cor-
relations proposed to predict shear wave velocity from petro-
physical logs were used and two of them were selected as the

best ones. In this section, these two correlations are presented
and their results will be discussed in detail. In addition, a cor-
relation is derived from the available data of the well logs

which may have application for prediction of shear wave in
gas shale formations.



Fig. 3 Petrophysical logs used for this study.
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4.1. Castagna equation

One of the most widely used correlations to predict shear wave
velocity is Castagna equation. Castagna et al., 1993 proposed

empirical equations for prediction of shear wave velocity in
sandstone, limestone, shale and dolomite rocks. Since this
study essentially considers carbonate formation, we use the

equation proposed for carbonate rocks which is presented as:

Vs ¼ �0:05509V2
p þ 1:0168Vp � 1:0305 ð2Þ

In this equation, Vs and Vp are, respectively, shear and com-

pressional wave velocities and unit of Vs and Vp is ft/us (foot
to microsecond). The results obtained from utilizing Eq. (2)
plotted against real shear wave velocity are shown in Fig. 7.

From Fig. 7, it is seen while Castagna correlation overesti-
mates shear wave velocity, this is happening consistently which
has resulted in a correlation coefficient of 0.96 between the real
and predicted values. This means that this correlation results in

a relatively high precise but low accurate estimation.
4.2. Brocher equation

Brocher (2005, 2008) plotted thousands of wave velocity data
for a wide range of lithologies from unconsolidated sediments

to very low porosity igneous rocks, and from non-welded vol-
canic tuffs to highly compact metamorphic rocks to draw a
non-linear equation given as:

VS ¼ 0:7858� 1:2344VP þ 0:7949V2
P � 0:1238V3

P þ 0:006V4
P

ð3Þ

This relation is valid for Vp between 1.5 and 8.5 km/s. where Vs

and VP are shear and compressional wave velocities respec-

tively and unit of Vs and Vp is km/S (Kilometers to second).
Fig. 8 shows the relationship and correlation coefficient
obtained from Brocher equation.

From the above figure it can be concluded that this corre-
lation is a good predictor of shear wave velocity. However
the efficiency of Brocher equation in prediction of shear wave
velocity is less than that of the Castagna equation.
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4.3. Carroll equation

Carroll (1969) proposed the following empirical relation
between compressional and shear wave velocities:

Vs ¼ 1:09913326� V0:9238115336
p ð4Þ

This correlation is valid for any rock having Poisson’s ratio
between 0.22 and 0.28 which implies based on elastic equations

that the Vp/Vs ratio should be between 1.61 and 1.85 and unit
of Vs and Vp is km/S. (Wadhwa et al., 2010). Fig. 9 shows the
plot of shear wave velocity estimated from Carroll correlation

versus real data.
The results obtained from Fig. 9 indicated that, in general,

the estimated shear wave velocities using Carroll correlation
are better than those of the Brocher. However, so far Castagna

correlation seems to be the best correlation for prediction of
shear wave velocity. In any of the empirical correlations used
in this paper there needs a shift to be applied in order to obtain

better estimation of shear velocity values. However, different
amounts of corrections may be required in different cases,
which makes the use of these correlations difficult and sub-

jected to uncertainties. This indicates that available correla-
tions (as the results of three mostly popular ones shown
here) are not good enough to extract a reliable shear velocity

log. This stresses the importance and benefit of acquiring shear
sonic data as part of the wire-line logging program during the
drilling phase.

In the next section, application of two robust artificial intel-
ligence algorithms is presented in order to show how much
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accurate these methods may be in the prediction of shear wave
velocity.

5. Regression based algorithms

In this section two robust artificial intelligence algorithms
known as Support Vector Regression (SVR) and Back-

Propagation Neural Network (BPNN) are used to estimate
shear wave velocity using different petrophysical logs. These
two networks have been extensively introduced in the
literatures so presenting their mathematical equations is
beyond the scope of the current paper. In addition, to optimize
the parameters involved in the structures of these two

networks used for prediction of the shear velocity, genetic
algorithm (GA) is used. Hence, in the following sections, a
brief introduction to the SVR, BPNN and GA is given which

is followed by discussing the steps involved in the development
of the models.

