Covering a bounded set of functions by an increasing chain of slaloms

Masaru Kada
Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Received 20 January 2006; accepted 16 April 2006

Abstract

A slalom is a sequence of finite sets of length ω. Slaloms are ordered by coordinatewise inclusion with finitely many exceptions. Improving earlier results of Mildenberger, Shelah and Tsaban, we prove consistency results concerning existence and non-existence of an increasing sequence of a certain type of slaloms which covers a bounded set of functions in ω^{ω}.

© 2006 Elsevier B.V. All rights reserved.
MSC: primary 03E17; secondary 03E35
Keywords: Cardinal characteristics of the continuum; Slalom; Martin's Axiom; Laver property

1. Introduction

We use standard terminology and refer the readers to [2] for undefined set-theoretic notions.
Bartoszyński [1] introduced the combinatorial concept of slalom to study combinatorial aspects of measure and category on the real line.

We call a sequence of finite subsets of ω of length ω a slalom. For a function $g \in \omega^{\omega}$, let \mathcal{S}^{g} be the set of slaloms φ such that $|\varphi(n)| \leqslant g(n)$ for all $n<\omega$. \mathcal{S} denotes \mathcal{S}^{g} for $g(n)=2^{n}$. For two slaloms φ and ψ, we write $\varphi \sqsubseteq \psi$ if $\varphi(n) \subseteq \psi(n)$ for all but finitely many $n<\omega$. For a function $f \in \omega^{\omega}$ and a slalom $\varphi, f \sqsubseteq \varphi$ if $\langle\{f(n)\}: n<\omega\rangle \sqsubseteq \varphi$.

Mildenberger, Shelah and Tsaban [9] defined cardinals θ_{h} for $h \in \omega^{\omega}$ and θ_{*} to give a partial characterization of the cardinal $\mathfrak{o d}$, the critical cardinality of a certain selection principle for open covers.

The definition of θ_{h} in [9] is described using a combinatorial property which is called o-diagonalization. Here we redefine θ_{h} to fit in the present context. It is easy to see that the following definition is equivalent to the original one. For a function $h \in(\omega \backslash\{0,1\})^{\omega}$, let $h-1$ denote the function $h^{\prime} \in \omega^{\omega}$ which is defined by $h^{\prime}(n)=h(n)-1$ for all n.

Definition 1.1. For a function $h \in(\omega \backslash\{0,1\})^{\omega}, \theta_{h}$ is the smallest size of a subset Φ of \mathcal{S}^{h-1} which satisfies the following, if such a set Φ exists:

[^0](1) Φ is well-ordered by \sqsubseteq;
(2) For every $f \in \prod_{n<\omega} h(n)$ there is a $\varphi \in \Phi$ such that $f \sqsubseteq \varphi$.

If there is no such Φ, we define $\theta_{h}=\mathfrak{c}^{+}$.
It is easy to see that $h_{1} \leqslant h_{2}$ implies $\theta_{h_{1}} \geqslant \theta_{h_{2}}$.
Definition 1.2. [9] $\theta_{*}=\min \left\{\theta_{h}: h \in \omega^{\omega}\right\}$.
In Section 2, we will show that $\theta_{*}=\mathfrak{c}^{+}$is consistent with ZFC.
We say a proper forcing notion \mathbb{P} has the Laver property if, for any $h \in \omega^{\omega}, p \in \mathbb{P}$ and a \mathbb{P}-name \dot{f} for a function in ω^{ω} such that $p \Vdash_{\mathbb{P}} \dot{f} \in \prod_{n<\omega} h(n)$, there exist $q \in \mathbb{P}$ and $\varphi \in \mathcal{S}$ such that q is stronger than p and $q \Vdash_{\mathbb{P}} \dot{f} \sqsubseteq \varphi$.

Mildenberger, Shelah and Tsaban proved that $\theta_{*}=\aleph_{1}$ holds in all forcing models by a proper forcing notion with the Laver property over a model for CH , the continuum hypothesis [9]. In Section 2, we refine their result and state a sufficient condition for $\theta_{*} \leqslant \mathfrak{c}$. As a consequence, we will show that Martin's Axiom implies $\theta_{*}=\mathfrak{c}$.

