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Abstract

A slalom is a sequence of finite sets of length ω. Slaloms are ordered by coordinatewise inclusion with finitely many exceptions.
Improving earlier results of Mildenberger, Shelah and Tsaban, we prove consistency results concerning existence and non-existence
of an increasing sequence of a certain type of slaloms which covers a bounded set of functions in ωω.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We use standard terminology and refer the readers to [2] for undefined set-theoretic notions.
Bartoszyński [1] introduced the combinatorial concept of slalom to study combinatorial aspects of measure and

category on the real line.
We call a sequence of finite subsets of ω of length ω a slalom. For a function g ∈ ωω, let Sg be the set of slaloms

ϕ such that |ϕ(n)| � g(n) for all n < ω. S denotes Sg for g(n) = 2n. For two slaloms ϕ and ψ , we write ϕ � ψ if
ϕ(n) ⊆ ψ(n) for all but finitely many n < ω. For a function f ∈ ωω and a slalom ϕ, f � ϕ if 〈{f (n)}: n < ω〉 � ϕ.

Mildenberger, Shelah and Tsaban [9] defined cardinals θh for h ∈ ωω and θ∗ to give a partial characterization of
the cardinal od, the critical cardinality of a certain selection principle for open covers.

The definition of θh in [9] is described using a combinatorial property which is called o-diagonalization. Here we
redefine θh to fit in the present context. It is easy to see that the following definition is equivalent to the original one.
For a function h ∈ (ω � {0,1})ω, let h − 1 denote the function h′ ∈ ωω which is defined by h′(n) = h(n) − 1 for all n.

Definition 1.1. For a function h ∈ (ω � {0,1})ω, θh is the smallest size of a subset Φ of Sh−1 which satisfies the
following, if such a set Φ exists:
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(1) Φ is well-ordered by �;
(2) For every f ∈ ∏

n<ω h(n) there is a ϕ ∈ Φ such that f � ϕ.

If there is no such Φ , we define θh = c+.

It is easy to see that h1 �∗ h2 implies θh1 � θh2 .

Definition 1.2. [9] θ∗ = min{θh: h ∈ ωω}.

In Section 2, we will show that θ∗ = c+ is consistent with ZFC.
We say a proper forcing notion P has the Laver property if, for any h ∈ ωω, p ∈ P and a P-name ḟ for a function

in ωω such that p �P ḟ ∈ ∏
n<ω h(n), there exist q ∈ P and ϕ ∈ S such that q is stronger than p and q �P ḟ � ϕ.

Mildenberger, Shelah and Tsaban proved that θ∗ = ℵ1 holds in all forcing models by a proper forcing notion with
the Laver property over a model for CH, the continuum hypothesis [9]. In Section 2, we refine their result and state a
sufficient condition for θ∗ � c. As a consequence, we will show that Martin’s Axiom implies θ∗ = c.

In Section 3, we give an application of the lemma presented in Section 2 to another problem in topology. We answer
a question on approximations to the Stone–Čech compactification of ω by Higson compactifications of ω, which was
posed by Kada, Tomoyasu and Yoshinobu [6].

2. Facts on the cardinal θ∗

First we observe that θ∗ = c+ is consistent with ZFC. We use the following theorem, which is a corollary of Kunen’s
classical result [7]. For the readers’ convenience, we present a complete proof in Section 4.

Theorem 2.1. Suppose that κ � ℵ2. The following holds in the forcing model obtained by adding κ Cohen reals over
a model for CH: Let X be a Polish space and A ⊆ X ×X a Borel set. Then there is no sequence 〈rα: α < ω2〉 in X
which satisfies

α � β < ω2 if and only if 〈rα, rβ〉 ∈ A.

Fix h ∈ ωω. We may regard Sh−1 as a product space of countably many finite discrete spaces, and then the relation
� on Sh−1 is a Borel subset of Sh−1 × Sh−1.

Theorem 2.2. θ∗ = c+ holds in the forcing model obtained by adding ℵ2 Cohen reals over a model for CH.

