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a b s t r a c t

This paper introduces scattered context grammars without erasing productions, in which
an application of a production always occurs within the first n nonterminals of the
current sentential form. It demonstrates that this restriction gives rise to an infinite
hierarchy of language families each of which is properly included in the family of context-
sensitive languages. In addition, it proves analogous results for unordered scattered context
grammars. Some consequences of these results are derived and open problems formulated.
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1. Introduction

Scattered context grammars were introduced in [2]. These grammars are based upon finite sets of sequences of context-
free productions, each ofwhich has a single nonterminal and a non-emptyword on its left-hand side and the right-hand side,
respectively (scattered context grammars generalized by allowing the empty word to be the right-hand side of a production
are not considered in this paper at all). During every derivation step, these grammars simultaneously rewrite k nonterminals
in the current sentential form according to a sequence of k context-free productions in the order corresponding to the
appearance of these productions in the sequence. It is well known that the language family that these grammars generate is
a proper superfamily of the context-free language family. On the other hand, this family is contained in the context-sensitive
language family, but it is a longstanding open problem whether this containment is proper.
There exist severalmodified versions of scattered context grammars (see [1,5,9]), unordered scattered context grammars

are one of them (see [6,10]). Unlike ordinary scattered context grammars, these unordered versions may apply a production
to any permutation of nonterminals appearing on the left-hand side of the production. The family of languages generated
by these grammars is identical to the family of languages generated by matrix grammars without appearance checking,
which is properly included in the family of languages generated by scattered context grammarswithout erasing productions
(see [3,10]).
As the formal language theory has always introduced and studied various left restrictions placed on grammatical

derivations,we investigate this classical topic in terms of scattered context grammars in the present paper.More specifically,
we discuss the language families generated by scattered context grammars that use n-limited derivations, where n is a
positive integer. In these derivations, a scattered context production is always applied within the first n occurrences of
nonterminals in the current sentential form. We demonstrate that this restriction gives rise to an infinite hierarchy of
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language families, each of which is properly included in the family of context-sensitive languages. In addition, we prove
analogous results in terms of unordered scattered context grammars as well.
Based upon the proper inclusion, we formulate several consequences open problems. Perhaps most importantly, we

point out that the language family generated by the scattered context grammars that make derivation in the n-limited way
is properly contained in the context-sensitive language family, so in this sense, we partially contribute to the solving of the
longstanding open problem pointed out above.

2. Preliminaries and definitions

We assume that the reader is familiar with formal language theory (see [7,11]). For an alphabet V , |V | denotes the
cardinality of V . V ∗ represents the freemonoid generated by V . The unit of V ∗ is denoted by ε. Set V+ = V ∗−{ε}. Forw ∈ V ∗,
|w| and alph(w) denote the length of w and the set of symbols occurring in w, respectively. ForW ⊆ V , |w|W denotes the
number of occurrences of elements from W in w. The set of all permutations of {1, . . . , n} is denoted by perm(n). For all
x1, . . . , xn ∈ V ∗ and (i1, . . . , in) ∈ perm(n), set reorder((x1, . . . , xn), (i1, . . . , in)) = (xi1 , . . . , xin).
A state grammar (see [4]) is a sixtuple G = (V , T , K , P, S, p0), where V is an alphabet, T ⊂ V , K is a finite set of states,

S ∈ V − T , p0 ∈ K , and P is a finite set of productions of the form (A, p)→ (x, q), where A ∈ V − T , x ∈ V+, and
p, q ∈ K . If u = (rAs, p), v = (rxs, q), and (A, p)→ (x, q) ∈ P , where r, s ∈ V ∗, and for each (B, p)→ (y, t) ∈ P , where
B ∈ V − T , y ∈ V+, t ∈ K , it holds that B /∈ alph(r), then Gmakes a derivation step from u to v according to (A, p)→ (x, q),
symbolically written as u⇒G v [(A, p)→ (x, q)] or, simply, u⇒G v. To emphasize that the jth nonterminal in u is rewritten
during a derivation step, we write u j⇒G v. The state language is a language generated by a state grammar G, denoted by
L(G), and defined as L(G) = {x ∈ T ∗ : (S, p0)⇒∗G (x, q) for some q ∈ K}. The family of all state languages is denoted by
L (ST). An n-limited derivation, denoted by x n⇒∗G y, is a derivation in which every derivation step u

j
⇒G v satisfies j ≤ n.