In Section 3, we give an application of the lemma presented in Section 2 to another problem in topology. We answer a question on approximations to the Stone-Čech compactification of ω by Higson compactifications of ω, which was posed by Kada, Tomoyasu and Yoshinobu [6].

2. Facts on the cardinal $\boldsymbol{\theta}_{\boldsymbol{*}}$

First we observe that $\theta_{*}=\mathfrak{c}^{+}$is consistent with ZFC. We use the following theorem, which is a corollary of Kunen's classical result [7]. For the readers' convenience, we present a complete proof in Section 4.

Theorem 2.1. Suppose that $\kappa \geqslant \aleph_{2}$. The following holds in the forcing model obtained by adding κ Cohen reals over a model for CH : Let \mathcal{X} be a Polish space and $A \subseteq \mathcal{X} \times \mathcal{X}$ a Borel set. Then there is no sequence $\left\langle r_{\alpha}: \alpha<\omega_{2}\right\rangle$ in \mathcal{X} which satisfies

$$
\alpha \leqslant \beta<\omega_{2} \quad \text { if and only if } \quad\left\langle r_{\alpha}, r_{\beta}\right\rangle \in A .
$$

Fix $h \in \omega^{\omega}$. We may regard \mathcal{S}^{h-1} as a product space of countably many finite discrete spaces, and then the relation \sqsubseteq on \mathcal{S}^{h-1} is a Borel subset of $\mathcal{S}^{h-1} \times \mathcal{S}^{h-1}$.

Theorem 2.2. $\theta_{*}=\mathfrak{c}^{+}$holds in the forcing model obtained by adding \aleph_{2} Cohen reals over a model for CH .
Proof. Fix $h \in \omega^{\omega}$. By Theorem 2.1, in the forcing model obtained by adding \aleph_{2} Cohen reals over a model for CH, there is no \sqsubseteq-increasing chain of length ω_{2} in \mathcal{S}^{h-1}. This means that θ_{h} must be \aleph_{1} whenever $\theta_{h} \leqslant \mathfrak{c}$.

On the other hand, $\operatorname{cov}(\mathcal{M})=\aleph_{2}$ holds in the same model. Also, by [9] we have $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{o d} \leqslant \theta_{h}$. This means that θ_{h} cannot be \aleph_{1} in this model, and hence $\theta_{h}=\mathfrak{c}^{+}$.

Next we state a sufficient condition for $\theta_{*} \leqslant \mathfrak{c}$. We use the following characterization of $\operatorname{add}(\mathcal{N})$.
Theorem 2.3. [2, Theorem 2.3.9] add (\mathcal{N}) is the smallest size of a subset F of ω^{ω} such that, for every $\varphi \in \mathcal{S}$ there is an $f \in F$ such that $f \nsubseteq \varphi$.

Definition 2.4. [5, Section 5] For a function $h \in \omega^{\omega}, \mathfrak{l}_{h}$ is the smallest size of a subset Φ of \mathcal{S} such that for all $f \in \prod_{n<\omega} h(n)$ there is a $\varphi \in \Phi$ such that $f \sqsubseteq \varphi$. Let $\mathfrak{l}=\sup \left\{\mathfrak{l}_{h}: h \in \omega^{\omega}\right\}$.

Note that $h_{1} \leqslant{ }^{*} h_{2}$ implies $\mathfrak{l}_{h_{1}} \leqslant \mathfrak{l}_{h_{2}}$.
If CH holds in a ground model $V, h \in \omega^{\omega} \cap V$, and a proper forcing notion \mathbb{P} has the Laver property, then $\mathfrak{l}_{h}=\aleph_{1}$ holds in the model $V^{\mathbb{P}}$. Consequently, if CH holds in $V,\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ is a countable support iteration of proper forcings, $\mathbb{P}=\lim _{\alpha<\omega_{2}} \mathbb{P}_{\alpha}$ and

$$
\left|\vdash_{\mathbb{P}_{\alpha}} "\right| \dot{\mathbb{Q}}_{\alpha} \mid \leqslant \aleph_{1} \text { and } \dot{\mathbb{Q}}_{\alpha} \text { has the Laver property" }
$$

holds for every $\alpha<\omega_{2}$, then $\mathfrak{l}=\aleph_{1}$ holds in $V^{\mathbb{P}}$, since every function h in $V^{\mathbb{P}}$ appears in $V^{\mathbb{P}_{\alpha}}$ for some $\alpha<\omega_{2}$, where CH holds. ${ }^{1}$

