
b

rrelation
n may be
rrelations

e

nomena.
e

ept
ncludes
ects
rocess.

d by

. In this
tions
in a
Physics Letters B 591 (2004) 83–90

www.elsevier.com/locate/physlet

Physical meaning of two-particle HBT measurements
in case of correlated emission

A. Bialasa,b, K. Zalewskia,b

a M. Smoluchowski Institute of Physics Jagellonian University, Reymonta 4, 30-059 Krakow, Poland
b Institute of Nuclear Physics PAN, Krakow, Poland

Received 13 February 2004; received in revised form 23 March 2004; accepted 4 April 2004

Available online 8 May 2004

Editor: J.-P. Blaizot

Abstract

It is shown that, in the presence of correlations in particle emission, the measured HBT radii are related to the co
range rather than to the size of the interaction volume. Only in the case of weak correlations the standard interpretatio
applicable. The earlier discussion [Phys. Rev. Lett. 68 (1992) 1109; Phys. Rev. C 49 (1994) 2722] of the short-range co
in configuration space is generalized to include also the correlations of particle momenta.
 2004 Elsevier B.V.

1. Measurements of HBT correlations in multiparticle production provide important information on th
production mechanism, in particular on the space–time structure of the particle emission region[2]. To obtain this
information, however, it is necessary to rely on some specific theoretical interpretation of the observed phe
The results are model dependent: the physical meaning assigned to the measured quantities does depend on th
theoretical input.

In the standard treatment of this problem one usually startswith a model where particles are uncorrelated (exc
for Bose–Einstein correlations) and then corrects the results by including final state interactions. This i
corrections for Coulomb interactions, low energy particle interaction parametrized by scattering lengths and eff
of resonances[3]. In the present Letter we discuss correlations due to strong interactions in the production p
Some such correlations are known to occur[4], some others, still hypothetical, may be, hopefully, uncovere
the HBT measurements[1].

To simplify the presentation we consider only the two-dimensional (transverse) distributions,1 taken as
Gaussians to avoid complicated integrations which only obscure the essential points of our argument
case Wigner functionsW(p1, . . . ,pn; x1, . . . ,xn) can be used instead of the more complicated emission func
S(p1, . . . , pn;x1, . . . , xn). The Wigner functions are real functions of momenta and positions and are

E-mail address: bialas@th.if.uj.edu.pl (A. Bialas).
1 I.e., distributions integrated over some interval of the longitudinal variables.
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well-defined sense[5] the best quantum analog of particle densityin phase-space. Therefore the parame
characterizing the Wigner functions can be interpreted2 as the parameters characterizing the space distributio
of sources and their momentum spectra[7].

The density matrix in momentum space is related to the Wigner function by the formula:

(1)ρ(p1, . . . ,pn; p′
1, . . . ,p′

n) =
∫

d2x1 · · ·d2xn exp
[
i(Q1x1 + · · · + Qnxn)

]
W(K1, . . . ,Kn; x1, . . . ,xn)

whereKi = (pi + p′
i )/2 and Qi = pi − p′

i .
It follows that the momentum distribution of particles can be expressed as

(2)Ω0(p1, . . . ,pn) = ρ(p1, . . . ,pn; p1, . . . ,pn) =
∫

d2x1 · · ·d2xn W(p1, . . . ,pn; x1, . . . ,xn).

Similarly, for the coordinate distribution we have

(3)Ω0(x1, . . . ,xn) = ρ(x1, . . . ,xn; x1, . . . ,xn) =
∫

d2p1 · · ·d2pn W(p1, . . . ,pn; x1, . . . ,xn).

For the momentum distribution of identical bosons we have to symmetrize the production amplitudes.
modifies the momentum distribution (see, e.g.,[8]) into

(4)Ω(p1, . . . ,pn) = 1

n!
∑
P,P ′

ρ(pi1, . . . ,pin; pi′1, . . . ,pi′n ),

where the sum runs over all permutationsP andP ′ of (i1, . . . , in) and(i ′1, . . . , i ′n).3 This is the key formula which
explains the main interest in the HBT measurements: the distribution of identical particles opens a windo
non-diagonal elements of the density matrix and thus also to the Wigner function. It is also clear, however,
information is not sufficient to obtain full information about the distribution of sources. Thus further theo
input is needed.

The purpose of the present Letter is to discuss the physical meaning of the measured two-partic
parameters in terms of the characteristics of the momentum and coordinate distribution of the sources as
by the Wigner function. The well-known case of uncorrelated emission (for recent reviews, see, e.g.,[2]) is
summarized briefly inSection 2. The emission of particles correlated in pairs is described inSection 3. In Section 4
a more realistic situation, when only a fraction of the particles is emitted in pairs while others remain uncor
is considered. The experimental consequences are discussed inSections 5 and 6. Our conclusions are listed in
last section.

