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A (k, g)-graph is a k-regular graph of girth g, and a (k, g)-cage is a (k, g)-graph of minimum
order. We show that a (3,11)-graph of order 112 found by Balaban in 1973 is minimal and
unique. We also show that the order of a (4,7)-cage is 67 and find one example. Finally,
we improve the lower bounds on the orders of (3,13)-cages and (3,14)-cages to 202 and
260, respectively. The methods used were a combination of heuristic hill-climbing and an
innovative backtrack search.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A k-regular graph is one in which every vertex has degree k. The girth of a graph is the length of a shortest cycle.
A (k, g)-graph is a regular graph of degree k and girth g , and a (k, g)-cage is a (k, g)-graph of minimum possible order.

The problem of determining this order and identifying the corresponding cages has been extensively studied. See [3]
for a current survey. The cases where the order of the cage was known precisely before this work can be summarized as
follows.

1. Regular graphs of degree 3 for girths up to 12;
2. Girth 5 graphs for degrees up to 7;
3. Girth 6, 8 and 12 graphs for degree one more than a prime power;
4. The case of degree 7 and girth 6.

In this note, we add the case of degree 4 and girth 7 to the list, and also show that the (3,11)-cage is unique.
The order, but not the uniqueness, of the (3,11)-cage was previously announced in [5].

2. Backtrack search

The uniqueness of the (3,11)-cage, and the lower bound of 67 for the (4,7)-cage, was proved using the program men-
tioned in [5] but not described in detail there. We will provide that description here using the (4,7)-cage as an example.

Consider the construction of 4-regular graphs of girth at least 7 and order n � 53. The vertices at distance at most 3
from some fixed vertex form a tree T with 53 vertices as in Fig. 1. (In the case of even girth we would root the tree at an
edge rather than a vertex.)
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Fig. 1. The initial tree T .

Fig. 2. Two equivalent choices.

Fig. 3. Complex equivalence.

Let W be the set of n − 17 vertices consisting of the 36 leaves of T and the n − 53 vertices not in T . The task is thus
to add additional edges within W so that the resulting graph is quartic and girth at least 7. We can do this in standard
depth-first manner, starting with the tree and adding one edge at a time. For addition of a new edge v w to be valid, v and
w must have degree less than 4 and be at distance at least 6; these properties are easily monitored.

At each stage in the search, we choose one vertex of degree less than 4 and try all the possibilities for joining it to other
vertices. We choose the vertex whose options are the most restricted, as experiments showed this heuristic to be a good
one.

Without additional improvements, this search is far too expensive due to multiple equivalent subcases. The most obvious
source of equivalence is the automorphism group of the tree. Thus, the two choices a,b in Fig. 2 are clearly equivalent and
there is no need to try b as the first choice once a has been tried. The simple structure of the tree allows examples of this
type of equivalence to be monitored efficiently without explicit computation of automorphism groups.

However, when a moderate number of edges have been added, discovery of automorphisms is considerably more difficult.
More importantly, there are equivalent subcases in the search that do not derive directly from automorphisms of any of the
graphs that are constructed. Consider Fig. 3.

Suppose we have completed the part of the search that begins with the three edges a,b, c in the upper diagram of the
figure. This means that, up to isomorphism, we have already found all the quartic graphs that contain the upper diagram
as a subgraph. Now suppose that at a later point in the search we have added the edges a,b,d, e, f shown in the lower
diagram of Fig. 3, and are about to consider further edges. If we add edge g , then we will not find any new quartic graphs,
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since T + {e, f , g} is isomorphic to T + {a,b, c}. Therefore, we can mark g as ineligible. This applies whether we consider
g as the very next edge to add or we consider adding it to some non-trivial extension of a,b,d, e, f . For efficiency reasons
we separate these two cases.

We now define the pruning process formally. Each node of the search tree corresponds to a graph T + E , where E is a
set of edges within W . The subsearch rooted at T + E is the subtree of the search tree rooted at T + E , and T + E is completed
when we have finished the scan of that subtree.

Pruning rule. Suppose that T + E is a search node and v w is an available edge (that is, v and w have degree less than 4
and are at distance at least 6 from each other). Suppose further that there is a subset E ′ ⊆ E + v w such that T + E ′ is
isomorphic to a node which is already completed. Then the subsearch rooted at T + E can avoid adding the edge v w .

The pruning rule is applied using the nauty graph isomorphism software [4]. Since subgraph isomorphism testing is
required, the rule is very expensive compared to the time otherwise required to process one node of the search. In practice
we limit it to only certain E and certain v, w . Specifically, we define two levels �1 � �2 � 0. For search nodes T + E such
that |E| � �2, we apply the rule for all v, w . For �2 < |E| � �1, we apply it only to those v, w such that v w is a candidate
for the very next edge to add.

For larger �1, �2, the number of nodes in the search tree is reduced but the time expended in pruning the tree is
increased. So there is some optimal compromise.

A further technique is needed in very difficult cases (such as n = 66), for which it is desirable to divide the computation
across multiple processes (perhaps on different computers). The division is accomplished in the usual fashion: for some level
�0, treat the subsearchs rooted at T + E for |E| = �0 as independent. Subsearch i is assigned to process j if i ≡ j (mod N),
where N is the number of processes.