5.1. Support Vector Regression

Support Vector Machine (SVM) used for regression analysis is
called the Support Vector Regression (SVR). The aim of the

SVR is to find a function for approximation of the output
according to the available dataset (Cristianini and Shawe-Tay-
lor, 2000). To estimate a function, a small fraction of training
samples called support vectors (SVs) is taken into account. In

addition, a specific loss function called e-insensitive is used to
create a sparseness property for SVR algorithm. The basis of
the theory has been developed based on a regression algorithm

as well as the inner product of two vectors in Hilbert space (i.e.
a space in which inner product of two vectors has a real value).
To control the risk minimization simultaneous control of the

complexity and the error of the model are taken into consider-
ation. This is the basic idea used to improve the generalization
ability of the SVR (Martinez-Ramon and Cristodoulou, 2006).
However, to get a better generalization in non-linear cases, the

data points are mapped into a space called feature space (i.e.,
Hilbert or inner product space) through utilizing a function
known as kernel function (Steinwart, 2008). Selecting a suit-

able kernel makes it possible to separate the data in the feature
space while the original input space is still non-linear. Thus
while data for n-parity are not separated by a hyper plane in

input space, it can be separated in the feature space by a proper
kernel (Scholkopf et al., 1998; Walczack and Massart, 1996).
According to the definition of kernel, the non-linear regression

estimation problem of SVR can be proposed and utilized for
solving any regression analysis (Sanchez, 2003).

5.2. Back-Propagation Neural Network

The goal of Artificial Neural Network (ANN) research is to
develop a mathematical model of biological events in order to
imitate the capability of biological neural structures in purpose

of designing an intelligent information processing system.
Back-propagation neural network (BPNN) is an active research
topic in the recent years because of its efficiency in modeling

non-linear dynamic systems (Narendra and Parthasarathy,
1990; Kolen, 2001). Numerous applications can be found in
various papers indicating the ability of this typical neural net-

work (Haykin, 1999, Plett, 2003). BPNN is usually recognized
for its prediction capabilities and ability to generalize well on
a wide variety of problems. For example, Liang and Gupta
studied the stability of dynamic back propagation training

algorithm by the Lyapunov method (Liang and Gupta, 1999).
This network is a supervised type of network which means that
it should be trained with both input and target output data.

During the training, the network tries to match the outputs with
the desired target values. Learning starts with the assignment of
random weights. The output is then calculated and the error is

estimated. This error is used to update the weights until the
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stopping criterion is reached. It should be noted that the stop-
ping criterion is usually the average error of epoch.
5.3. Genetic algorithm

Genetic algorithm (GA) is an appropriate method principally

based on natural selection of genes. It was firstly introduced

by John Holland in the early 1975s for simulation of natural

evolution processes observed in the human body. Generally,

GA works on a set of possible solutions of a specific problem

when they are encoded into chromosome. Regarding their per-

formance in solving the problem, some of the solutions are

chosen and subsequently used to create a new set of possible

solutions. This process is repeated several times until the crite-

rion defined is met. In biological terms, possible or potential

solutions are christened chromosomes which are binary

strings. Chromosomes can form population and problems that

need to be solved are represented by fitness functions. Selection

of individuals is carried out in a process called selection.

Genetic operators including crossover and mutation are partic-

ular operators used to create a new population. Crossover, in

this regard, is an operator working to vary information among

individuals and mutation works to ensure desirable diversity

(Reformat, 1997). Fig. 10 shows a general flowchart showing

combined use of GA and artificial intelligence techniques.

According to the typical procedure of search performed by

GA, search for optimal input well log combination includes

the following steps:

- Coding process: The number of genes in chromosome would
be equal to the number of extracted features. In other

words, genes are coded by binary number and a locus cor-
responds to an input parameter for prediction. If the value
of a gene is equal to 1, its corresponding feature is consid-

ered in the combination while the value equal to 0 indicates
that corresponding feature is not included in combination.

