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Concepts of epilepsy, based on a simple change in neuronal

excitation/inhibition balance, have subsided in face of recent

insights into the large diversity and context-dependence of

signaling mechanisms at the molecular, cellular and neuronal

network level. GABAergic transmission exerts both seizure-

suppressing and seizure-promoting actions. These two roles are

prone to short-term and long-term alterations, evident both

during epileptogenesis and during individual epileptiform events.

The driving force of GABAergic currents is controlled by ion-

regulatory molecules such as the neuronal K-Cl cotransporter

KCC2 and cytosolic carbonic anhydrases. Accumulating

evidence suggests that neuronal ion regulation is highly plastic,

thereby contributing to the multiple roles ascribed to GABAergic

signaling during epileptogenesis and epilepsy.
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Much of the neurobiological research on epilepsies has

focused on the role of GABAergic transmission in various

phases of disease progression. Alterations in GABAergic

signaling, which include changes in the properties of

interneurons and in their quantitative as well as qualita-

tive postsynaptic effects, are intimately involved in the

development and chronic manifestations of epileptiform

activity. In this review, we focus on GABAA receptor

(GABAAR) functions and the ion transporters which

affect the reversal potential of GABAAR-mediated cur-

rents (EGABA). ‘Ionic plasticity’ [1] (Figure 1) refers to

changes in neuronal signaling related to the operation and

functional modulation of plasmalemmal ion transporters
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(Figure 2a) which set EGABA either directly (Cl� and/or

HCO3
� transporters) or indirectly (the Na-K ATPase).

Epilepsies have turned out to be a spectrum disorder with

a range of etiologies and comorbidities. Concepts of

epilepsy and epileptogenesis seem likely to undergo

revisions [2,3�]. Here we will mainly focus on mesial

temporal lobe epilepsy (TLE) which is the most common

type of refractory epilepsy. The primary cause leading to

TLE is typically an insult to the brain (traumatic brain

injury, inflammation, status epilepticus), but in patients

the nature of the initial insult remains often unknown

because of long delays between the insult and appearance

of the recurrent seizures characteristic of TLE [4].

Seizures in the non-epileptic brain
Seizures can take place in disease states other than epi-

lepsy. Refractory status epilepticus (SE), a life-threatening

epileptic crisis characterized by prolonged recurrent sei-

zures which do not respond to diazepines [5], is caused by

factors such as inflammation and stroke, and it is seen in a

minority of patients with established epilepsy. Much of our

knowledge on the mechanisms and consequences of sei-

zures come from in vivo and in vitro work on animals with

no previous history of epilepsy or epileptogenesis. Induc-

tion of experimental SE has been shown to produce fast

and robust changes in neuronal plasticity and a fast de-

velopment of pharmacoresistance to conventional antiepi-

leptic drugs which enhance GABAergic transmission. A

straightforward explanation (see [6,7]) is that recurrent

seizures lead to a progressive internalization of postsyn-

aptic GABAARs and to a consequent erosion of inhibition.

Work on brain slices has shown that the efficacy of feedfor-

ward inhibition declines rapidly after recurrent seizure-like

activity, leading to a loss of the powerful inhibitory sur-

round that is initially associated with these paroxysmal

events [8,9�,10]. Seizures evoked in healthy adult brain

tissue induce a fast decrease in the expression of KCC2

[11–13], the main neuronal Cl� extruder. This molecule

underlies classical, ‘Eccles-type’ hyperpolarizing inhibi-

tory postsynaptic potentials (IPSPs) in central neurons

[14]. GABAergic inhibition also has a shunting effect on

electrical signals in the postsynaptic membrane (Box 1).

The downregulation of GABAARs and KCC2 in response

to trauma and/or intense seizure activity (Figure 2b) leads

to a long-lasting decrease in the efficacy of both shunting

and voltage inhibition, respectively.