2. The assumption of uncorrelated production means that the Wigner function factorizes into a pro
single particle Wigner functions. Of course this factorization is then satisfied also for the unsymmetrized
matrix.

To illustrate the consequences of this Ansatz and to fix our notation, consider a single particle Wigner f
in the most general Gaussian form4

(5)W(p,x) = 1

4π2∆2
u(R

2
u − r2

u)
exp

[
− p2

2∆2
u

− (x − rup/∆u)
2

2(R2
u − r2

u)

]
.

One sees that the parameterru is responsible for momentum-position correlation.

2 Given all the caveats related to the fact that we are dealing with quantum phenomena[2,6].
3 For fermions there is an extra minus sign whenP andP ′ are odd with respect to each other.
4 As already mentioned in the Introduction, all vectors are two-dimensional. This model is sometimes referred to as the Zajc model[9].
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From(5), using(2) and(3), we derive for single particle distributions

Ω0(p) =
∫

d2x W(p,x) = 1

2π∆2
u

exp

[
− p2

2∆2
u

]
,

(6)Ω0(x) =
∫

d2p W(p,x) = 1

2πR2
u

exp

[
− x2

2R2
u

]
.

One sees that the parameter∆u describes the width of the distribution in momentum space whereasRu determines
the size of the system in configuration space.

Using(1) and(4), we obtain the two-particle distribution for identical particles:

(7)Ω(p1,p2) = 1

4π2∆4
u

exp

[
−p2

1 + p2
2

2∆2
u

]{
1+ exp

[−(p1 − p2)
2R2

HBT

]}
,

where

(8)R2
HBT ≡ R2

u − r2
u − 1

4∆2
u

.

One sees that in this simple case measurements of the single particle distribution and pair distributio
to determine∆u andRHBT. One also sees from(8) that these two parameters are not sufficient to determineRu,
the size of the system in configuration space[10]. To this end it is necessary to know the correlation between
momentum and the position of the emission point of a particle, as expressed by the parameterru.

3. The most general Gaussian two-particle Wigner function, symmetric with respect to simultaneous ex
of the particle momenta and positions, can be written as

Wc(p1,p2; x1,x2) = 1

16π4∆2+∆2−(R2+ − r2+)(R2− − r2−)

(9)× exp

[
− p2+

∆2+
− p2−

∆2−

]
exp

[
− (x+ − r+p+/∆+)2

R2+ − r2+
− (x− − r−p−/∆−)2

R2− − r2−

]

wherep± = (p1 ± p2)/2 andx± = (x1 ± x2)/2. Note that if

(10)∆− = ∆+, R+ = R−, r+ = r−
the Wigner function factorizes and the problem reduces to the one discussed in the previous section.

One sees from(9) that r± are responsible for the correlations between positions and momenta. To s
physical meaning of the other 4 parameters we calculate the distribution of momenta

(11)Ω0(p1,p2) = 1

4π2∆2+∆2−
exp

[
−p2

1 + p2
2

2∆2+
− (p1 − p2)

2

2ω2

]

and positions

(12)Ω0(x1,x2) = 1

4π2R2+R2−
exp

[
−x2

1 + x2
2

2R2+
− (x1 − x2)

2

2ξ2

]
,

where

(13)
1

ω2
= 1

2∆2−
− 1

2∆2+
,

1

ξ2
= 1

2R2−
− 1

2R2+
.
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From this we see that∆2+ describes the momentum distribution, whereasω2 describes the correlations betwe
the momenta in the pair. Similarly,R2+ describes the distribution of the particle positions whileξ2 describes
correlations between the positions of particles in the pair. Note thatω2 andξ2 are not necessarily positive. No
also that correlations do indeed disappear (1/ω= 1/ξ = 0) when condition(10) is satisfied.

Using(9), (1) and(4), the two-particle momentum distribution is obtained:

(14)Ω(p1,p2) = Ω0(p1,p2)
(
1+ exp

[−(p1 − p2)
2R2

c

])
,

whereΩ0 is given by(11)and

(15)R2
c = R2− − r2− − 1/4∆2−.

One sees thatΩ(p1,p2) depends only on three parameters:∆2+, ∆2−, andR2− − r2−, whereasR2+ andr2+ do not
have any impact on the momentum distribution.

Using(13)we obtain

(16)R2− = ξ2R2+
ξ2 + 2R2+

which explicitly shows the effect of correlations in configuration space on the physical interpretation of the H
measurements.