Set L(G, n) = {x ∈ T ∗ : (S, p0) n⇒∗G (x, q) for some q ∈ K}. A state grammar G is of order n if and only if L(G, n) = L(G).
A state language L is said to be of order n if and only if L = L(G, n), for a state grammar G. The family of state languages of
order n is denoted byL (ST, n). SetL (ST,∞) =

⋃
∞

i=1 L (ST, i).
A scattered context grammar (see [2]) is defined as a quadruple G = (V , T , P, S), where V is an alphabet, T ⊂ V ,

S ∈ V − T , and P is a finite set of productions such that every production has the form (A1, . . . , Ak) → (x1, . . . , xk)
for some k ≥ 1, where Ai ∈ V − T , xi ∈ V ∗ for all 1 ≤ i ≤ k. If every production (A1, . . . , Ak)→ (x1, . . . , xk) ∈ P
satisfies xi ∈ V+ for all 1 ≤ i ≤ k, G is a propagating scattered context grammar. If p = (A1, . . . , Ak)→ (x1, . . . , xk) ∈ P ,
u = u1A1u2 . . . ukAkuk+1, and v = u1x1u2 . . . ukxkuk+1, where ui ∈ V ∗ for all 1 ≤ i ≤ k + 1, then G makes a derivation
step from u to v according to p, symbolically written as u⇒G v [p] or, simply, u⇒G v. The language of G is denoted by
L(G) and defined as L(G) = {x ∈ T ∗ : S ⇒∗G x}. The family of languages generated by propagating scattered context
grammars is denoted by L (PSC). If u = u1A1 . . . ukAkuk+1⇒G u1x1 . . . ukxkuk+1 = v and |u1A1 . . . ukAk|V−T ≤ n, then the
derivation step is n-limited and we write u n⇒G v. An n-limited derivation, denoted by x n⇒∗G y, is a derivation in which
every derivation step u j⇒G v satisfies j ≤ n. Define the language of order n generated by G as L(G, n) = {x ∈ T ∗ : S n⇒∗G
x}. The family of languages of order n generated by propagating scattered context grammars is denoted by L (PSC, n), and
L (PSC,∞) =

⋃
∞

i=1 L (PSC, i).
An unordered scattered context grammar is a quadruple G = (V , T , P, S), where V , T , P , and S are defined as in the case

of a scattered context grammar. Analogously, we define a propagating unordered scattered context grammar. If there exists
a permutation π ∈ perm(k), for some k ≥ 1, such that p = reorder((A1, . . . , Ak), π)→ reorder((x1, . . . , xk), π) ∈ P , and
u = u1A1u2A2 . . . ukAkuk+1, v = u1x1u2x2 . . . ukxkuk+1, where ui ∈ V ∗ for all 1 ≤ i ≤ k+ 1, then Gmakes a derivation step
from u to v according to p. The generated language, n-limited derivation and language of order n are defined like for scattered
context grammars. The family of languages of order n generated by propagating unordered scattered context grammars is
denoted byL (PUSC, n), andL (PUSC,∞) =

⋃
∞

i=1 L (PUSC, i).

3. Main result

In this section, we proveL (PSC, n) = L (ST, n), for all n ≥ 1. First, Lemma 1 demonstratesL (ST, n) ⊆ L (PSC, n). Then,
Lemma 2 shows thatL (PSC, n) ⊆ L (ST, n).

Lemma 1. L (ST, n) ⊆ L (PSC, n) for all n ≥ 1.

Proof. Let G = (V , T , K , P, S, p0) be a state grammar of order n. Set

N1 = {〈A, p, k〉 : A ∈ V − T , p ∈ K , 1 ≤ k ≤ n},
N2 = {〈Â, p, k〉 : A ∈ V − T , p ∈ K , 1 ≤ k ≤ n},
N3 = {〈A′, p, n− 1〉 : A ∈ V − T , p ∈ K},
N4 = {Â : A ∈ V − T }.

Set α(p) = {A : (A, p)→ (x, q) ∈ P} for every p ∈ K . Define the propagating scattered context grammar

Ḡ = (V ∪ N1 ∪ N2 ∪ N3 ∪ N4 ∪ {S̄}, T , P̄, S̄)
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with P̄ constructed as follows (throughout the construction, we add intuitive explanation of the purpose of the constructed
productions):

(1) Add (S̄)→ (〈Ŝ, p0, 1〉) to P̄;
(2) For every A1, . . . , Ak ∈ V − T , where 1 ≤ k ≤ n, every

(Ar , p)→ (x1B1 . . . xtBtxt+1, q) ∈ P,

where 1 ≤ r ≤ k, B1, . . . , Bt ∈ V − T , x1, . . . , xt+1 ∈ T ∗ for some t ≥ 0, Ai /∈ α(p) for every 1 ≤ i < r (A1, . . . , Ak
denote the first k nonterminals in the sentential form; k is the number of nonterminals present in the sentential form if
it contains less than n nonterminals, otherwise k = n; Ar is the nonterminal of the sentential form whose rewriting is
simulated; t is the number of nonterminals appearing on the right-hand side of the simulated production),
(a) and r + t − 1 > n, add

(i) (used when the sentential form contains more than n nonterminals)
(〈A1, p, n〉, . . . , 〈Ar−1, p, n〉, 〈Ar , p, n〉, 〈Ar+1, p, n〉, . . . , 〈An, p, n〉)