- Initial population generation: Conventionally, initial popu-

lation is generated by random sampling from the input
parameter combinations existed in the database. It should
be noted that, the population size would have a profound

effect on the calculation efficiency as well as prediction
precision.
Decodin
String

Offspring

Manipulation

Reproduction

Population

Genetic Operator

T

Selection

Fig. 10 A general flowchart showing combined use of GA
- Fitness function evaluation: Fitness function is a measure to

evaluate estimation performance of the individual chromo-
somes (well logs) used in combination. The fitness function
can be calculated and evaluated by artificial intelligence

algorithms.
- Selecting the best structure for GA: Genetic operators in a
GA consist of selection, crossover and mutation. Selection
helps GA to reproduce high-grade individuals and elimi-

nate bad individuals included in population. In crossover,
new individuals are generated by exchanging part genes
of old individuals resulting in a high improvement in search

ability. Mutation reverses the binary code of genes to main-
tain diversity of population. Frequency of crossover and
mutation of individuals mainly depend on crossover and

mutation probabilities. According to repeated genetic oper-
ation, the best input parameter combinations correspond-
ing to minimum fitness error are selected as an optimal
combination for prediction purpose.

Requirements of applying GA in optimizing the Artificial
Neural Network (ANN) parameters have been addressed by

many research works (Hegazy et al., 1994). In fact, it was
shown that GA is a useful method when selecting the best
inputs and structure for ANN is hard to find. Van-Rooij

et al. (1996) and Vonk et al. (1997) proposed a robust compu-
tation approach based on utilizing the GA in the field of ANN
for generation of both structure and weights of ANN. Miller

et al. (1989) supported this proposal and optimized the connec-
tion weights and the architecture of ANN using GA. In this
paper GA is used in conjunction of SVR and BPNN to select
both optimum structure and input parameters for prediction of

shear wave velocity.

5.4. Data preparation and normalization

Before starting the training process, input and output data
were scaled to be between the upper and lower bounds of
transfer functions (usually between zero and one or negative

one and one). Normalization of data helps artificial networks
to better understand the relationship between input and output
data as well as increasing the accuracy of prediction so high

efficiency will be achieved during testing step. The normaliza-
tion process for the raw inputs has great effect on preparing
Fitness

g

Fitness

raining Process Testing Process 

and artificial intelligence techniques (Saemi et al., 2007).



Fig. 11 Selection of the best relevant input logs using the GA-

SVR algorithm.
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the data to be suitable for the training. Without this normali-
zation, training the networks would have been very slow. It
can be used to scale the data in the same range of values for

each input feature in order to minimize bias within the net-
works from one feature to another. Data normalization can
also speed up training time by starting the training process

for each feature within the same scale. It is especially useful
for modeling application where the inputs are generally on
widely different scales (Jayalakshmi and Santhakumaran,

2011). There are many different types of normalization usually
used to scale data including Z-Score Normalization, Min–Max
normalization, Sigmoid normalization, Statistical column
normalization, etc. For the purpose of this study, to transform

and normalize the data, among various normalization
techniques, Min–Max normalization method (Eq. (4)) was
considered as it is very simple but a very sophisticated method:

pn ¼ 2
p� pmin

pmax � pmin

� 1 ð4Þ

In the above equation, pn is the normalized parameter, p is the

actual parameter and pmin and pmax are the minimum and
maximum of the actual parameters, respectively. (Jayalakshmi
and Santhakumaran, 2011).

5.5. Model development

The first step in the construction of a SVR is to find their

corresponding optimum kernel function (i.e. K parameter).
According to recommendation given in many literatures, we
chose Radial Basis Function kernel (also called Gaussian

kernel) due to its theoretical and computational efficiency
(Keerthi and Lin, 2003; Lin and Lin, 2003; Schölkopf and
Smola, 2002). This kernel has the following mathematical
formula:

Kðxi; xjÞ ¼ e�kxi�xjk
2=2r2 ð5Þ

We also need to find appropriate values for additional
parameters of each network. For the SVR, parameters like r
(which controls the amplitude and error of Gaussian kernel),

C (regularization parameter controlling the trade-off between
maximizing the margin and minimizing the training error)
and e (determines the margin and controls the error) need to

be determined before the training phase. Selection of parame-
ter C is vital since choosing a small value for C can cause inap-
propriate training convergence whereas a large value for C will
result in over-fitting of the algorithm through training process.