Proof. Fix h ∈ ωω. By Theorem 2.1, in the forcing model obtained by adding ℵ2 Cohen reals over a model for CH,
there is no �-increasing chain of length ω2 in Sh−1. This means that θh must be ℵ1 whenever θh � c.

On the other hand, cov(M) = ℵ2 holds in the same model. Also, by [9] we have cov(M) � od � θh. This means
that θh cannot be ℵ1 in this model, and hence θh = c+. �

Next we state a sufficient condition for θ∗ � c. We use the following characterization of add(N ).

Theorem 2.3. [2, Theorem 2.3.9] add(N ) is the smallest size of a subset F of ωω such that, for every ϕ ∈ S there is
an f ∈ F such that f 
� ϕ.

Definition 2.4. [5, Section 5] For a function h ∈ ωω, lh is the smallest size of a subset Φ of S such that for all
f ∈ ∏

n<ω h(n) there is a ϕ ∈ Φ such that f � ϕ. Let l = sup{lh: h ∈ ωω}.

Note that h1 �∗ h2 implies lh1 � lh2 .
If CH holds in a ground model V , h ∈ ωω ∩ V , and a proper forcing notion P has the Laver property, then lh = ℵ1

holds in the model V P. Consequently, if CH holds in V , 〈Pα, Q̇α: α < ω2〉 is a countable support iteration of proper
forcings, P = limα<ω2 Pα and

�Pα
“|Q̇α| � ℵ1 and Q̇α has the Laver property”
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holds for every α < ω2, then l = ℵ1 holds in V P, since every function h in V P appears in V Pα for some α < ω2, where
CH holds.1

Now we define a subset S+ of S as follows:

S+ =
{
ϕ ∈ S: lim

n→∞
|ϕ(n)|

2n
= 0

}
.

Let l′h be the smallest size of a subset Φ of S+ such that for all f ∈ ∏
n<ω h(n) there is a ϕ ∈ Φ such that f � ϕ.

Clearly we have lh � l′h, and it is easy to see that for every h ∈ ωω there is an h∗ ∈ ωω such that l′h � lh∗ . Hence we
have l = sup{l′h: h ∈ ωω}.

Lemma 2.5. For a subset Φ of S+ of size less than add(N ), there is a ψ ∈ S+ such that ϕ � ψ for all ϕ ∈ Φ .

Proof. For each ϕ ∈ S+, define an increasing function ηϕ ∈ ωω by letting

ηϕ(m) = min

{
l < ω: ∀k � l

(∣∣ϕ(k)
∣∣ <

2k

m · 2m

)}

for all m < ω. ηϕ is well-defined by the definition of S+.
Suppose κ < add(N ) and fix a set Φ ⊆ S+ of size κ arbitrarily. Since κ < add(N ) � b, there is a function η ∈ ωω

such that limn→∞ η(n)/2n = ∞ and for all ϕ ∈ Φ we have ηϕ �∗ η. For each m < ω, let Im = {η(m),η(m) + 1,

. . . , η(m+ 1)− 1} and enumerate
∏

n∈Im
[ω]��2n/(m·2m)� as {sm,i : i < ω}, where �r� denotes the largest integer which

does not exceed the real number r .
For ϕ ∈ Φ , define ϕ̃ ∈ ωω as follows. If there is an i < ω such that ϕ � Im = sm,i , then let ϕ̃(m) = i; otherwise ϕ̃(m)

is arbitrary.
Since |Φ| = κ < add(N ) and by Theorem 2.3, there is a ψ̂ ∈ S such that, for all ϕ ∈ Φ we have ϕ̃ � ψ̂ . Define ψ by

letting for each n, if n ∈ Im then ψ(n) = ⋃{sm,i(n): i ∈ ψ̂(m)}, and if n < η(0) then ψ(n) = ∅. It is straightforward
to check that ψ ∈ S+ and ϕ � ψ for all ϕ ∈ Φ . �
Lemma 2.6. Suppose that h ∈ ωω satisfies h(n) > n2 for all n < ω. If add(N ) = l′h = κ , then there is an �-increasing
sequence 〈σα: α < κ〉 in S+ such that, for all f ∈ ∏

n<ω h(n) there is an α < κ such that f � ϕα .