Note that for positive correlations (ξ2 > 0) R2− is always smaller than bothξ2/2 and R2+. In particular, when
ξ2 � R2+ we haveR2− ≈ ξ2/2. In this case the HBT measurements give only information on correlations annot
on the size of the system in configuration space.

One also sees that for negative correlationsR2− is always greater thanR2+.
This discussion shows that correlations in configuration space can significantly influence the interpret

the measured HBT parameters. Only if there are no correlations (1/ξ2 = 0), R+ andR− are identical and by thi
“accident” one can obtain information about the total volume of the reaction.

4. In the previous section we have discussed the situation whenall pairs of the emitted particles are correlat
This is an interesting theoretical exercise which, however, hardly corresponds to reality. The measured H
correlations indicate that the data are in reasonable agreement with the assumption of uncorrelated pr
This suggests that to discuss practical consequences of ourformalism it is more appropriate to consider a situat
when correlated emission affects only a fraction of all the particles, the others remaining uncorrelated.

The formalism developped inSections 2 and 3is well suited to cover this case. We write the Wigner funct
as a sum of two terms: one describing the uncorrelated emission and the other responsible for the cor
Following the discussion ofSections 2 and 3we write

(17)W(p1,p2; x1,x2) = wuWu(p1,x1)Wu(p2,x2) + wcWc(p1,p2; x1,x2),

whereWu(p,x) is given by(5) andWc(p1,p2; x1,x2) by (9). wu is the probability that the considered particles
uncorrelated andwc = 1− wu is the probability that they were emitted as a correlated pair.

The density matrix is thus given by a sum of two terms, one constructed fromWu and the other fromWc . This
gives the single particle momentum distribution5

(18)Ω0(p1) = 1

2π∆2
u

e−p2
1/2∆2

uΦ0(p1),

5 In (18) the corrections due to BE correlations are neglected. They are expected to be small at high energies.
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where

(19)Φ0(p1) = wu + wc
2∆2

u

∆2+ + ∆2−
e−p2

1/η
2

represents the modification of the single particle spectrum due to the correlated emission. Here

(20)
1

η2 = 1

∆2+ + ∆2−
− 1

2∆2
u

.

Using (17) and employing(1) and(4), the momentum distribution for identical particlesΩ(p1,p2) can now be
derived and thus one can construct the usually measured quantity

(21)C(p1,p2) ≡ Ω(p1,p2)

Ω0(p1)Ω0(p2)
,

whereΩ0(p1) is the single-particle distributionin the events with at least one pair of identical particles, given by
(18). The result is

(22)C(p1,p2) = wuCu(p1,p2) + wcCc(p1,p2)

with

(23)Cu(p1,p2) = 1+ e−(p1−p2)
2R2

HBT

Φ0(p1)Φ0(p2)

and

(24)Cc(p1,p2) = ∆4
u

∆2+∆2−
e−(p1+p2)

2/2χ2+e−(p1−p2)
2/2χ2−

Φ0(p1)Φ0(p2)

[
1+ e−(p1−p2)

2R2
c
]

with

(25)
1

χ2±
= 1

2∆2±
− 1

2∆2
u

.

5. The formulae(22)–(24)describe the HBT measurements for a general superposition of uncorrelate
correlated emission. They thus cover a wide range of possible physical situations.

To discuss their interpretation we have to consider the possible origin of these two contribution
uncorrelated emission may stem either from directly produced pions or from the pions emitted from unco
clusters (resonances). The correlated emission may reflect (i) a genuine structure of the source[1] or (ii) the
interaction between pions. The attractive interactions lead to positive correlations (ξ2 > 0). They are usually
represented as clusters of pions. The repulsive interactions (which were never observed6) would give negative
correlations (ξ2 < 0).

As seen from(22)–(24), for positive correlations one may expect the two components,Cu and Cc , to have
different ranges in(p1 − p2)

2. The difference may be large, especially in heavy ion collisions. Indeed, in this
the range of the first one (∼ 1/R2

HBT) is determined by the size of the whole system, whereas the range
second one (∼ 1/R2

c ) is determined by the geometrical size of clusters (and/or of local fluctuations) and b
momentum distributions.