Now we define a subset \mathcal{S}^{+}of \mathcal{S} as follows:

$$
\mathcal{S}^{+}=\left\{\varphi \in \mathcal{S}: \lim _{n \rightarrow \infty} \frac{|\varphi(n)|}{2^{n}}=0\right\} .
$$

Let $\mathfrak{l}_{h}^{\prime}$ be the smallest size of a subset Φ of \mathcal{S}^{+}such that for all $f \in \prod_{n<\omega} h(n)$ there is a $\varphi \in \Phi$ such that $f \sqsubseteq \varphi$. Clearly we have $\mathfrak{l}_{h} \leqslant \mathfrak{l}_{h}^{\prime}$, and it is easy to see that for every $h \in \omega^{\omega}$ there is an $h^{*} \in \omega^{\omega}$ such that $\mathfrak{l}_{h}^{\prime} \leqslant \mathfrak{l}_{h^{*}}$. Hence we have $\mathfrak{l}=\sup \left\{\mathfrak{l}_{h}^{\prime}: h \in \omega^{\omega}\right\}$.

Lemma 2.5. For a subset Φ of \mathcal{S}^{+}of size less than $\operatorname{add}(\mathcal{N})$, there is a $\psi \in \mathcal{S}^{+}$such that $\varphi \sqsubseteq \psi$ for all $\varphi \in \Phi$.
Proof. For each $\varphi \in \mathcal{S}^{+}$, define an increasing function $\eta_{\varphi} \in \omega^{\omega}$ by letting

$$
\eta_{\varphi}(m)=\min \left\{l<\omega: \forall k \geqslant l\left(|\varphi(k)|<\frac{2^{k}}{m \cdot 2^{m}}\right)\right\}
$$

for all $m<\omega . \eta_{\varphi}$ is well-defined by the definition of \mathcal{S}^{+}.
Suppose $\kappa<\operatorname{add}(\mathcal{N})$ and fix a set $\Phi \subseteq \mathcal{S}^{+}$of size κ arbitrarily. Since $\kappa<\operatorname{add}(\mathcal{N}) \leqslant \mathfrak{b}$, there is a function $\eta \in \omega^{\omega}$ such that $\lim _{n \rightarrow \infty} \eta(n) / 2^{n}=\infty$ and for all $\varphi \in \Phi$ we have $\eta_{\varphi} \leqslant{ }^{*} \eta$. For each $m<\omega$, let $I_{m}=\{\eta(m), \eta(m)+1$, $\ldots, \eta(m+1)-1\}$ and enumerate $\prod_{n \in I_{m}}[\omega]^{\leqslant\left\lfloor 2^{n} /\left(m \cdot 2^{m}\right)\right\rfloor}$ as $\left\{s_{m, i}: i<\omega\right\}$, where $\lfloor r\rfloor$ denotes the largest integer which does not exceed the real number r.

For $\varphi \in \Phi$, define $\tilde{\varphi} \in \omega^{\omega}$ as follows. If there is an $i<\omega$ such that $\varphi \upharpoonright I_{m}=s_{m, i}$, then let $\tilde{\varphi}(m)=i$; otherwise $\tilde{\varphi}(m)$ is arbitrary.

Since $|\Phi|=\kappa<\operatorname{add}(\mathcal{N})$ and by Theorem 2.3, there is a $\hat{\psi} \in \mathcal{S}$ such that, for all $\varphi \in \Phi$ we have $\tilde{\varphi} \sqsubseteq \hat{\psi}$. Define ψ by letting for each n, if $n \in I_{m}$ then $\psi(n)=\bigcup\left\{s_{m, i}(n): i \in \hat{\psi}(m)\right\}$, and if $n<\eta(0)$ then $\psi(n)=\emptyset$. It is straightforward to check that $\psi \in \mathcal{S}^{+}$and $\varphi \sqsubseteq \psi$ for all $\varphi \in \Phi$.