→ (〈A1, q, n〉, . . . , 〈Ar−1, q, n〉, x1〈B1, q, n〉 . . . xn−r+1〈Bn−r+1, q, n〉
xn−r+2Bn−r+2 . . . xtBtxt+1, Ar+1, . . . , An)

to P̄;
(ii) (used when the sentential form contains at most n nonterminals and Ar is not the last nonterminal)
if r < k, add

(〈A1, p, k〉, . . . , 〈Ar−1, p, k〉, 〈Ar , p, k〉, 〈Ar+1, p, k〉, . . . , 〈Ak−1, p, k〉, 〈Âk, p, k〉)
→ (〈A1, q, n〉, . . . , 〈Ar−1, q, n〉, x1〈B1, q, n〉 . . . xn−r+1〈Bn−r+1, q, n〉
xn−r+2Bn−r+2 . . . xtBtxt+1, Ar+1, . . . , Ak−1, Âk)

to P̄;
(iii) (used when the sentential form contains at most n nonterminals and Ar is the last nonterminal)

if r = k, add
(〈A1, p, k〉, . . . , 〈Ak−1, p, k〉, 〈Âk, p, k〉)

→ (〈A1, q, n〉, . . . , 〈Ak−1, q, n〉, x1〈B1, q, n〉 . . . xn−k+1〈Bn−k+1, q, n〉
xn−k+2Bn−k+2 . . . xt−1Bt−1xt B̂txt+1)

to P̄;
(b) and r + t − 1 ≤ n, k+ t − 1 > n, add

(i) (used when the sentential form contains more than n nonterminals)
(〈A1, p, n〉, . . . , 〈Ar−1, p, n〉, 〈Ar , p, n〉,
〈Ar+1, p, n〉, . . . , 〈An−t+1, p, n〉, 〈An−t+2, p, n〉, . . . , 〈An, p, n〉)

→ (〈A1, q, n〉, . . . , 〈Ar−1, q, n〉, x1〈B1, q, n〉 . . . xt〈Bt , q, n〉xt+1,
〈Ar+1, q, n〉, . . . , 〈An−t+1, q, n〉, An−t+2, . . . , An)

to P̄;
(ii) (used when the sentential form contains at most n nonterminals and Ar is not the last nonterminal)
if r < k, add

(〈A1, p, k〉, . . . , 〈Ar−1, p, k〉, 〈Ar , p, k〉,
〈Ar+1, p, k〉, . . . , 〈An−t+1, p, k〉, 〈An−t+2, p, k〉, . . . , 〈Ak−1, p, k〉, 〈Âk, p, k〉)

→ (〈A1, q, n〉, . . . , 〈Ar−1, q, n〉, x1〈B1, q, n〉 . . . xt〈Bt , q, n〉xt+1,
〈Ar+1, q, n〉, . . . , 〈An−t+1, q, n〉, An−t+2, . . . , Ak−1, Âk)

to P̄;
(c) and k+ t − 1 ≤ n, and

(i) if t = 0, add
(A) (used when the sentential form contains more than n nonterminals and Ar is rewritten to x1 ∈ T ∗)

(〈A1, p, n〉, . . . , 〈Ar−1, p, n〉, 〈Ar , p, n〉, 〈Ar+1, p, n〉, . . . , 〈An, p, n〉)
→ (〈A′1, q, n− 1〉, . . . , 〈A

′

r−1, q, n− 1〉, x1, 〈A
′

r+1, q, n− 1〉, . . . , 〈A
′
n, q, n− 1〉),

(B) (used immediately after (2.c.i.A))
(〈A′1, q, n− 1〉, . . . , 〈A

′

r−1, q, n− 1〉, 〈A
′

r+1, q, n− 1〉, . . . , 〈A
′
n, q, n− 1〉, An+1)

→ (〈A1, q, n〉, . . . , 〈Ar−1, q, n〉, 〈Ar+1, q, n〉, . . . , 〈An, q, n〉, 〈An+1, q, n〉),
where An+1 ∈ (V − T ) ∪ N4, to P̄;

(ii) (used when the sentential form contains at most n nonterminals and Ar is not the last nonterminal)
if r < k, add

(〈A1, p, k〉, . . . , 〈Ar−1, p, k〉, 〈Ar , p, k〉, 〈Ar+1, p, k〉, . . . , 〈Ak−1, p, k〉, 〈Âk, p, k〉)
→ (〈A1, q, k+ t − 1〉, . . . , 〈Ar−1, q, k+ t − 1〉, x1〈B1, q, k+ t − 1〉 . . . xt〈Bt , q, k+ t − 1〉xt+1,
〈Ar+1, q, k+ t − 1〉, . . . , 〈Ak−1, q, k+ t − 1〉, 〈Âk, q, k+ t − 1〉)

to P̄;
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(iii) (used when the sentential form contains at most n nonterminals and Ar is the last nonterminal)
if r = k
(A) and k > 1 or t 6= 0, add

(〈A1, p, k〉, . . . , 〈Ak−1, p, k〉, 〈Âk, p, k〉)
→ (〈A1, q, k+ t − 1〉, . . . , 〈Ak−1, q, k+ t − 1〉,
x1〈B1, q, k+ t − 1〉 . . . xt−1〈Bt−1, q, k+ t − 1〉xt〈B̂t , q, k+ t − 1〉xt+1)

to P̄;
(B) (simulates the last derivation step of G)
and k = 1, t = 0, add
(〈Â1, p, 1〉)→ (x1) to P̄ .