We shall consider in detailthe generic scenario whenall particles are emitted from uncorrelated sources[1].
The single particle distribution is then fully determined by the distribution and decay properties of the e

6 As already stated inSection 1, we discuss here only correlations due to strong interactions in the production process.
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sources. The condition

(26)
∫

d2x2 d2p2 Wc(p1,p2; x1,x2) = Wu(p1,x1)

implies

(27)2∆2
u = ∆2+ + ∆2−, 2R2

u = R2+ + R2−, 2ru∆u = r−∆− + r+∆+

and, naturally,Φ0(p) ≡ 1.
A special case of this scenario (particle emission from independent granules) was discussed in[1] where it

was furthermore assumed that (i) the distribution of sources is momentum-independent (1/∆2+ = 0) and (ii) the
momentum dependence in source decaymay be neglected with respect to dependence on difference of mom
(1/∆2− � R2

c , R2
HBT). Under these conditions7 the expression for the correlation function considerably simplifi

(28)C(p1,p2) = 1+ wue−(p1−p2)
2R2

HBT + wc
∆4

u

∆2+∆2−
e−(p1−p2)2R2

c ,

wherewc = 1/n andn is the total number of sources.
One sees clearly the two-component structure of the correlation function.8 As pointed out in[1], the observation

of the second term may serve as an indication of the clustering and/or of the granular structure of the e
region in heavy ion collisions. The size of the granules (clusters) may be read off from the range of the
component.

The simple formula(28) illustrates very well the basic physics of the problem. As seen from our gene
expression(24), however, the actual shape of the second component may be significantly influenced
momentum dependence of the emitting sources. It is true that 1/∆2+ and 1/∆2−, being of the order of 1 fermi2

or less, are small as compared toR2
HBT which (in heavy ion collisions) is of the order of (several fermi)2. They

may well be comparable, however, withR2
c which need not be much larger than 1 fermi2. Thus neglecting the

momentum dependence of the emitting sources[1] may be a too drastic simplification.
Moreover, even in absence of the correlations in configuration space (i.e., forR+ = R−; r+ = r− = 0) the two

component structure of the correlation function persists. Indeed, we obtain from(22)–(24)

C(p1,p2) = wu +
(

wu + wc
∆4

u

∆2+∆2−
e−(p1+p2)2/2χ2+

)
e−(p1−p2)

2R2
HBT

(29)+ wc
∆4

u

∆2+∆2−
e−(p1+p2)

2/2χ2+e−(p1−p2)
2/2χ2− .

The two-component structure is recovered but now themomentum correlations and not the correlations
configuration space are responsible for it.

We conclude that, although the two-component structure of the HBT measurements seems a robust consequ
of the correlated emission, the physical meaning of the measured parameters is by no means unique. Thu
that in the analysis of actual experiments our general approach, summarized in the formulae(22)–(24), may be
needed to account for the observations and to give the correct physical meaning to the measured parame

6. Several comments are in order.

7 They are too restrictive: to obtain(28) it is enough to assume∆+ = ∆+ = ∆u, i.e., no correlations in momentum space.
8 A sum of two Gaussians in the two-particle correlation function was also considered for another reason in[11].
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(i) One may note that, since for positive correlations one naturally expects∆2+ > ∆2−, (27) implies thatχ2− > 0
andχ2+ < 0. This means thatCc (cf. (24)) increases with increasing momentum of the pair. This effect may tu
out helpful for identification of the second component;9

(ii) It is worth to remember that there are several reasons why the conditions(27), relating the correlated an
the uncorrelated distributions, may be violated (also the probabilitywc of correlated emission need not be eq
to 1/n). First, notall particles are emitted in clusters, some of them are produced directly. Second, most of
clusters observed in hadronic collisions are characterized by fairly small multiplicity (about three particles on t
average) and rather small charge[4]. Therefore only a small fraction of all clusters emittwo identical charged pion
and there is no obvious reason why they should have the same properties as an average cluster. Thus alt
may hope that the discussion of the previous section describes correctly the basic physics of the prob
quantitative analysis may require the more flexible approach;

(iii) Finally, let us comment on the possibility ofnegative correlations, i.e., repulsive interaction (ξ2 < 0,
ω2 < 0). In this case the cluster picture is not applicable. From(16)we deduceR− > R+. SinceR+ is expected to
be close toRu, we conclude thatRc > RHBT, i.e., the range of the second component isshorter than that of the firs
one. Thus an observation of an abnormally narrow peak in the distribution of(p1 − p2)

2 may be an indication o
repulsive interactions in the system. It would be interesting to analyze the data keeping this perspective in10

7. In conclusion, we have analyzed the effects of interparticle correlations in particle emission
measurements of quantum interference. It has been shown that the physical interpretation of the m
parameters is significantly influenced by the presence of such correlations. In particular, for strongly co
systems the measured range of the HBT effect is related to the correlation range rather than to the si
interaction volume. Only in the case of weak correlations the standard interpretation may be applicab
short-range positive correlations in configuration space were discussed in detail. The analysis given in[1] was
generalized. A possibility to uncover negative interparticle correlations, if any, was pointed out.
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