Lemma 2.6. Suppose that $h \in \omega^{\omega}$ satisfies $h(n)>n^{2}$ for all $n<\omega$. If $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{h}^{\prime}=\kappa$, then there is an \sqsubseteq-increasing sequence $\left\langle\sigma_{\alpha}: \alpha<\kappa\right\rangle$ in \mathcal{S}^{+}such that, for all $f \in \prod_{n<\omega} h(n)$ there is an $\alpha<\kappa$ such that $f \sqsubseteq \varphi_{\alpha}$.

Proof. Fix a sequence $\left\langle\varphi_{\alpha}: \alpha<\kappa\right\rangle$ in \mathcal{S}^{+}so that for all $f \in \prod_{n<\omega} h(n)$ there is an $\alpha<\kappa$ such that $f \sqsubseteq \varphi_{\alpha}$. Using the previous lemma, inductively construct an \sqsubseteq-increasing sequence $\left\langle\sigma_{\alpha}: \alpha<\kappa\right\rangle$ of elements of \mathcal{S}^{+}so that $\varphi_{\alpha} \sqsubseteq \sigma_{\alpha}$ holds for each $\alpha<\omega_{2}$. Then $\left\langle\sigma_{\alpha}: \alpha<\kappa\right\rangle$ is as required.

Define $H_{1} \in \omega^{\omega}$ by letting $H_{1}(n)=2^{n}+1$ for all n.
Theorem 2.7. If $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{H_{1}}^{\prime}$, then $\theta_{*}=\mathfrak{o d}=\operatorname{add}(\mathcal{N})$.
Proof. Let $\kappa=\operatorname{add}(\mathcal{N})=\mathfrak{r}_{H_{1}}^{\prime}$. Since $\mathcal{S}^{+} \subseteq \mathcal{S} \subseteq \mathcal{S}^{H_{1}-1}$, the previous lemma shows that $\theta_{*} \leqslant \theta_{H_{1}} \leqslant \kappa$. On the other hand, by [9], we have $\kappa=\operatorname{add}(\mathcal{N}) \leqslant \operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{o d} \leqslant \theta_{*}$.

Corollary 2.8. [9] If a ground model V satisfies CH , and a proper forcing notion \mathbb{P} has the Laver property, then $\theta_{*}=\aleph_{1}$ holds in the model $V^{\mathbb{P}}$.

Proof. Follows from Theorem 2.7 and the fact that $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{H_{1}}^{\prime}=\mathfrak{l}_{H_{1}^{*}}=\aleph_{1}$ holds in the model $V^{\mathbb{P}}$.
Corollary 2.9. Martin's Axiom implies $\theta_{*}=\mathbf{c}$.
Proof. Follows from Theorem 2.7 and the fact that $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{H_{1}}^{\prime}=\mathfrak{l}=\mathfrak{c}$ holds under Martin's Axiom.

[^1]
3. Application

In this section, we give an answer to a question which was posed by Kada et al. [6]. We refer the reader to [6] for undefined topological notions.

For compactifications αX and γX of a completely regular Hausdorff space X, we write $\alpha X \leqslant \gamma X$ if there is a continuous surjection from γX to αX which fixes the points from X, and $\alpha X \simeq \gamma X$ if $\alpha X \leqslant \gamma X \leqslant \alpha X$. The StoneČech compactification βX of X is the maximal compactification of X in the sense of the order relation \leqslant among compactifications of X.