Parameter e is also critically important as it prevents the entire
training set meeting boundary conditions. On the other hand,
BPNN algorithm has parameters like momentum and learning

rates that should be determined prior to training the network.
In this paper, two codes were developed in MATLAB

multipurpose software for finding the best structure for the

networks. In both of these codes, GA was used in conjunction
with networks to optimize the values allocated to model
parameters as well as selecting the best inputs for training step.

Developed codes were able to automatically select the chromo-
some length used for an optimal search so it became possible
to tune the relative parameters of each network using individ-
ual chromosomes generated in population generation step. In

GA algorithm, number of gens is selected according to the
number of training parameters of each network. Thus, SVR
had three gens consisting of r, e and C whereas BPNN had
two genes including learning and momentum rates.

According to computational experiences and the literature,

a uniform cross-over and mutation operators were used for the
GA and probability of the cross-over and mutation operators
were selected to be 0.5 and 0.01, respectively. Genetic algo-

rithm was started with 100 randomly generated chromosomes
containing gene structures of each network. There is no unified
role to determine the population size of GA as it has profound

effect on the training time because the fitness value of every
chromosome must be evaluated in every generation. However,
population sizes of 50–100 are commonly used for GA so the
initial population value was set to be 50 chromosomes in the

present study. Tests were performed to represent combination
of different levels for crossover rate, mutation rate, and popu-
lation size. The obtained values were based on both computa-

tional experiences and those found in the literature.
Accordingly, a uniform cross-over and uniform mutation
operators were used and their probabilities were adjusted at

0.5 and 0.01, respectively. Also the genetic algorithm was
started with 50 randomly generated chromosomes, with gene
structures as described above. Chromosome population size

and number of generations usually influence the training time
as the fitness value of each chromosome must be evaluated in
every generation. There are no general rules for determining
the population size. However, population sizes of 50–100 are

commonly used for the GA (Saemi et al., 2007). Once the pop-
ulation size is chosen, the initial population is randomly gener-
ated. In the present study, the initial population value was set

to be 50 chromosomes. GA starts its evolution in initially ran-
dom population of solutions via picking those individuals
(solutions) which will live on and/or mate into the next gener-

ation. In this process, the GA assesses the finesse using proce-
dures relevant to the problem. The fitter individuals reproduce
and the cycle starts again with the resulting population of the

last generation. Generation of new populations is repeated
until a satisfactory solution is reached, or specific termination
criteria are met (Bandyopadhyay and Pal, 2007). Genetic oper-
ators modify individuals to produce a new individual for test-
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ing and evaluation. In this, cross-over and mutation are by far
the most important genetic operators. The cross-over operator
gives two chromosomes for producing two new chromosomes,

and accelerates the process of reaching the optimal solution
(Bandyopadhyay and Pal, 2007).

In this study, a chromosome is represented by a binary

string in feature selection. Hence, crossover can be performed
by arbitrarily choosing a point called cross-over point, at
which two chromosomes exchange their parts to create two

new chromosomes. The mutation operator increases the vari-
ability of the population and provides a solution to escape get-
ting into the local optimal area. During the mutation process,
each bit of the chromosomes can take a value of 0 or 1 based

on predetermined mutation rate. After the cross-over and
mutation operations are completed, a new population is gener-
ated and evaluated using the fitness function. Selection is a

process in which individual chromosomes are copied regarding
their fitness value. In this hybrid system, selection is performed
using the roulette wheel method. Hence, the probability of
Fig. 12 Comparison of real versus predicted shear wave

Fig. 13 Demonstrating the errors of shea

Table 1 Best and mean fitness and selected input parameters

in two networks used in this study.

Method Best fitness Mean fitness Best input parameters selected

GA-SVR 0.00008 0.000467 DTCO, RHOZ, CGR

GA-BPNN 0.00018 0.001034 DTCO, RHOZ, CGR
selecting a chromosome for inclusion in the mating pool is pro-
portional to its fitness value. As a result, only a desired, prede-
fined number of the best chromosomes survive to produce next

generation.
6. Analysis and results

In this study, at the end of running the GA-SVR and the
GA-BPNN, the optimum values of r and e were selected to
be 0.55, and 0.19, respectively. Wang et al. (2003) indicated

that prediction error of SVR and RVR was scarcely influenced
by parameter C. Hence to make the learning process stable, a
large value should be considered for C (e.g., C= 100). In the