Proof. Fix a sequence 〈ϕα: α < κ〉 in S+ so that for all f ∈ ∏
n<ω h(n) there is an α < κ such that f � ϕα . Using

the previous lemma, inductively construct an �-increasing sequence 〈σα: α < κ〉 of elements of S+ so that ϕα � σα

holds for each α < ω2. Then 〈σα: α < κ〉 is as required. �
Define H1 ∈ ωω by letting H1(n) = 2n + 1 for all n.

Theorem 2.7. If add(N ) = l′H1
, then θ∗ = od = add(N ).

Proof. Let κ = add(N ) = l′H1
. Since S+ ⊆ S ⊆ SH1−1, the previous lemma shows that θ∗ � θH1 � κ . On the other

hand, by [9], we have κ = add(N ) � cov(M) � od � θ∗. �
Corollary 2.8. [9] If a ground model V satisfies CH, and a proper forcing notion P has the Laver property, then
θ∗ = ℵ1 holds in the model V P.

Proof. Follows from Theorem 2.7 and the fact that add(N ) = l′H1
= lH ∗

1
= ℵ1 holds in the model V P. �

Corollary 2.9. Martin’s Axiom implies θ∗ = c.

Proof. Follows from Theorem 2.7 and the fact that add(N ) = l′H1
= l = c holds under Martin’s Axiom. �

1 In the paper [6], the authors state “If CH holds in a ground model V , and a proper forcing notion P has the Laver property, then l = ℵ1 holds in
the model V P”. But it is inaccurate, since we do not see the values of lh for functions h ∈ V P which are not bounded by any function from V .
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3. Application

In this section, we give an answer to a question which was posed by Kada et al. [6]. We refer the reader to [6] for
undefined topological notions.

For compactifications αX and γX of a completely regular Hausdorff space X, we write αX � γX if there is a
continuous surjection from γX to αX which fixes the points from X, and αX � γX if αX � γX � αX. The Stone–
Čech compactification βX of X is the maximal compactification of X in the sense of the order relation � among
compactifications of X.

For a proper metric space (X,d), Xd denotes the Higson compactification of X with respect to the metric d .
ht is the smallest size of a set D of proper metrics on ω such that

(1) {ωd : d ∈ D} is well-ordered by �;
(2) There is no d ∈ D such that ωd � βω;
(3) βω � sup{ωd : d ∈ D}, where sup is in the sense of the order relation � among compactifications of ω;

if such a set D exists. We define ht = c+ if there is no such D.
Kada et al. [6, Theorem 6.16] proved the consistency of ht = c+ using a similar argument to the proof of Theo-

rem 2.2. But the consistency of ht � c was not addressed. Here we state a sufficient condition for ht � c, and show
that it is consistent with ZFC.

Define H2 ∈ ωω by letting H2(n) = 22(n4)
for all n. The following lemma is obtained as a corollary of the proof of

[6, Theorem 6.11].

Lemma 3.1. Let κ be a cardinal. If there is an �-increasing sequence 〈ϕα: α < κ〉 of slaloms in S such that for all
f ∈ ∏

n<ω H2(n) there is an α < κ such that f � ϕα , then ht � κ .

Now we have the following theorem.

Theorem 3.2. If add(N ) = l′H2
, then ht = add(N ).

Proof. add(N ) � ht is proved in [6, Section 6]. To see ht � add(N ), apply Lemma 2.6 for h = H2 to get a sequence
of slaloms which is required in Lemma 3.1. �
Corollary 3.3. If a ground model V satisfies CH, and a proper forcing notion P has the Laver property, then ht = ℵ1
holds in the model V P.

Proof. Follows from Theorem 3.2 and the fact that add(N ) = l′H2
= lH ∗

2
= ℵ1 holds in the model V P. �

Corollary 3.4. Martin’s Axiom implies ht = c.