Basic Idea: For every sentential form of G, (x, p), words u and v can be selected so that x = uv and either |u|V−T = n
and |v|V−T ≥ 1 or |u|V−T = k, k ≤ n and |v|V−T = 0. As a result, only the nonterminals occurring in u can be rewritten
by a production of G. As n is a finite number, it is possible to construct a scattered context grammar Ḡ that rewrites all
nonterminals present in u in every derivation step. In thisway, we can simulate the rewriting of the leftmost nonterminal for
a given state by considering all possible forms of u and constructing productions of Ḡ accordingly. The constructed grammar
simulates every sentential form of G by dividing it into two parts. The first part contains only nonterminals from N1 ∪ N2,
which can be rewritten by the constructed productions. The other part contains nonterminals from (V − T )∪ N4, which no
production rewrites (with the exception of (2.c.i.B)).
By rewriting a nonterminal in the first part, the number of nonterminals appearing in the first part might exceed n.

To prevent this situation, the constructed productions move the extra nonterminals from the end of the first part to the
beginning of the second part (see all productions from (2.a) and (2.b)) so the number of nonterminals in the first part is no
more than n.
Apart from adding nonterminals, a nonterminal can be removed from the first part as well. This happens when a

nonterminal is rewritten to a string over T . In this case, a special action is in order when the second part contains
some nonterminals. That is, for this purpose, the grammar records the last nonterminal of the sentential form. If the last
nonterminal appears within the first part, it is represented by a symbol from N2 and if it is located in the second part, it is
represented by a symbol from N4. If a nonterminal from the first part is rewritten to a string over T and the second part
contains some nonterminals (that is, a symbol from N2 does not appear at the end of the first part), the first nonterminal
of the second part is removed, converted to a symbol from N1 (or N2 if it is the last nonterminal) and added at the end of
the first part (see productions (2.c.i.A) and (2.c.i.B)). In this way, the number of nonterminals that appear in the first part
remains n. If a symbol from N2 appears at the end of the first part, the second part can be ignored because it does not
contain any nonterminal. In this way the grammar guarantees that if the first part of the sentential form contains less than
n nonterminals, the second part does not contain any nonterminal at all. Productions from (2.c.ii) and (2.c.iii) are used when
the second part of the sentential form remains empty after the rewriting.
Every production changes the current state p contained within every nonterminal of the first part to the new state q. In

addition, each of these nonterminals records the number of nonterminals, k, present in the first part of the sentential form
and this number is updated after every derivation step. Therefore, productions that simulate the rewriting in a different
state and productions that rewrite a different number of nonterminals are not applicable.

Formal Proof: By examining the constructed productions, we see that the derivations of G and Ḡ are very similar. Indeed,
in most cases, one production of Ḡ simulates one production of G. However, when a production from (2.c.i.A) is applied, it
has to be followed by (2.c.i.B), so in this case, one derivation step in G corresponds to two derivation steps in Ḡ. Formally,
we define the term sf-correspondence between the sentential f orms of G and Ḡ by the following recursive definition and use
this term in the formulation of Claim 1:

(1) The sentential form (S, p0) of G sf-corresponds to the sentential form 〈Ŝ, p0, 1〉 in Ḡ;
(2) Let (x, p)⇒G (y, q) [α], where (x, p) sf-corresponds to some x̄ in Ḡ.
• If (x, p)⇒G (y, q) [α] satisfies |x|V−T > n, k+ t − 1 ≤ n, and t = 0, then (y, q) sf-corresponds to z̄ in Ḡ, where x̄⇒2

Ḡ
z̄ [ᾱ1ᾱ2], ᾱ1 and ᾱ2 are productions from (2.c.i.A) and (2.c.i.B), respectively, whose construction is based on α;
• otherwise, (y, q) sf-corresponds to ȳ in Ḡ, where x̄⇒Ḡ ȳ [ᾱ] and the construction of ᾱ is based on α.

Claim 1. Every sentential form of G, (y1A1 . . . ymAmym+1, p), where p ∈ K , y1, . . . , ym+1 ∈ T ∗, A1, . . . , Am ∈ V − T , for some
m ≥ 0, sf-corresponds to one of the following sentential forms in Ḡ:

(1) For m ≤ n, y1〈A1, p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1;
(2) For m > n, y1〈A1, p, n〉 . . . yn〈An, p, n〉yn+1An+1 . . . ym−1Am−1ymÂmym+1.