case of BPNN, the optimum networks include one input layer
consisting of 6 neurons (one for each input log), one hidden
layer of sigmoidal function comprising 12 neurons and an out-

put layer containing only one neuron (Shear wave velocity).
Having all of these parameters selected, the most relevant
input variables for predicting the shear wave velocity were
indicated by GA. The results obtained from the GA-SVR

and the GA-BPNN were the same and showed that three logs
including DTCO (Best Individual No. 1), RHOZ (Best Indi-
vidual No. 2) and CGR (Best Individual No. 2) are the most

suitable input parameters needed to be used to reach the best
fitness. Fig. 11 shows the selected input parameters (i.e. best
individuals) during the training of the GA-SVR algorithm.
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Fig. 14 Demonstrating the errors of shear wave velocity estimation using BPNN.

Table 2 Statistical indicator (R2 and RMSE) values corre-

sponding to correlations and AI based algorithms applied to

estimate shear wave velocity log in this study.

Method RMSE R2

Castagna correlation 41.25 0.96

Brocher correlation 65.12 0.93

Carroll correlation 51.24 0.94

SVR algorithm 26.68 0.97

BPNN algorithm 50.51 0.94
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Table 1 reports the best and mean fitness values corre-
sponding to the two networks used for this study together with

their selected input. From this Table, it is seen that both net-
works are similar but their best and mean fitness values are
different.

The predicted values for the shear wave velocities using the
SVR and BPNN algorithms are shown against the real values
in Fig. 12. The results show a relatively high correlation coef-

ficient of 0.97 for the SVR and 0.94 for the BPNN. Generally
speaking, SVR gives more accuracy and precision prediction
compared to those of the BPNN. Figs. 13 and 14 compare
the accuracy of the networks. From the above discussion, it

can be indicated that SVR is the best approach for prediction
of shear wave velocity. Generally, it appears after SVR,
Castagna correlation is the best approach for prediction of

shear wave velocity. Table 2 gives the correlation coefficients
(R) and the root mean square error (RMSE) values corre-
sponding to all five predictive methods used for prediction of

shear wave velocity in this study.

7. Conclusions

In this paper, shear wave velocity was estimated from the
petrophysical logs in a well drilled in carbonate formation by
using correlations and artificial intelligence methods. Castag-

na, Brocher and Carroll empirical correlations were the corre-
lations used to estimate shear wave velocity whereas Support
Vector Regression (SVR) and Back-Propagation Neural Net-
work (BPNN) were the two artificial intelligence methods

applied for such purpose.
The results indicated that Castagna correlation is the best

approach for prediction of shear wave as it presents a higher

correlation coefficient and carries less RMSE. Between the
SVR and BPNN methods, it is seen that the first algorithm
is a better predictor in the case of the data studied here. From

the running time perspective, the SVR showed to be a faster
method compared to the BPNN. Altogether, the results of this
study indicated that among the five methods used the SVR

method is better predictor for estimation of the shear wave
velocity than correlations. However, the presented results for
all methods demonstrated that none of them are capable of

making a reliable estimation of the shear wave velocity. This
indicates the necessity of acquiring real shear velocity data
when possible. Running the shear velocity log during the
wire-line logging does not infer that much extra cost but would

provide valuable data for future well design and better under-
standing of the reservoir performance. The results indicated
that the estimated shear velocities through different methods

are valid to a limited extent and acquiring shear sonic log as
part of wire-line logging program is highly recommended.
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Rechlin, A.J., Lüth, S., Giese, R., 2011. Rock mass classification based

on seismic measurements using Support Vector Machines,

Harmonising Rock Engineering and the Environment, Chapter

31. CRC Press.

Reformat, M., 1997. Application of Genetic Algorithms in Control

Design for Advanced Static VAR Compensator at ac/dc Intercon-

nection. University of Manitoba Press, Canada, pp. 129.

Sadooni, N.F., 1993. Stratigraphic sequence, MICROFACIES, and

petroleum prospect of the Yamama formation, lower cretaceous,

southern Iraq. AAPG Bull., 77.

Sanchez, D.V., 2003. Advanced support vector machines and kernel

method. Neurocomputing 55, 5–20.