The extrusion capacity of KCC2 can saturate even in the

absence of functional downregulation [15�] of the trans-

porter. Therefore, the loss of voltage inhibition in response to
www.sciencedirect.com
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Figure 1
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Ionic plasticity of GABAA receptor signaling

Neuronal/synaptic plasticity has traditionally been associated
with modulation of the functional expression and properties of 
channels (ionic conductances, Gi).
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Ionic plasticity of GABAA receptor signaling refers to         
modulation of neuronal functions via changes in the driving force 
DFGABA = V

m 
− EGABA via short- and long-term mechanisms:

(1) Activity-evoked, channel-mediated changes in Cl- and 
 HCO3

- gradients which control EGABA

(2) Changes in the functionality (trafficking, kinetics, and 
 synthesis/degradation) of ion-regulatory molecules such as 
 cation-chloride cotransporters (KCC2, NKCC1), the Na-K 
 ATPase and carbonic anhydrases

An important property of GABAA  receptor-mediated signaling is 
the uniquely high sensitivity of EGABA and, consequently DF GABA to 
activity-induced Cl- fluxes and to changes in the efficacy of KCC2- 
mediated Cl- extrusion. The diagram below depicts the time 
domains of neuronal Cl--loading mechanisms following seizure  
activity.

Ionic plasticity of GABAA receptor signaling.
seizure activity is likely to be much faster than the loss of
shunting. This is because the intense activation of inter-

neurons will lead to a massive Cl� influx which is aided by

the depolarizing currents mediated by HCO3
� across

GABAARs and by coactivation of glutamatergic ionotropic

receptors [16], as shown by continuous monitoring of

EGABA [17]. In fact, the depolarization mediated by the

HCO3
� current can drive a Cl� influx that is large enough

to induce a qualitative change in GABAAR-mediated

signaling from inhibitory to excitatory [17,18�]. During

intense GABAAR activation, the driving force of the inward

HCO3
� current is much more stable than that of the

outward Cl� current because the intracellular HCO3
� is

effectively replenished by neuronal cytosolic carbonic

anhydrase [19,20�]. Indeed, under experimental conditions

with enhanced synaptic release of GABA, pharmacologi-

cally isolated GABAAR-mediated transmission alone is

able to produce spontaneous paroxysmal activity in the

brain slice [21]. The effect of the HCO3
�-dependent anion

shift is augmented by KCC2-mediated net accumulation of

K+ in the interstitial space [18�], leading to further, non-

synaptic depolarization and excitation of neurons. This
www.sciencedirect.com 
probably includes (the at its time enigmatic observation of)

GABA-driven antidromic spiking [22]. The membrane

potential of glial cells is highly sensitive to extracellular

K+, and the above positive feedback loop may act in

synergy with glutamate release [23] from depolarized glia

[17] to sustain a seizure. GABAARs and the Na-K-2Cl

cotransporter NKCC1 (but not KCC2) are expressed in

presynaptic terminals [14], and thus the antidromic spiking

might also involve a direct presynaptic GABAAR depolar-

ization following an activity-dependent anion shift within

the terminal. The role of extracellular K+ is a classical focus

in epilepsy research [24], and the time is ripe to readdress

this topic with the novel insight pointing to GABAergic K+

transients as a major pro-convulsant mechanism [25,26].

Seizures in the epileptic brain
It is likely that seizure mechanisms in chronically epileptic

tissue differ dramatically from those evoked in brain tissue

in healthy experimental animals or observed in patients

with no previous history of epilepsy. Even if no cognitive

defects are detectable during seizure-free periods of time,

the cortex of chronically epileptic patients generates
Current Opinion in Neurobiology 2014, 26:34–41
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Figure 2
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Neuronal ion regulation sets the driving force for GABAA receptor-mediated currents. (a) The cation chloride cotransporters govern neuronal Cl�

regulation. In mature neurons the K-Cl cotransporter isoform 2, KCC2, mediates Cl� extrusion driven by the K+ gradient while the Na-K-2Cl

cotransporter isoform 1, NKCC1, mediates Na+ driven Cl� uptake. In addition to this, the Na+-independent and Na+-dependent Cl-HCO3 exchangers