Proof. Every derivation in Ḡ starts by the production from step (1) of the construction and this production is not used during
the rest of the derivation process, so

S⇒Ḡ 〈Ŝ, p0, 1〉.
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The rest of the claim is proved by induction on length h of derivations, for h ≥ 0.

Basis. Let h = 0. Then, (S, p0)⇒0
G (S, p0) corresponds to 〈Ŝ, p0, 1〉 ⇒

0
Ḡ
〈Ŝ, p0, 1〉.

Induction Hypothesis. Suppose that the claim holds for all derivations of length h or less, for some h ≥ 0.

Induction Step. First, consider a sentential form of G, (y1A1 . . . ymAmym+1, p), wherem ≤ n, and a production

(Ar , p)→ (x1B1 . . . xtBtxt+1, q) ∈ P,

where 1 ≤ r ≤ m, B1, . . . , Bt ∈ V − T , x1, . . . , xt+1 ∈ T ∗, for some t ≥ 0, which is applicable to the above sentential form
(that is, Ai /∈ α(p) for every 1 ≤ i < r). Then,

(y1A1 . . . yr−1Ar−1yrAryr+1Ar+1 . . . ymAmym+1, p)
⇒G (y1A1 . . . yr−1Ar−1yrx1B1 . . . xtBtxt+1yr+1Ar+1 . . . ymAmym+1, q).

By the induction hypothesis, form ≤ n, the sentential form of Ḡ sf-corresponding to

(y1A1 . . . yr−1Ar−1yrAryr+1Ar+1 . . . ymAmym+1, p)

is of the form

y1〈A1, p,m〉 . . . yr〈Ar , p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1.

Now, one of the productions from steps (2.a.ii), (2.a.iii), (2.b.ii), (2.c.ii), and (2.c.iii) is applicable, depending on the simulated
production,m, and n:

(1) If r + t − 1 > n and r < m, then a production introduced by (2.a.ii) is applied, so

y1〈A1, p,m〉 . . . yr−1〈Ar−1, p,m〉yr〈Ar , p,m〉
yr+1〈Ar+1, p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

n
lim⇒Ḡ y1〈A1, q, n〉 . . . yr−1〈Ar−1, q, n〉yrx1〈B1, q, n〉 . . . xn−r+1〈Bn−r+1, q, n〉xn−r+2Bn−r+2 . . . xtBtxt+1

yr+1Ar+1 . . . ym−1Am−1ymÂmym+1.

(2) If r + t − 1 > n and r = m, then a production introduced by (2.a.iii) is applied, so

y1〈A1, p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1
n
lim⇒Ḡ y1〈A1, q, n〉 . . . ym−1〈Am−1, q, n〉ymx1〈B1, q, n〉 . . . xn−m+1〈Bn−m+1, q, n〉

xn−m+2Bn−m+2 . . . xt−1Bt−1xt B̂txt+1.

(3) If r + t − 1 ≤ n,m+ t − 1 > n, and r < m, then a production introduced by (2.b.ii) is applied, so

y1〈A1, p,m〉 . . . yr−1〈Ar−1, p,m〉yr〈Ar , p,m〉
yr+1〈Ar+1, p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

n
lim⇒Ḡ y1〈A1, q, n〉 . . . yr−1〈Ar−1, q, n〉yrx1〈B1, q, n〉 . . . xt〈Bt , q, n〉xt+1

yr+1〈Ar+1, q, n〉 . . . yn−t+1〈An−t+1, q, n〉yn−t+2An−t+2 . . . ym−1Am−1ymÂmym+1.

(4) Ifm+ t − 1 ≤ n and r < m, then a production introduced by (2.c.ii) is applied, so

y1〈A1, p,m〉 . . . yr−1〈Ar−1, p,m〉yr〈Ar , p,m〉
yr+1〈Ar+1, p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1

n
lim⇒Ḡ y1〈A1, q,m+ t − 1〉 . . . yr−1〈Ar−1, q,m+ t − 1〉yr

x1〈B1, q,m+ t − 1〉 . . . xt〈Bt , q,m+ t − 1〉xt+1
yr+1〈Ar+1, q,m+ t − 1〉 . . . ym−1〈Am−1, q,m+ t − 1〉ym〈Âm, q,m+ t − 1〉ym+1.

(5) Ifm+ t − 1 ≤ n, r = m, andm > 1 or t 6= 0, then a production introduced by (2.c.iii.A) is applied, so

y1〈A1, p,m〉 . . . ym−1〈Am−1, p,m〉ym〈Âm, p,m〉ym+1
n
lim⇒Ḡ y1〈A1, q,m+ t − 1〉 . . . ym−1〈Am−1, q,m+ t − 1〉ym

x1〈B1, q,m+ t − 1〉 . . . xt−1〈Bt−1, q,m+ t − 1〉xt〈B̂t , q,m+ t − 1〉xt+1ym+1.