For a proper metric space $(X, d), \bar{X}^{d}$ denotes the Higson compactification of X with respect to the metric d.
$\mathfrak{h t}$ is the smallest size of a set D of proper metrics on ω such that
(1) $\left\{\bar{\omega}^{d}: d \in D\right\}$ is well-ordered by \leqslant;
(2) There is no $d \in D$ such that $\bar{\omega}^{d} \simeq \beta \omega$;
(3) $\beta \omega \simeq \sup \left\{\bar{\omega}^{d}: d \in D\right\}$, where sup is in the sense of the order relation \leqslant among compactifications of ω;
if such a set D exists. We define $\mathfrak{h t}=\mathfrak{c}^{+}$if there is no such D.
Kada et al. [6, Theorem 6.16] proved the consistency of $\mathfrak{h t}=\mathfrak{c}^{+}$using a similar argument to the proof of Theorem 2.2. But the consistency of $\mathfrak{h t} \leqslant \mathfrak{c}$ was not addressed. Here we state a sufficient condition for $\mathfrak{h t} \leqslant \mathfrak{c}$, and show that it is consistent with ZFC.

Define $H_{2} \in \omega^{\omega}$ by letting $H_{2}(n)=2^{2^{\left(n^{4}\right)}}$ for all n. The following lemma is obtained as a corollary of the proof of [6, Theorem 6.11].

Lemma 3.1. Let κ be a cardinal. If there is an \sqsubseteq-increasing sequence $\left\langle\varphi_{\alpha}: \alpha<\kappa\right\rangle$ of slaloms in \mathcal{S} such that for all $f \in \prod_{n<\omega} H_{2}(n)$ there is an $\alpha<\kappa$ such that $f \sqsubseteq \varphi_{\alpha}$, then $\mathfrak{h t} \leqslant \kappa$.

Now we have the following theorem.
Theorem 3.2. If $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{H_{2}}^{\prime}$, then $\mathfrak{h t}=\operatorname{add}(\mathcal{N})$.
Proof. $\operatorname{add}(\mathcal{N}) \leqslant \mathfrak{h t}$ is proved in [6, Section 6]. To see $\mathfrak{h t} \leqslant \operatorname{add}(\mathcal{N})$, apply Lemma 2.6 for $h=H_{2}$ to get a sequence of slaloms which is required in Lemma 3.1.

Corollary 3.3. If a ground model V satisfies $C H$, and a proper forcing notion \mathbb{P} has the Laver property, then $\mathfrak{h t}=\aleph_{1}$ holds in the model $V^{\mathbb{P}}$.

Proof. Follows from Theorem 3.2 and the fact that $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{H_{2}}^{\prime}=\mathfrak{l}_{H_{2}^{*}}=\aleph_{1}$ holds in the model $V^{\mathbb{P}}$.
Corollary 3.4. Martin's Axiom implies $\mathfrak{h t}=\mathfrak{c}$.
Proof. Follows from Theorem 3.2 and the fact that $\operatorname{add}(\mathcal{N})=\mathfrak{l}_{H_{2}}^{\prime}=\mathfrak{l}=\mathfrak{c}$ holds under Martin's Axiom.

4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. The idea of the proof is the same as the one in Kunen's original proof [7], which is known as the "isomorphism of names" argument. The same argument is also found in [4].

For an infinite set I, let $\mathbb{C}(I)=\operatorname{Fn}\left(I, 2, \aleph_{0}\right)$, the canonical Cohen forcing notion for the index set I. As described in [8, Chapter 7], for any $\mathbb{C}(I)$-name \dot{r} for a subset of ω, we can find a countable subset J of I and a nice $\mathbb{C}(J)$-name \dot{s} for a subset of ω such that $\Vdash_{\mathbb{C}(I)} \dot{s}=\dot{r}$. For a countable set I, there are only \mathfrak{c} nice $\mathbb{C}(I)$-names for subsets of ω.

Proof of Theorem 2.1. Suppose that $\kappa \geqslant \aleph_{2}$. Let \mathcal{X} be a Polish space, \dot{A} a $\mathbb{C}(\kappa)$-name for a Borel subset of $\mathcal{X} \times \mathcal{X}$, and $\left\langle\dot{r}_{\alpha}: \alpha<\omega_{2}\right\rangle$ a sequence of $\mathbb{C}(\kappa)$-names for elements of \mathcal{X}.

