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Abstract

It is shown that, in the presence of correlations in particle emission, the measured HBT radii are related to the correlation
range rather than to the size of the interaction volume. Only in the case of weak correlations the standard interpretation may be
applicable. The earlier discussion [Phys. Rev. Lett. 68 (1992) 1109; Phys. Rev. C 49 (1994) 2722] of the short-range correlations
in configuration space is generalized to include also the correlations of particle momenta.

0 2004 Elsevier B.VOpen access under CC BY license.

1. Measurements of HBT correlatis in multiparticle production proge important information on the
production mechanism, in particular on the space—time structure of the particle emissiorj2kdiorobtain this
information, however, it is necessary to rely on some specific theoretical interpretation of the observed phenomena.
The results are model dependent: the physical mgaadsigned to the measured gtiges does depend on the
theoretical input.

In the standard treatment of this problem one usually stéttsa model where particles are uncorrelated (except
for Bose—Einstein correlations) and then corrects the results by including final state interactions. This includes
corrections for Coulomb interactions, low energy particteliaction parametrized by scattering lengths and effects
of resonancefB]. In the present Letter we discuss correlations due to strong interactions in the production process.
Some such correlations are known to ocl]r some others, still hypothetical, may be, hopefully, uncovered by
the HBT measuremenfs].

To simplify the presentation we consider only the two-dimensional (transverse) distribbittaken as
Gaussians to avoid complicated integrations which only obscure the essential points of our argument. In this
case Wigner function® (p1, ..., Pa; X1, - - -, X) €can be used instead of the more complicated emission functions
S(p1,...,pn; x1,...,x,). The Wigner functions are real functions of momenta and positions and are in a
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1 |.e., distributions integrated over some interval of the longitudinal variables.
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well-defined sens¢5] the best quantum analog of particle densityphase-space. Therefore the parameters
characterizing the Wigner functions can be interprétasl the parameters charadtérg the space distribution
of sources and their momentum spedith

The density matrix in momentum space is related to the Wigner function by the formula:

p(pl,...,pn;p/l,---,p;)=fd2x1~-~d2xneXp[i(Q1xl+~--+ann)]W(K1,...,Kn;xl,...,xn) 1)

whereK; = (p; +p;)/2 and Q =p; — p;.
It follows that the momentum distribution of particles can be expressed as

Qo(pl,...,pn)zp(pl,...,pn;p1,...,pn):fd2x1-~-d2xnW(pl,...,pn;xl,...,xn). (2)

Similarly, for the coordinate distribution we have

For the momentum distribution ofiéntical bosons we have to symmetrize the production amplitudes. This
modifies the momentum distribution (see, €[8}) into

1
Q1P = — 3 p(Piss s Piyi Pigs - Pip), )

‘PP

where the sum runs over all permutatidhgnd P’ of (i1, ..., i,) and(iy, ..., i;l).?’ This is the key formula which
explains the main interest in the HBT measurements: the distribution of identical particles opens a window to the
non-diagonal elements of the density matrix and thus also to the Wigner function. Itis also clear, however, that this
information is not sufficient to obtain full information about the distribution of sources. Thus further theoretical
input is needed.

The purpose of the present Letter is to discuss the physical meaning of the measured two-particle HBT
parameters in terms of the characteristics of the momentum and coordinate distribution of the sources as described
by the Wigner function. The well-known case of unadated emission (for recent reviews, see, €2j) is
summarized briefly irsection 2 The emission of particles correlated in pairs is describ&giction 31n Section 4
a more realistic situation, when only a fraction of the particles is emitted in pairs while others remain uncorrelated,
is considered. The experimental consequences are discusSedtions 5 and 6. Our conclusions are listed in the
last section.

2. The assumption of uncorrelated production means that the Wigner function factorizes into a product of
single particle Wigner functions. Of course this factorization is then satisfied also for the unsymmetrized density
matrix.