(6) Ifm = 1, t = 0, then a production introduced by (2.c.iii.B) is applied, so

y1〈Â1, p, 1〉y2 nlim⇒Ḡ y1x1y2.

Because this production removes the last symbol from N1 ∪N2 from the sentential form and this symbol appears on the
left-hand side of every production introduced in step (2), this production can be used only during the very last derivation
step.
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Second, consider a sentential form of G, (y1A1 . . . ymAmym+1, p), wherem > n, and a production

(Ar , p)→ (x1B1 . . . xtBtxt+1, q) ∈ P,

where 1 ≤ r ≤ m, B1, . . . , Bt ∈ V − T , x1, . . . , xt+1 ∈ T ∗ for some t ≥ 0, which is applicable to the above sentential form.
Then,

(y1A1 . . . yr−1Ar−1yrAryr+1Ar+1 . . . ynAn . . . ymAmym+1, p)
⇒G (y1A1 . . . yr−1Ar−1yrx1B1 . . . xtBtxt+1yr+1Ar+1 . . . ynAn . . . ymAmym+1, q).

By the induction hypothesis, form > n, the sentential form of Ḡ sf-corresponding to

(y1A1 . . . yr−1Ar−1yrAryr+1Ar+1 . . . ynAn . . . ymAmym+1, p)

is of the form

y1〈A1, p, n〉 . . . yr〈Ar , p, n〉 . . . yn〈An, p, n〉yn+1An+1 . . . ym−1Am−1ymÂmym+1.

Now, one of the productions from (2.a.i), (2.b.i), and (2.c.i.A) is applicable, depending on the simulated production, m, and
n:

(1) If r + t − 1 > n, then a production introduced by (2.a.i) is applied, so

y1〈A1, p, n〉 . . . yr−1〈Ar−1, p, n〉yr〈Ar , p, n〉
yr+1〈Ar+1, p, n〉 . . . yn〈An, p, n〉yn+1An+1 . . . ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A1, q, n〉 . . . yr−1〈Ar−1, q, n〉yrx1〈B1, q, n〉 . . . xn−r+1〈Bn−r+1, q, n〉xn−r+2Bn−r+2 . . . xtBtxt+1

yr+1Ar+1 . . . ynAnyn+1An+1 . . . ym−1Am−1ymÂmym+1.

(2) If r + t − 1 ≤ n andm+ t − 1 > n, then a production introduced by (2.b.i) is applied, so

y1〈A1, p, n〉 . . . yr−1〈Ar−1, p, n〉yr〈Ar , p, n〉
yr+1〈Ar+1, p, n〉 . . . yn−t+1〈An−t+1, p, n〉
yn−t+2〈An−t+2, p, n〉 . . . yn〈An, p, n〉yn+1An+1 . . . ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A1, q, n〉 . . . yr−1〈Ar−1, q, n〉yrx1〈B1, q, n〉 . . . xt〈Bt , q, n〉xt+1

yr+1〈Ar+1, q, n〉 . . . yn−t+1〈An−t+1, q, n〉
yn−t+2An−t+2 . . . ynAnyn+1An+1 . . . ym−1Am−1ymÂmym+1.

(3) Ifm+ t − 1 ≤ n and t = 0, then a production introduced by (2.c.i.A) is applied, so

y1〈A1, p, n〉 . . . yr−1〈Ar−1, p, n〉yr〈Ar , p, n〉
yr+1〈Ar+1, p, n〉 . . . yn〈An, p, n〉yn+1An+1 . . . ym−1Am−1ymÂmym+1

n
lim⇒Ḡ y1〈A

′

1, q, n− 1〉 . . . yr−1〈A
′

r−1, q, n− 1〉yrx1
yr+1〈A′r+1, q, n− 1〉 . . . yn〈A

′
n, q, n− 1〉yn+1An+1 . . . ym−1Am−1ymÂmym+1.

Recall that the last nonterminal in every sentential form of Ḡ is from N2 ∪ N4. As 〈An, p, n〉 /∈ N2 ∪ N4, there is at
least one nonterminal in the sentential form following 〈An, p, n〉. Therefore, a production from (2.c.i.B) can be used. This
production rewrites a nonterminal A ∈ (V − T ) ∪ N4 in its last component. Because we generate the language of order
n, A = An+1, so
• either

y1〈A′1, q, n− 1〉 . . . yr−1〈A
′

r−1, q, n− 1〉yrx1yr+1〈A
′

r+1, q, n− 1〉 . . . yn〈A
′
n, q, n− 1〉

yn+1An+1yn+2An+2 . . . ym−1Am−1ymÂmym+1
n
lim⇒Ḡ y1〈A1, q, n〉 . . . yr−1〈Ar−1, q, n〉yrx1yr+1〈Ar+1, q, n〉 . . . yn〈An, q, n〉