Each process involved in the search computes the whole search tree to level �0 and only its own subsearches at higher
levels. Since the application of the pruning rule is hard to achieve across multiple processes, we use �0 > �1. Higher �0
also tends to share the load more evenly between processes. These considerations, however, imply that a large part of the
tree, including all the rule applications, are repeated in every process, which would seem to prevent use of large �1, �2 due
to the expensive nature of the pruning rule. The solution is to conduct the computation in two phases. In the first phase,
executed on a single processor, the search tree is computed up to level �1 while applying the pruning rule. During this
phase, the results of all the rule applications are recorded in an audit file. Then, in the second phase where the full search
tree is computed, the pruning rule is applied at almost no cost by following the audit file. If �0 is not too high, the cost of
the division of the second phase into parts is negligible.

For n = 66, we used �0 = 22, �1 = 16 and �2 = 6. The total number of nodes in the search tree was 318,904,129,273,923.
Using a large mix of computers ranging from 650 MHz to 3 GHz, the total time was 96 years (105,000 nodes per second).
This cost was about 5 times the cost for n = 65.

Improvements to the program after the computation finished resulted in a 4-fold speedup. Nevertheless, the computation
of all the cages of order 67 will not be feasible in the near future.

Exhaustive computation of the (3,11)-cages, showing that the graph found by Balaban [1] is the only one, required 17
years on computers averaging about 300 MHz.

With lesser expenditure of cpu time, we also showed that a (3,13)-cage has at least 202 vertices (improved from 196),
and that a (3,14)-cage has at least 260 vertices (improved from 256). The first result, and the bound 258 for the second,
were previously announced in [5].

To emphasise the efficiency of this method, we compared it against the previously best code for cubic graphs [2]. For
girth 9 and 58 vertices, our approach was 52 times faster, while for girth 11 and 104 vertices our approach was 856 times
faster. All of the results we highlight in this paper were previously infeasible.

3. A graph of degree 4 and girth 7

As noted in the previous section, we showed exhaustively that there are no (4,7)-graphs with 66 or fewer vertices. To
complete the proof that (4,7)-cages have 67 vertices, we present an example (see Fig. 4).

Our example on 67 vertices is given below as an adjacency list. The graph has an automorphism group of order four,
isomorphic to Z2 × Z2. In the action of this group on the vertices, there are 11 orbits of length 4, 11 orbits of length 2, and
one fixed point.

The graph was constructed using a hill-climbing algorithm that begins with an empty graph on 67 vertices and adds
edges, one at a time, while not violating the degree and girth conditions. An outline of the algorithm follows.

while there are vertices with degree < 4:
while there are edges that can be added:

for each edge that can be added
compute the degree sum of its vertices

pick the edge with the largest sum
choose randomly in case of ties
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0: 1 2 3 4 23: 7 61 43 29 46: 14 31 41 24
1: 0 5 6 7 24: 7 26 36 46 47: 15 42 58 26
2: 0 8 9 10 25: 7 63 40 34 48: 15 34 35 19
3: 0 11 12 13 26: 8 53 24 47 49: 15 39 65 29
4: 0 14 15 16 27: 8 43 45 22 50: 16 33 66 43
5: 1 17 18 19 28: 8 52 18 56 51: 16 36 54 30
6: 1 20 21 22 29: 9 23 49 59 52: 16 28 21 40
7: 1 23 24 25 30: 9 19 62 51 53: 59 66 38 26
8: 2 26 27 28 31: 9 20 46 57 54: 58 64 51 22
9: 2 29 30 31 32: 10 44 65 21 55: 39 62 33 56

10: 2 32 33 34 33: 10 50 55 17 56: 28 55 35 61
11: 3 35 36 37 34: 10 48 64 25 57: 58 31 17 40
12: 3 38 39 40 35: 11 56 48 20 58: 54 57 47 61
13: 3 41 42 43 36: 11 51 65 24 59: 64 37 29 53
14: 4 44 45 46 37: 11 59 17 45 60: 18 66 63 65
15: 4 47 48 49 38: 12 53 19 44 61: 58 44 23 56
16: 4 50 51 52 39: 12 55 49 22 62: 55 30 63 42
17: 5 57 37 33 40: 12 52 25 57 63: 25 62 60 45
18: 5 60 28 41 41: 13 46 18 64 64: 59 54 34 41
19: 5 38 30 48 42: 13 62 47 21 65: 36 32 49 60
20: 6 35 31 66 43: 13 23 27 50 66: 50 60 53 20
21: 6 32 52 42 44: 14 32 38 61
22: 6 54 39 27 45: 14 27 37 63

Fig. 4. Adjacency list for a (4,7)-graph of order 67.

add the winning edge
if all vertices have degree 4:

save graph
exit

delete 1, 2 or 3 random edges

A few of the steps require some explanation.

1. Edges are added between vertices with maximum possible degree sum. Doing this in the early stages of the algorithm
appears to be essential to finding a cage. We ran our program many times with this condition removed, without success.

2. When edges are added, a record is made of when they were added. Time is measured in trips through the outer loop.
3. When edges are chosen for deletion, it is done in one of two ways. Either the probability that an edge is chosen is

proportional to its age, or it is inversely proportional to its age. These two modes are alternated, each being used for a
few thousand time periods. Very recently deleted edges are not chosen for reinsertion.

A program implementing this method has been run several hundred times. It succeeds in finding a graph approximately
twenty percent of the time. Each time it has succeeded, it has found the same graph.
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