AE3 and NDCBE, respectively, may modulate intracellular Cl� levels. The main function of these HCO3
� transporters, together with the ubiquitous Na-

H exchanger (not depicted), is to keep the intracellular pH level significantly more alkaline than what is predicted on the basis of passive distribution of

H+ and HCO3
� ions. Hence, the equilibrium potential for HCO3

� is much more positive than the resting membrane potential and HCO3
� invariably

mediates a depolarizing current across GABAARs. Intracellular HCO3
� concentration is rapidly replenished even during prolonged GABAAR activation

via the activity of carbonic anhydrase isoforms 2 and 7 (CA2 and CA7) which catalyze the formation of HCO3
� from CO2 [20�]. (b) The cation-chloride

cotransporters shown in panel (a) are fueled by the Na+ and K+ gradients generated by the Na-K ATPase. The conventional, GABAAR-mediated

hyperpolarizing IPSPs seen in mature neurons depend on the functional expression of KCC2 (left) that maintains a low intracellular Cl� level that favors

conductive Cl� influx. Seizure-induced post-translational changes in CCC functional expression, e.g. via altered membrane expression, commence in

tens of minutes. Prolonged changes at the levels of post-translational modification and transcription convert GABAAR signaling back to its immature,

depolarizing/excitatory mode of action during the course of epileptogenesis (right). The positive shift in EGABA assists in reducing energy consumption

during ‘energy crisis’ by reducing the driving forces of temporally overlapping and mutually counteracting excitatory and inhibitory postsynaptic ion

fluxes (see [16]). For further details, see text.
abnormal interictal activities which are seen as brief (tens

of milliseconds) spikes in the EEG. In hippocampal tissue

from TLE patients, the in vitro counterpart of interictal

activity is highly sensitive to bumetanide [27], a drug that

selectively blocks Cl� uptake mediated by NKCC1 in

neurons in vitro [26]. In a manner similar to the depolarizing

GABAAR actions and associated NKCC1-dependent net-

work events in the immature rodent hippocampus [14],

interictal activity in vitro shows an obligatory dependence

on excitatory GABAergic and glutamatergic excitatory

synaptic drive [28,29��]. In hippocampal tissue resected

from human TLE patients, intracellular recordings have

revealed a subpopulation of pyramidal neurons where

KCC2 levels are low and GABA has an excitatory action
Current Opinion in Neurobiology 2014, 26:34–41 
[27,28] (see also [13]). Thus, GABAAR signaling appears to

resume its immature, depolarizing/excitatory mode of

action at least in some pyramidal neurons during the course

of epileptogenesis. However, while the changes in cation-

chloride cotransporter (CCC) expression levels (low

KCC2, high NKCC1) in these cells provide an explanation

for the generation of interictal activity, there are no data to

suggest that ictogenesis is based on these mechanisms (for

review see [26]).

Intriguingly, it seems to be more difficult to evoke

seizures in human TLE tissue than in brain tissue from

healthy animals [30�]. This is a difficult paradox, since

surgically obtained human TLE tissue typically has a
www.sciencedirect.com
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Box 1 Synaptic and extrasynaptic GABAAR signaling

Synaptic GABAAR-mediated inhibition is based on shunting and

hyperpolarization of the postsynaptic membrane. Shunting inhibi-

tion has a duration set by the GABAAR channels’ open time, and the

associated increase in conductance acts to suppress the temporal

and spatial summation of incoming excitatory synaptic signals, as

well as intrinsic pro-excitatory currents generated in the dendritic

tree. Voltage inhibition, which hyperpolarizes the postsynaptic

membrane, is dependent on the inwardly-directed electrochemical

gradient of Cl�, maintained by KCC2, and it counteracts excitatory

mechanisms for a longer time period, which is set by the time

constant of the cell membrane. Unlike shunting, voltage inhibition

does not take place in all types of mature CNS neurons because of

cell-type specific lack of KCC2. The postsynaptic GABAARs in the

neocortex and hippocampus consist of a(1-3), b(x) and g2 subunits

[80] whereof the of a1b2g2 is the most common one.