yn+1〈An+1, q, n〉yn+2An+2 . . . ym−1Am−1ymÂmym+1
if An+1 ∈ V − T
• or

y1〈A′1, q, n− 1〉 . . . yr−1〈A
′

r−1, q, n− 1〉yrx1
yr+1〈A′r+1, q, n− 1〉 . . . yn〈A

′
n, q, n− 1〉yn+1Ân+1yn+2

n
lim⇒Ḡ y1〈A1, q, n〉 . . . yr−1〈Ar−1, q, n〉yrx1yr+1〈Ar+1, q, n〉 . . . yn〈An, q, n〉yn+1〈Ân+1, q, n〉yn+2

if Ân+1 ∈ N4.

To see that for a given sentential form and a production of G, there exists only one of the above derivations in Ḡ, let us
make the following observations:

(1) For a given sentential form (which determines the number of nonterminals m, first k ≤ n nonterminals and the state
p) and a production of G (which determines the new state q, B1, . . . , Bt and the constants r and t), there exists only one
production in Ḡ that simulates this production.
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(2) The simulating production rewrites all nonterminals from N1 ∪ N2 appearing in the sentential form of Ḡ. Indeed, as k is
included in each of these nonterminals, no production rewriting less than k nonterminals can be used.

(3) The last nonterminal of the sentential form in Ḡ is always from N2 ∪ N4.
(4) The production ofG is properly simulated by the corresponding production of Ḡ— that is, all the constructed productions
satisfy Ai /∈ α(p) for every 1 ≤ i < r and p is changed to q in all nonterminals from N1 ∪ N2. In addition, in every
nonterminal N1 ∪ N2, k is updated.

Finally, notice that if the sentential form of Ḡ is of the form (1) or (2) as described in Claim 1, the sentential form obtained
after performing a derivation step is of one of these forms as well. As the right-hand side of the production introduced in
step (1) of the construction is of the form (1), every sentential form obtained during the derivation process satisfies the
properties given in Claim 1. �

From Claim 1 and the derivations described in its proof, we see that Ḡ rewrites at most n first nonterminals in a sentential
form and L(G, n) = L(Ḡ, n). �

Lemma 2. L (PSC, n) ⊆ L (ST, n) for all n ≥ 1.

Proof. Let L(G, n) be a language of order n generated by a propagating scattered context grammar G = (V , T , P, S). Set

N = {〈A, i〉 : A ∈ V − T , 1 ≤ i ≤ n}.

Further, set K1 = {〈p, i〉 : p ∈ P, 0 ≤ i < n} and

K2 = {〈p, i, j〉 : p = (A1, . . . , Ak)→ (x1, . . . , xk) ∈ P, 0 ≤ i ≤ n, 0 ≤ j ≤ k}.

Define the state grammar

Ḡ = (V ∪ N ∪ {S̄}, T , K1 ∪ K2 ∪ {p0}, P̄, S̄, p0)

with P̄ constructed as follows:

(1) For every p = (S)→ (x) ∈ P , add

(S̄, p0)→ (S, 〈p, 0〉) to P̄;

(2) For every A ∈ V − T , p = (A1, . . . , Ak)→ (x1, . . . , xk) ∈ P , 0 ≤ i < n, add
(a) (A, 〈p, i〉)→ (〈A, i+ 1〉, 〈p, i+ 1〉),
(b) (A, 〈p, i〉)→ (〈A, i+ 1〉, 〈p, i+ 1, k〉) to P̄;

(3) For every p = (A1, . . . , Aj, . . . , Ak)→ (x1, . . . , xj, . . . , xk) ∈ P , q ∈ P , A ∈ V − T , 1 ≤ i ≤ n, 0 ≤ j ≤ k, add
(a) (〈A, i〉, 〈p, i, j〉)→ (A, 〈p, i− 1, j〉),
(b) if j ≥ 1, add

(〈Aj, i〉, 〈p, i, j〉)→ (xj, 〈p, i− 1, j− 1〉),

(c) (A, 〈p, 0, 0〉)→ (A, 〈q, 0〉) to P̄ .