We will prove the following statement:

$$
\Vdash_{\mathbb{C}(\kappa)} \exists \alpha<\omega_{2} \exists \beta<\omega_{2}\left(\alpha<\beta \wedge\left(\left\langle\dot{r}_{\alpha}, \dot{r}_{\beta}\right\rangle \notin \dot{A} \vee\left\langle\dot{r}_{\beta}, \dot{r}_{\alpha}\right\rangle \in \dot{A}\right)\right) .
$$

There is nothing to do if it holds that

$$
\Vdash_{\mathbb{C}(\kappa)} \exists \alpha<\omega_{2} \exists \beta<\omega_{2}\left(\alpha<\beta \wedge\left\langle\dot{r}_{\alpha}, \dot{r}_{\beta}\right\rangle \notin \dot{A}\right) .
$$

So we assume that it fails, and fix any $p \in \mathbb{C}(\kappa)$ which satisfies

$$
\begin{equation*}
p \Vdash_{\mathbb{C}(\kappa)} \forall \alpha<\omega_{2} \forall \beta<\omega_{2}\left(\alpha<\beta \rightarrow\left\langle\dot{r}_{\alpha}, \dot{r}_{\beta}\right\rangle \in \dot{A}\right) . \tag{*}
\end{equation*}
$$

We will find $\alpha, \beta<\omega_{2}$ such that $\alpha<\beta$ and $p \Vdash_{\mathbb{C}(\kappa)}\left\langle\dot{r}_{\beta}, \dot{r}_{\alpha}\right\rangle \in \dot{A}$, which concludes the proof.
Let $J_{p}=\operatorname{dom}(p)$. Find a set $J_{A} \in[\kappa]^{\aleph_{0}}$ and a nice $\mathbb{C}\left(J_{A}\right)$-name \dot{C}_{A} for a subset of ω such that
$\vdash_{\mathbb{C}(\kappa)}$ " \dot{C}_{A} is a Borel code of $\dot{A} . "$
For each $\alpha<\omega_{2}$, find a set $J_{\alpha} \in[\kappa]^{N_{0}}$ and a nice $\mathbb{C}\left(J_{\alpha}\right)$-name \dot{C}_{α} for a subset of ω such that
$\vdash_{\mathbb{C}(k)}$ " \dot{C}_{α} is a Borel code of $\left\{\dot{r}_{\alpha}\right\}$."
Using the Δ-system lemma [8, II Theorem 1.6], take $S \in[\kappa]^{\aleph_{0}}$ and $K \in\left[\omega_{2}\right]^{\aleph_{2}}$ so that $J_{p} \cup J_{A} \cup\left(J_{\alpha} \cap J_{\beta}\right) \subseteq S$ for any $\alpha, \beta \in K$ with $\alpha \neq \beta$. Without loss of generality we may assume that $\left|J_{\alpha} \backslash S\right|=\aleph_{0}$ for all $\alpha \in K$. For each $\alpha \in K$, enumerate $J_{\alpha} \backslash S$ as $\left\langle\delta_{n}^{\alpha}: n<\omega\right\rangle$.

For $\alpha, \beta \in K$, and let $\sigma_{\alpha, \beta}$ be the involution (automorphism of order 2) of $\mathbb{C}(\kappa)$ obtained by the permutation of coordinates which interchanges δ_{n}^{α} with δ_{n}^{β} for each $n . \sigma_{\alpha, \beta}$ naturally induces an involution of the class of all $\mathbb{C}(\kappa)$ names: We simply denote it by $\sigma_{\alpha, \beta}$. Since $J_{p} \cup J_{A} \subseteq S$, for all $\alpha, \beta \in K$ we have $\sigma_{\alpha, \beta}(p)=p, \sigma_{\alpha, \beta}\left(\dot{C}_{A}\right)=\dot{C}_{A}$ and $\Vdash_{\mathbb{C}(\kappa)} \sigma_{\alpha, \beta}(\dot{A})=\dot{A}$.