To illustrate the consequences of this Ansatz and to fix our notation, consider a single particle Wigner function
in the most general Gaussian fdrm

W(p, X) =

2 _ 2
p (X —ryp/Ay) :| (5)

A2 A2(R2 — 12 "’[ 202 " 2R2—r2)
One sees that the parametgiis responsible for momentum-position correlation.
2 Given all the caveats related to the fact that we are dealing with quantum phenfy@na

3 For fermions there is an extra minus sign whgimnd P’ are odd with respect to each other.
4 As already mentioned in the Introduction, adlotors are two-dimensional. This modgkiometimes referred to as the Zajc mdaé!
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From(5), using(2) and(3), we derive for single particle distributions

20(p) = f WP, %) = — exp[——IOZ }
' 21 A2 2A2 |

20(X) = / d?p W(p,x) = iexp[—x—z]- (6)
' 27 R? 2R?

One sees that the parametgy describes the width of the distribution in momentum space whatgaetermines
the size of the system in configuration space.
Using (1) and(4), we obtain the two-particle distribution for identical particles:

1 pi+ps 2p2
2(p1.P2) = 77 &XP — =" {1+ exg—(p1 — P2)“Rijer]}. )

where

HBT u u 4AL21
One sees that in this simple case measurements of the single particle distribution and pair distribution allow
to determineA, and RygT. One also sees froif8) that these two parameters are not sufficient to deterijne
the size of the system in configuration spfb@]. To this end it is necessary to know the correlation between the
momentum and the position of the emission point of a particle, as expressed by the parameter

®)

3. The most general Gaussian two-particle Wigner function, symmetric with respect to simultaneous exchange
of the particle momenta and positions, can be written as

1
167442 A2 (R —r2)(R? —r?)

We(P1, P2; X1, X2) =

2 2 _ 2 _ 2
5 exp|:—p—J2r 3 p_;] exp|:— (X+ ;+p+/2A+) (X g—p—éAf) ] ©)
AT AZ RY —rf R —r2
wherept = (p1 & p2)/2 andxs: = (X1 £ X2)/2. Note that if
A,=A+, R+=R7, ry =r— (10)

the Wigner function factorizes and the problem reduces to the one discussed in the previous section.
One sees fron9) that r1 are responsible for the correlations between positions and momenta. To see the
physical meaning of the other 4 parameters we calculate the distribution of momenta

PZ+ps  (p1—p2)?
2 = — — 11
0(p1, p2) 4]T2A?FA27 p|: ZAi 2602 ( )
and positions
1 X2+ X2 (X1 —X2)2
Q0(X1,X2) = ————exp| — L+ —-2 — ] 12
0(X1, X2) IR R2 p[ 2%2 252 (12)
where
1 1 1 1 1 1
== S=c (13)

2 2 2 2 2 op2°
wt 242 2A% §° 2R% 2R%
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From this we see thaﬁi describes the momentum distribution, wheredsdescribes the correlations between
the momenta in the pair. Similarlyii describes the distribution of the particle positions whifedescribes
correlations between the positions of particles in the pair. Notedthaind£2 are not necessarily positive. Note
also that correlations do indeed disappear (& 4/¢ = 0) when conditior{10)is satisfied.

Using(9), (1) and(4), the two-particle momentum distribution is obtained:

2(p1. P2) = 20(p1. p2) (1 + exp —(p1 — p2)?R?)). (14)
wheres2g is given by(11)and
R>=R? —r%2 —1/442. (15)

One sees tha@ (p1, p2) depends only on three parametess:, A2, and R? — 2, whereask? andr? do not
have any impact on the momentum distribution.

Using (13)we obtain
o _ _E°R% (16)
T §242R%

which explicitly shows the effect of correlations in configtion space on the physical interpretation of the HBT
measurements.

Note that for positive correlationg® > 0) R? is always smaller than bo#?/2 and . In particular, when
£2 < R? we haveR? ~ £2/2. In this case the HBT measurements give only information on correlationsoand
on the size of the system in configuration space.

One also sees that for negative correlati®dsis always greater thaR?r.

This discussion shows that correlations in configuration space can significantly influence the interpretation of
the measured HBT parameters.|Qif there are no correlations (2 = 0), R, andR_ are identical and by this
“accident” one can obtain informatiofbaut the total volume of the reaction.