Tonic GABAAR-mediated signaling is based on the activation of

high-affinity extrasynaptic GABAARs (with a subunit combination

consisting of a5bg2, a4bd or a1bd in neocortical and hippocampal

neurons) by ambient GABA. The subunit composition of GABAARs

undergoes marked changes during epileptogenesis with consequent

changes in the abundance of postsynaptic and extrasynaptic

receptors [81], often followed by an increase in tonic inhibition [82].

Tonic GABAergic signaling is highly sensitive to changes in the

efficacy of GABA uptake transporters (GAT1-4) [83], and it produces

a spatially extended shunting effect in the target neurons, with

voltage changes set by DFGABA. Excessive tonic inhibition is known

to promote absence seizures by inducing slow-wave discharges in

thalamo-cortical networks, while enhancing tonic inhibition has an

anticonvulsant action in partial seizures and catamenial epilepsy [84].

Synaptic GABAergic signaling is often called ‘phasic’ (e.g. ‘phasic

inhibition’) to underscore its distinct properties versus tonic signal-

ing. Both phasic and tonic GABAAR-mediated signaling can be

functionally inhibitory or excitatory, depending on the ion-regulatory

mechanisms which set EGABA and DFGABA; on the GABAAR-mediated

conductance; and on the intrinsic electrophysiological properties of

the target neuron.
sclerotic CA1 region, and such macroscopic differences in

the properties of the healthy versus chronically diseased

circuitry will compromise evaluation of the effects of

distinct CCCs or changes in their expression. In slices

from human TLE tissue, seizure-like events are not

preceded by interictal but rather by ‘pre-ictal’ events

which are largely based on recurrent glutamatergic sig-

naling [29��,31]. These bursts have a wide spatial extent

and a high propagation speed which probably makes them

particularly effective in activating interneurons [30�].
While dendritic GABAergic synapses are lost in animal

models of chronic epilepsy [32], a wealth of data suggest

that parvalbumin-positive, perisomatically targeting

interneurons shape the rhythmicity and synchrony which

makes it possible for the seizures to effectively spread

across wide cortical territories [33].

What triggers seizures in TLE? The diversity of recent

explanations shows that this fundamental problem has

still not been satisfactorily solved. We note that the term

‘trigger’ is ambiguous in that it has been used to describe

(i) extrinsic factors that increase the propensity of seizures

(e.g. hyperventilation or fever in children) and (ii) the
www.sciencedirect.com 
intrinsic neuronal and network mechanisms that act as

immediate causes for seizure generation. Here, we will

consider the latter. There is evidence that local desyn-

chronization of neuronal activity is needed for the

initiation of seizure activity [34]. Thus, a simple working

hypothesis for the generation of TLE-related seizures

and the role of KCC2 therein might be constructed as

follows: In the seizure-triggering ‘kernel’ of diseased

tissue, pre-ictal activity leads to a loss of phasic hyper-

polarizing IPSPs (Box 1), which results (over short times)

from the high Cl� load [35,36] and is enhanced and

consolidated largely by post-translational downregulation

of membrane-associated KCC2 [37�,38�] and later (cf.

[37�]) by block of KCC2 transcription (Figure 1). The

lack of hyperpolarizing IPSPs will lead, in turn, to the

local desynchronization and promotion of seizures [34].

This idea is consistent with and supported by the actions

of hyperpolarizing inhibition on spike probability and

timing in healthy tissue [39].