As the proof of this lemma resembles the proof of L (ST) = L (CS) given in [4], we only sketch the basic idea behind the
above construction and leave a formal version of the proof to the reader.
Every derivation step ofG is simulated in twophases in Ḡ. In the first phase (performed by productions from (2)),G assigns

a sequence number to the first m nonterminals in the sentential form, where m ≤ n is selected non-deterministically. The
form of the constructed productions ensures that no nonterminal is skipped during this phase. The grammar Ḡ enters the
second phase by a production from (2b). In the second phase, Ḡ simulates the scattered context production backwards;
it starts by applying the last context-free component of the scattered context production and ends by simulating the first
context-free component. The previously numbered nonterminals are processed backwards now; again, none of them can
be skipped. The state of Ḡ consists of three components. First, it contains the scattered context production which is being
simulated; second, it contains the position of the nonterminal within the sentential form which is being rewritten; finally,
it contains the position of the context-free component within the scattered context production whose rewriting is being
simulated. If the current nonterminal coincides with the left-hand side of the currently simulated context-free component,
the simulation can be performed by (3b). Every nonterminal can be skipped by a production from (3a), which only removes
the sequence number assigned during the first phase. Finally, when the whole scattered context production was simulated
(the last component of the state equals 0) and the sequence numbers were removed from all nonterminals (the second
component of the state equals 0), the simulation of the following scattered context production can be initiated by (3c).
Otherwise, the simulation is unsuccessful and the derivation is blocked. �

AsL (ST, n) ⊆ L (PSC, n) andL (PSC, n) ⊆ L (ST, n) for all n ≥ 1, we obtain the the main result of this paper.

Theorem 1. L (PSC, n) = L (ST, n), for all n ≥ 1. �

Next, we reformulate Theorem 1 in terms ofL (PUSC, n).
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Theorem 2. L (PUSC, n) = L (ST, n) for all n ≥ 1.

Proof. To prove this theorem, we have to show thatL (ST, n) ⊆ L (PUSC, n) andL (PUSC, n) ⊆ L (ST, n) for all n ≥ 1.
The first inclusion can be proved similarly to the proof of Lemma 1. However, in this case, the constructed grammarmust

also record the sequence number of each of the first n nonterminals in the sentential form in order to ensure that the right
component of the unordered scattered context production is used; otherwise, any permutation of the unordered scattered
context production could be applied. Therefore, the elements of the sets N1,N2, and N3 have to be changed to contain one
more component which determines the order of the nonterminal in the sentential form. In addition, each of the constructed
productions has to be changed so that it preserves the correct sequence numbers of these nonterminals in every sentential
form. This can be easily accomplished because each of these productions rewrites all the nonterminals from N1 ∪ N2 ∪ N3
in the sentential form. The rest of the proof is analogous to the proof of Lemma 1 and, therefore, left to the reader.
The second inclusion,L (PUSC, n) ⊆ L (ST, n), can be proved as follows. For any propagating unordered scattered context

grammar of order n, G, it is possible to construct a propagating scattered context grammar of the same order, Ḡ, such that
L(G, n) = L(Ḡ, n). Indeed, if we construct Ḡ so that it contains all possible permutations of every production of G, we obtain
a Ḡ satisfying these properties. Therefore, L(G, n) = L(Ḡ, n) and L (PUSC, n) ⊆ L (PSC, n). As L (PSC, n) = L (ST, n), we
obtainL (PUSC, n) ⊆ L (ST, n). �

Recall thatL (CF) = L (ST, 1) ⊂ L (ST, 2) ⊂ · · · ⊂ L (ST,∞) ⊂ L (ST) = L (CS), where everyL (ST, n), for n ≥ 1, is an
abstract family of languages (see [4]). These properties together with Theorems 1 and 2 imply the following two corollaries.

Corollary 1.

L (PUSC, 1) =L (PSC, 1) =L (ST, 1) =L (CF)
⊂L (PUSC, 2) =L (PSC, 2) =L (ST, 2)
...
⊂L (PUSC,∞)=L (PSC,∞)=L (ST,∞)
⊂L (CS). �

Corollary 2. Every L (PSC, n) and L (PUSC, n), where n ≥ 1, is an abstract family of languages—that is, this family is closed
under the operations of union, concatenation, Kleene plus, inverse homomorphism, ε-free homomorphism, and intersection with
a regular language. �

4. Conclusion

We have demonstrated that limiting derivations performed by scattered context grammars and unordered scattered
context grammars to the first n nonterminals gives rise to an infinite hierarchy of languages. This result is of some practical
interest in terms of compilers (see [8]). Indeed, when constructing a compiler based on a grammatical model, we usually
need to restrict this model in order to make the compiler more effective. The presented result shows that if the model is
based on scattered context grammars, by limiting the width of the window in which the context dependency is checked, we
also limit the power of the resulting compiler. In certain situations, such as parsing of streamed data, limiting the context
dependency check to a finite window is necessary because the exact length of the input is unknown.
From a theoretical point of view, the achieved results are interesting too. It is well known that L (PUSC) ⊂ L (PSC).

However, when using n-limited derivations, L (PUSC, n) = L (PSC, n). On the other hand, the definition of n-limited
derivations induces the following problem: is it possible to construct a scattered context grammar which checks whether
it rewrites the first n nonterminals without any additional explicit restriction imposed on its derivations (that is to define
a scattered context grammar of order n in the way analogous to a state grammar of order n) and obtain the same results?
Howwould this modification influence the generative power of unordered scattered context grammars? We propose these
open problems for further study.
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