4. Inthe previous section we have discussed the situation alh@airs of the emitted particles are correlated.
This is an interesting theoretical exercise whichwbeer, hardly corresponds to reality. The measured HBT
correlations indicate that the data are in reasonable agreement with the assumption of uncorrelated production.
This suggests that to discuss practical consequences &rowalism it is more appropriate to consider a situation
when correlated emission affects only a fraction of all the particles, the others remaining uncorrelated.

The formalism developped i8ections 2 and & well suited to cover this case. We write the Wigner function
as a sum of two terms: one describing the uncorrelated emission and the other responsible for the correlations.
Following the discussion ddections 2 and @/e write

W (p1, P2; X1, X2) = wy, Wy, (P1, X1) Wi (P2, X2) + we We (P2, P2; X1, X2), (17)

whereW,, (p, X) is given by(5) and W, (p1, p2; X1, X2) by (9). w, is the probability that the considered particles are
uncorrelated and). = 1 — w,, is the probability that they were emitted as a correlated pair.

The density matrix is thus given by a sum of two terms, one constructedWgpuaind the other fronW,. This
gives the single particle momentum distribution

Q0(p1) = e PE240 o (py). (18)

2 A2

u

5 In (18) the corrections due to BE correlations are neglected. They are expected to be small at high energies.
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where
ZAE 2,2
— —p1/n
represents the modification of the single particle spectrum due to the correlated emission. Here
1 1 1

- = 20
N2 AZ 4 A2 247 (20)

Using (17) and employing1) and (4), the momentum distribution for identical particl&exp1, p2) can now be

derived and thus one can construct the usually measured quantity
£2(p1, P2)

20(p1)20(p2)’

where$2o(p1) is the single-particle distributioim the events with at least one pair of identical particles, given by
(18). The result is

C(p1,p2) = (21)

C(p1, P2) = w, Cy(P1, P2) + weCe(P1, P2) (22)

with
1+ e~ (P1—P2)*Rfigr -

Cu k) =

(P, P2) = o Po(p2) (3)

and

A4 o= (P1tP2?/2xF = (P1—P2)?/2x2 -

C.(p1, = u 14 e~ (P1—P2)°KE 24
Ny YA a— ] 9

with
11 (25)

x2 2437 24Z°

5. The formulag(22)—(24)describe the HBT measurements for a general superposition of uncorrelated and
correlated emission. They thus cover a wide range of possible physical situations.

To discuss their interpretation we have to consider the possible origin of these two contributions. The
uncorrelated emission may stem either from directly produced pions or from the pions emitted from uncorrelated
clusters (resonances). The correlated emission may reflect (i) a genuine structure of thgldoordd) the
interaction between pions. The attractive interactions lead to positive correlatibns @). They are usually
represented as clusters of pions. The repulsive interactions (which were never of)sexuald give negative
correlations £2 < 0).

As seen from(22)—(24) for positive correlations one may expect the two componeftsand C,, to have
different ranges injp1 — p2)2. The difference may be large, especially in heavy ion collisions. Indeed, in this case
the range of the first one\(l/RﬁBT) is determined by the size of the whole system, whereas the range of the
second one~{ 1/Rcz) is determined by the geometrical size of clusters (and/or of local fluctuations) and by the
momentum distributions.

We shall consider in detathe generic scenario wheatl particles are emitted from uncorrelated souridds
The single particle distribution is then fully determined by the distribution and decay properties of the emitting

6 As already stated iSection 1 we discuss here only correlations due t@sty interactions in the production process.
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sources. The condition

/dzxz d?p2 We(p1, P2; X1, X2) = Wi (P1, X1) (26)
implies
202 =A% + A%, 2R?=R? + R?, 2 Ay =r_A_+riA; (27)

and, naturally@o(p) = 1.

A special case of this scenario (particle emission from independent granules) was discyd3edhere it
was furthermore assumed that (i) the distribution of sources is momentum—indeper}’deﬁtzéJO) and (ii) the
momentum dependence in source degry be neglected with respect to dependence on difference of momenta
(1/A% « RCZ, RE'BT). Under these conditiofishe expression for the correlation function considerably simplifies

2p2 Al 2p2
C(p1, P2) = L+ wye™ PP Rier 4o, —tr o= (PLoP2)RE (28)
A% A?
wherew, = 1/n andn is the total number of sources.