TrkB and calpain as coordinating factors in
epileptogenesis and epilepsy
BDNF-TrkB signaling has been put forward as a coordi-

nating factor in epileptogenesis [40–42]. Indeed, the

parallel loss of postsynaptic GABAARs and KCC2 after

recurrent seizures may imply a shared mechanism, which

most likely consists of signaling cascades down-stream of

the tropomyosin-related kinase B (TrkB) receptor [40],

the main target of brain-derived neurotrophic factor

(BDNF). Seizures enhance BDNF secretion and the

activation of TrkB [41] but, notably, BDNF itself is

not always responsible for seizure-induced TrkB acti-

vation (cf. [43]). Conditional knockout of TrkB [44],

transient inhibition of TrkB [45] or uncoupling of TrkB

from the PLCg1 cascade [46�] are all reported to suppress

epileptogenesis. Enhanced TrkB activation in mature

neurons rapidly decreases surface expression of

GABAARs [47,48] and downregulates KCC2 [12,49].

There exist close parallels between the role of BDNF-

TrkB signaling in epilepsy and in chronic pain [50]. In

both cases, inflammation may induce BDNF secretion

from activated microglia, and cause a downregulation of

KCC2 in adjacent neurons [50]. Notably, inflammation is

also a major cause of SE and epileptogenesis [51].

Fast, seizure-induced downregulation of KCC2 activity

(over tens of minutes to hours), depends on post-

transcriptional mechanisms [15�,37�], including protein

phosphatase 1-mediated dephosphorylation of KCC2 at

serine 940 [38�,52] and cleavage by the protease calpain

[37�,52], which is activated by Ca2+ and/or BDNF (for

review, see [53]). A decrease in KCC2 mRNA occurs within

hours of a seizure [12] and may contribute to consolidate

KCC2 downregulation (Figure 1), but is not needed for

chronic suppression of KCC2 protein expression or Cl�

extrusion [54]. Indeed, the increased level of calpain

expression observed in TLE tissue [55,56] could account
Current Opinion in Neurobiology 2014, 26:34–41
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for the chronic suppression of hippocampal KCC2 expres-

sion observed in patients with chronic epilepsy (see above).

Interestingly, up-regulation of the gene encoding for the

endogenous calpain inhibitor calpastatin is observed

during the acute and latent phase of limbic epileptogen-

esis, whereas this enhancement appears to be lost in the

chronic phase, characterized with spontaneous recurrent

seizures [57]. Notably, calpain cleaves not only KCC2

[37�,52,54] but also other proteins involved in GABAergic

transmission, including GAD65 [58], VGAT/VIIAT [59],

GAT1 [60] and gephyrin [61]. Thus, mounting evidence

suggests that activation of calpain is another coordinating

factor in epileptogenesis with important effects on GABA-

ergic signaling (see also [62]).

Developmental stage and seizure
mechanisms
Neuronal signaling mechanisms are radically different in

developing and mature brain. One of the best examples is

GABAAR-mediated signaling, which undergoes a well-

known ‘developmental shift’ from depolarizing/excit-

atory to hyperpolarizing (for review, see [14,63]). Initially

neuronal Cl� accumulation by NKCC1 is dominant, and

KCC2 is expressed later during neuronal maturation [14].

The maturation of KCC2-dependent hyperpolarizing

inhibition is accompanied by the expression of neuronal

carbonic anhydrase isoform 7 (CA7), at around postnatal

day (P) 12 in rodent hippocampus [64], followed by

neuronal expression of the ubiquitous CA isoform 2

(CA2) at �P20 [20�]. The simultaneous presence of KCC2

and CA activity is crucial both for the generation of

GABA-dependent neuronal Cl� loads in response to

interneuronal activity, and for paroxysmal extracellular

K+ transients [18�]. The key role of NKCC1 in immature,

depolarizing GABAergic transmission and GABA-driven

network events has led to a number of studies in neonatal

rodents on the possible therapeutic use of the NKCC1

blocker, bumetanide. This work has been largely disap-

pointing, as described elsewhere [26]. Cortical develop-

ment is much more advanced in the human newborn than

in the rodent [65]. Unlike in neonate rodents, CA7 and

KCC2 are both expressed at high levels in hippocampus

and neocortex of full term human babies [15�,20�,66,67].