Proof. Follows from Theorem 3.2 and the fact that add(N ) = l′H2
= l = c holds under Martin’s Axiom. �

4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. The idea of the proof is the same as the one in Kunen’s original
proof [7], which is known as the “isomorphism of names” argument. The same argument is also found in [4].

For an infinite set I , let C(I ) = Fn(I,2,ℵ0), the canonical Cohen forcing notion for the index set I . As described
in [8, Chapter 7], for any C(I )-name ṙ for a subset of ω, we can find a countable subset J of I and a nice C(J )-name
ṡ for a subset of ω such that �C(I ) ṡ = ṙ . For a countable set I , there are only c nice C(I )-names for subsets of ω.

Proof of Theorem 2.1. Suppose that κ � ℵ2. Let X be a Polish space, Ȧ a C(κ)-name for a Borel subset of X ×X ,
and 〈ṙα: α < ω2〉 a sequence of C(κ)-names for elements of X .
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We will prove the following statement:

�C(κ) ∃α < ω2∃β < ω2
(
α < β ∧ (〈ṙα, ṙβ〉 /∈ Ȧ ∨ 〈ṙβ , ṙα〉 ∈ Ȧ

))
.

There is nothing to do if it holds that

�C(κ) ∃α < ω2∃β < ω2
(
α < β ∧ 〈ṙα, ṙβ〉 /∈ Ȧ

)
.

So we assume that it fails, and fix any p ∈ C(κ) which satisfies

p �C(κ) ∀α < ω2 ∀β < ω2
(
α < β → 〈ṙα, ṙβ〉 ∈ Ȧ

)
. (∗)

We will find α,β < ω2 such that α < β and p �C(κ) 〈ṙβ , ṙα〉 ∈ Ȧ, which concludes the proof.
Let Jp = dom(p). Find a set JA ∈ [κ]ℵ0 and a nice C(JA)-name ĊA for a subset of ω such that

�C(κ) “ĊA is a Borel code of Ȧ.”

For each α < ω2, find a set Jα ∈ [κ]ℵ0 and a nice C(Jα)-name Ċα for a subset of ω such that

�C(κ) “Ċα is a Borel code of {ṙα}.”
Using the Δ-system lemma [8, II Theorem 1.6], take S ∈ [κ]ℵ0 and K ∈ [ω2]ℵ2 so that Jp ∪ JA ∪ (Jα ∩ Jβ) ⊆ S for
any α,β ∈ K with α 
= β . Without loss of generality we may assume that |Jα �S| = ℵ0 for all α ∈ K . For each α ∈ K ,
enumerate Jα � S as 〈δα

n : n < ω〉.
For α,β ∈ K , and let σα,β be the involution (automorphism of order 2) of C(κ) obtained by the permutation of

coordinates which interchanges δα
n with δ

β
n for each n. σα,β naturally induces an involution of the class of all C(κ)-

names: We simply denote it by σα,β . Since Jp ∪ JA ⊆ S, for all α,β ∈ K we have σα,β(p) = p, σα,β(ĊA) = ĊA and
�C(κ) σα,β(Ȧ) = Ȧ.

Since |K| = ℵ2 and there are only c = ℵ1 nice names for subsets of ω over a countable index set, we can find
α,β ∈ K with α < β such that σα,β(Ċα) = Ċβ . Then σα,β(Ċβ) = Ċα and

�C(κ) “σα,β(ṙα) = ṙβ and σα,β(ṙβ) = ṙα.”

By (∗), we have p �C(κ) 〈ṙα, ṙβ〉 ∈ Ȧ. Since σα,β is an automorphism of C(κ), we have

σα,β(p) �C(κ)

〈
σα,β(ṙα), σα,β(ṙβ)

〉 ∈ σα,β(Ȧ)

and hence p �C(κ) 〈ṙβ , ṙα〉 ∈ Ȧ. �
Remark 1. Fuchino pointed out that Theorem 2.1 is generalized in the following two ways [3]: (1) The set A is not
necessarily Borel, but is “definable” by some formula. (2) We can prove a similar result for a forcing extension by a
side-by-side product of the same forcing notions, each generically adds a real in a natural way. The argument in the
above proof also works in those generalized settings.
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