One sees clearly the two-component structure of the correlation furfcliemointed out if1], the observation
of the second term may serve as an indication of the clustering and/or of the granular structure of the emission
region in heavy ion collisions. The size of the granules (clusters) may be read off from the range of the second
component.

The simple formula(28) illustrates very well the basic physicé$ the problem. As seen from our general
expression(24), however, the actual shape of the second component may be significantly influenced by the
momentum dependence of the emitting sources. It is true l;h&fjand A2, being of the order of 1 ferrfi
or less, are small as comparedR@g; which (in heavy ion collisions) is of the order of (several fefmiJhey
may well be comparable, however, Win which need not be much larger than 1 fetnithus neglecting the
momentum dependence of the emitting soufdgsnay be a too drastic simplification.

Moreover, even in absence of the correlations in configuration space (i.®ferR_; r. =r_ = 0) the two
component structure of the correlation function persists. Indeed, we obtair{2&)r(24)

4
C(p1, P2) = wy + (wu + we L e(p1+p2)2/2xi)e(plpz)zRaBT

2 A2
A2 A2
4
+w, ?ze4mﬂﬁﬂﬁ[@rmﬁhg (29)
A2 A2

The two-component structure is recovered but now rih@mentum correlations and not the correlations in
configuration space are responsible for it.

We conclude that, although the two-component structtitleeoHBT measurements seems a robust consequence
of the correlated emission, the physical meaning of the measured parameters is by no means unique. Thus we fee
that in the analysis of actual experiments our general approach, summarized in the fd2aHg24) may be
needed to account for the observations and to give the correct physical meaning to the measured parameters.

6. Several comments are in order.

7 They are too restrictive: to obta{@8) it is enough to assuma = A, = A, i.e., no correlations in momentum space.
8 A sum of two Gaussians in the two-particle correlatfonction was also considered for another reasda i
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(i) One may note that, since for positive correlations one naturally expgects A2, (27)implies thaty? > 0
and Xer < 0. This means that, (cf. (24)) increases with increaginmomentum of the pair. This effect may turn
out helpful for identification of the second componeént;

(ii) Itis worth to remember that there are several reasons why the cond{f#@hgelating the correlated and
the uncorrelated distributions, may be violated (also the probahilitpf correlated emission need not be equal
to 1/n). First, notall particles are emitted in clusters, some adrthare produced directly. Second, most of the
clusters observed in hadronic collisions are charazgdrby fairly small multiplicity (about three particles on the
average) and rather small chafgg Therefore only a small fraction of all clusters etmib identical charged pions
and there is no obvious reason why they should have the same properties as an average cluster. Thus although on
may hope that the discussion of the previous section describes correctly the basic physics of the problem, the
gquantitative analysis may require the more flexible approach;

(iii) Finally, let us comment on the possibility afegative correlations, i.e., repulsive interactiof?(< 0,
w? < 0). In this case the cluster picture is not applicable. F(b&) we deduceR_ > R, . SinceR, is expected to
be close tar,,, we conclude thaR. > RugrT, i.€., the range of the second componeshirter than that of the first
one. Thus an observation of an abnormally narrow peak in the distributigm ef p2)2 may be an indication of
repulsive interactions in the system. It would be interesting to analyze the data keeping this perspectivé® mind.

7. In conclusion, we have analyzed the effects of interparticle correlations in particle emission on the
measurements of quantum interference. It has been shown that the physical interpretation of the measured
parameters is significantly influenced by the presence of such correlations. In particular, for strongly correlated
systems the measured range of the HBT effect is related to the correlation range rather than to the size of the
interaction volume. Only in the case of weak correlations the standard interpretation may be applicable. The
short-range positive correlations in configuration space were discussed in detail. The analysis fiyemas
generalized. A possibility to uncover negative interparticle correlations, if any, was pointed out.
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