This major species difference has numerous implications

for translational work on the mechanisms of GABAergic

signaling and seizures.

Adaptive mechanisms
From an evolutionary point of view, it is easy to under-

stand why neurons and neuronal networks are endowed

with adaptive response patterns which promote their

survival under various insults [68]. Adaptive mechanisms

can be detected, for instance, in the slowing of disease

progression induced by application of proconvulsant

drugs such as atipamezole and rimonabant soon after

an insult [69,70]. Moreover, whether disease stage-

related expression patterns of the endogenous calpain
Current Opinion in Neurobiology 2014, 26:34–41 
inhibitor calpastatin [57] (see above) are causally

involved here, is an interesting question for future work.

Clearly, empirical information is required to judge

whether a disease-related change at the molecular, cel-

lular or network level is a ‘dysfunction’ (maladaptive,

pro-epileptogenic) or an adaptive (anti-epileptogenic)

process.

After trauma, neurons undergo processes of de-differen-

tiation, seen as a shift in gene expression patterns to those

of earlier developmental stages [1,71]. The adaptive

value of such processes may be best explained from

the factors involved in neuronal survival after trauma:

(i) downregulation of energy metabolism under con-

ditions of an ‘energy crisis’ (see [72]); as well as the

presence of (ii) sufficient connectivity and (iii) trophic

factor signaling, which promote neuronal survival. With

regard to (i), the mammalian brain works close to theor-

etical limits on energy consumption, with most of it used

to maintain the ionic driving forces which are needed for

electrical signaling [16,73]. Changes in the functions and

expression patterns of ion transporters and channels may

thus have evolved as adaptive mechanisms to protect

neurons during states of energy crisis. This idea fits well

with the fast downregulation of both ion transporters and

channels (e.g. GABAARs and KCC2) in response to

seizures (see above and Figure 2b). Furthermore, the

Na-K ATPase, the major ion-regulatory and energy-con-

suming molecule of the brain, is functionally downregu-

lated after trauma or seizure [26,74]. The Na-K ATPase

and KCC2 are functionally tightly linked, and there is

evidence that the two molecules form a structural ion-

transport metabolon [75,76]. We note also that shutting

down Cl� permeable GABAARs will reduce the energy-

metabolic load imposed by cation-based glutamatergic

signaling [16].

Conclusions
Changes in excitation–inhibition (E/I) balance are often

used to explain epileptogenesis and seizure generation

but, as should be obvious from the work reviewed above,

the explanatory value of the E/I balance in the context of

epilepsy is limited. Moreover, the postulated cause (E/I

imbalance) is deduced from the outcome (seizures),

which is an obvious circular argument. A gross change

in the E/I imbalance is not, either, consistent with the fact

that seizures in chronic epilepsy can occur infrequently

and unpredictably, with intervening periods of intact

cognitive and mnemonic cortico-hippocampal functions.

The studies reviewed presently demonstrate that

GABAAR signaling has multiple, context-specific and

age-specific actions which can prevent or promote epi-

leptogenesis and seizure generation. A context-specificity

and age-specificity is true also for intracellular signaling

cascades such as those down-stream of TrkB receptors

[76–78], which exert a strong influence on neuronal

plasticity. This context-dependent diversity in cellular
www.sciencedirect.com
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and molecular signaling is not only a major challenge for

basic research on the etiology and mechanisms of epi-

leptiform syndromes, but also for the design of novel,

genuinely antiepileptic drugs [79] which, instead of hav-

ing solely symptomatic anticonvulsant actions, would halt

and even reverse the progression of epilepsy.
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