Saemi, M., Ahmadi, M., Yazdian-Varjani, A., 2007. Design of neural

networks using genetic algorithm for the permeability estimation of

the reservoir. J. Pet. Sci. Eng. 59, 97–105.

Schölkopf, B., Smola, A., 2002. Learning with Kernels-Support Vector

Machines, Regularization, Optimization and Beyond. MIT Press

Series.

Scholkopf, B., Smola, A.J., Muller, K.R., 1998. Non-linear component

analysis as a kernel eigenvalues problem. Neural Comput. 10,

1299–1319.

Singh, R., Kainthola, A., Singh, T.N., 2012. Estimation of elastic

constant of rocks using an ANFIS approach. Appl. Soft Comput.

12, 40–45.

Steinwart, I., 2008. Support Vector Machines. Los Alamos National

Laboratory, information Sciences Group (CCS-3). Springer.

Van-Rooij, A.J.F., Jain, L.C., Johnson, R.P., 1996. Neural Network

Training Using Genetic Algorithms. World Scientific Publishing

Co., Pvt. Ltd,, Singapore.

Vonk, E., Jain, L.C., Johnson, R.P., 1997. Automatic Generation of

Neural Network Architecture Using Evolutionary Computation.

World Scientific Publishing Co. Pvt. Ltd,, Singapore.

Wadhwa, R.S., Ghosh, N., Subba-Rao, Ch., 2010. Empirical relation

for estimating shear wave velocity from compressional wave

velocity of rocks. J. Ind. Geophys. Union 14 (1), 21–30.

Walczack, B., Massart, D.L., 1996. The radial basis functions––partial

least squares approach as a flexible non-linear regression technique.

Anal. Chim. Acta 331, 177–185.

Wang, W.J., Xu, Z.B., Lu, W.Z., Zhang, X.Y., 2003. Determination of

the spread parameter in the Gaussian kernel for classification and

regression. Neurocomputer 55, 643–663.

Wantland, D., 1964. Geophysical Measurements of Rock Properties in

situ. In: Judd, W.R., (Ed.). State of Stress in Earth’s Crust,

Proceedings of the International Conference, Santa Monica,

California, pp. 409–450.

Watanabe, T., Kasami, H., Ohshima, S., 2007. Compressional and

shear wave velocities of serpentinized peridotites up to 200 MPa.

Earth Planets Space 59, 233–244.

Yasar, E., Erdogan, Y., 2004. Correlating sound velocity with the

density, compressive strength and Young’s modulus of carbonate

rocks. Int. J. Rock Mech. Min. Sci. 41, 871–875.

Zoback, M., 2007. Reservoir Geomechanic, Cambridge University

Press, 450p.

http://refhub.elsevier.com/S2090-9977(14)00020-0/h0050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0060
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0060
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0060
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0065
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0065
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9025
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9025
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9025
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0080
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0080
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0085
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0085
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0085
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0105
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0105
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0110
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0110
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0115
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0115
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0115
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9035
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9035
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9035
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0125
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0125
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9040
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9040
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9040
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0170
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0170
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0170
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h9050
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0175
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0175
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0175
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0185
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0185
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0185
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0190
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0190
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0195
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0195
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0195
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0200
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0200
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0200
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0205
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0205
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0205
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0210
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0210
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0210
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0215
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0215
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0220
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0220
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0220
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0225
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0225
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0225
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0230
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0230
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0230
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0235
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0235
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0235
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0235
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0245
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0245
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0245
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0255
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0255
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0255
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0255
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0260
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0260
http://refhub.elsevier.com/S2090-9977(14)00020-0/h0260

	Prediction of shear wave velocity using  empirical correlations and artificial intelligence methods
	1 Introduction
	2 Geology of field
	3 Well A
	4 Empirical correlations for shear-wave velocity estimation
	4.1 Castagna equation
	4.2 Brocher equation
	4.3 Carroll equation

	5 Regression based algorithms
	5.1 Support Vector Regression
	5.2 Back-Propagation Neural Network
	5.3 Genetic algorithm
	5.4 Data preparation and normalization
	5.5 Model development

	6 Analysis and results
	7 Conclusions
	Acknowledgement
	References