Since $|K|=\aleph_{2}$ and there are only $\mathfrak{c}=\aleph_{1}$ nice names for subsets of ω over a countable index set, we can find $\alpha, \beta \in K$ with $\alpha<\beta$ such that $\sigma_{\alpha, \beta}\left(\dot{C}_{\alpha}\right)=\dot{C}_{\beta}$. Then $\sigma_{\alpha, \beta}\left(\dot{C}_{\beta}\right)=\dot{C}_{\alpha}$ and

$$
\Vdash_{\mathbb{C}(\kappa)} " \sigma_{\alpha, \beta}\left(\dot{r}_{\alpha}\right)=\dot{r}_{\beta} \text { and } \sigma_{\alpha, \beta}\left(\dot{r}_{\beta}\right)=\dot{r}_{\alpha} . "
$$

By $(*)$, we have $p \Vdash_{\mathbb{C}(\kappa)}\left\langle\dot{r}_{\alpha}, \dot{r}_{\beta}\right\rangle \in \dot{A}$. Since $\sigma_{\alpha, \beta}$ is an automorphism of $\mathbb{C}(\kappa)$, we have

$$
\sigma_{\alpha, \beta}(p) \Vdash_{\mathbb{C}(\kappa)}\left\langle\sigma_{\alpha, \beta}\left(\dot{r}_{\alpha}\right), \sigma_{\alpha, \beta}\left(\dot{r}_{\beta}\right)\right\rangle \in \sigma_{\alpha, \beta}(\dot{A})
$$

and hence $p \Vdash^{\mathbb{C}(\kappa)}\left\langle\dot{r}_{\beta}, \dot{r}_{\alpha}\right\rangle \in \dot{A}$.
Remark 1. Fuchino pointed out that Theorem 2.1 is generalized in the following two ways [3]: (1) The set A is not necessarily Borel, but is "definable" by some formula. (2) We can prove a similar result for a forcing extension by a side-by-side product of the same forcing notions, each generically adds a real in a natural way. The argument in the above proof also works in those generalized settings.

Acknowledgements

I thank Sakaé Fuchino, Hiroshi Fujita, Teruyuki Yorioka and the referee for helpful comments and remarks on Theorem 2.1 and its proof.

References

[1] T. Bartoszyński, Combinatorial aspects of measure and category, Fund. Math. 127 (1987) 225-239.
[2] T. Bartoszyński, H. Judah, Set Theory: On the Structure of the Real Line, A.K. Peters, Wellesley, MA, 1995.
[3] J. Brendle, S. Fuchino, Coloring ordinals by reals, Preprint.
[4] I. Juhász, L. Soukup, Z. Szentmiklóssy, Combinatorial principles from adding Cohen reals, in: J.A. Makowsky (Ed.), Logic Colloquium 95, Proceedings of the Annual European Summer Meeting of the Association of Symbolic Logic, Haifa, Israel, in: Lecture Notes in Logic, vol. 11, Springer, Berlin, 1998, pp. 79-103.
[5] M. Kada, More on Cichoń's diagram and infinite games, J. Symbolic Logic 65 (2000) 1713-1724.
[6] M. Kada, K. Tomoyasu, Y. Yoshinobu, How many miles to $\beta \omega$? - Approximating $\beta \omega$ by metric-dependent compactifications, Topology Appl. 145 (2004) 277-292.
[7] K. Kunen, Inaccessibility properties of cardinals, PhD dissertation, Stanford, 1968.
[8] K. Kunen, Set Theory: An Introduction to Independence Proofs, Studies in Logic, vol. 102, North-Holland, Amsterdam, 1980.
[9] H. Mildenberger, S. Shelah, B. Tsaban, The combinatorics of τ-covers, Topology Appl. 154 (1) (2007) 263-2276 (this issue).

[^0]: E-mail address: kada@mi.s.osakafu-u.ac.jp (M. Kada).

[^1]: $\overline{1}$ In the paper [6], the authors state "If CH holds in a ground model V, and a proper forcing notion \mathbb{P} has the Laver property, then $\mathfrak{l}=\aleph_{1}$ holds in the model $V^{\mathbb{P}}$, . But it is inaccurate, since we do not see the values of \mathfrak{l}_{h} for functions $h \in V^{\mathbb{P}}$ which are not bounded by any function from V.

