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a b s t r a c t

Recently, Schloesser et al. (2012) explored the dynamics of the descending branch of meridional over-
turning circulations (MOCs), by obtaining analytic solutions to a variable-density, 2-layer model (VLOM)
forced only by a surface buoyancy flux. Key processes involved are the poleward thickening of the upper
layer along the eastern boundary due to Kelvin-wave adjustments, the westward propagation of that
coastal structure by Rossby waves, and their damping by mixing; the resulting zonal pressure gradient
causes the surface MOC branch to converge into the northern basin near the eastern boundary.

In this paper, we extend the Schloesser et al. (2012) study to include forcing by a zonal wind stress sx(y).
Much of the paper is devoted to the derivation and analysis of analytic solutions to VLOM; for validation, we
also report corresponding numerical solutions to an ocean general circulation model (OGCM). Solutions are
obtained in a flat-bottom, rectangular basin confined to the northern hemisphere. The buoyancy forcing
relaxes upper-ocean density to a prescribed profile q⁄(y) that increases polewards until it becomes as large
as the deep-ocean density at latitude y2; north of y2, then, the ocean is homogeneous (a 1-layer system). The
wind stress sx drives Subtropical and Subpolar Gyres, and in our standard solution the latter extends north of
y2. Vertical diffusion is not included in VLOM (minimized in the OGCM); consequently, the MOC is not closed
by upwelling associated with interior diffusion, but rather by flow through the southern boundary of the
basin (into a southern-boundary sponge layer in the OGCM), and solutions are uniquely determined by spec-
ifying the strength of that flow or the thermocline depth along the tropical eastern boundary.

Solutions forced by sx and q⁄ differ markedly from those forced only by q⁄ because water flows across y2

throughout the interior of the Subpolar Gyre, not just near the eastern boundary. In some of our solutions,
the strength of the MOC’s descending branch is determined entirely by this wind-driven mechanism,
whereas in others it is also affected by Rossby-wave damping near the eastern boundary. Upwelling can
occur in the interior of the Subpolar Gyre and in the western-boundary layer, providing ‘‘shortcuts’’ for
the overturning circulation; consequently, there are different rates for the convergence of upper-layer water
near y2;Mn, and the export of deep water south of the Subpolar Gyre, M, the latter being a better measure
of large-scale MOC strength. When western-boundary upwelling occurs in our solutions, M is independent
of the diapycnal processes in the subpolar ocean.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Meridional overturning circulations (MOCs) are an important
part of the global ocean circulation. Water masses, formed at high
latitudes in regions with large heat loss from the ocean to the
atmosphere, spread equatorward within deep MOC branches. Con-
versely, the shallow branches provide the main pathways by which
the ocean transports heat poleward (e.g., Ganachaud and Wunsch,
2000). The Atlantic meridional overturning circulation (AMOC)
is particularly important, a major component of the climate
system.

1.1. Background

Because of their importance, many studies have explored the
processes controlling MOC strength and structure. Analyzing and
comparing a hierarchy of model solutions of different dynamical
complexity has emerged as a useful strategy for identifying key
processes. Near the base of the hierarchy are solutions obtained
in flat-bottomed, rectangular ocean basins, and forced by idealized,
surface, buoyancy and momentum fluxes.

1.1.1. Density forcing
In many empirical studies analyzing such solutions to ocean

general circulation models (OGCMs), the poleward transport that
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determines the MOC strength, M, is found to be proportional to the
near-surface, depth-averaged meridional pressure gradient, that is,

M ¼ C
gDq
2fqo

H2
s ; ð1Þ

where g is the acceleration due to gravity, f the value of the Coriolis
parameter at some characteristic latitude, Dq the pole-to-equator
difference in surface density, qo a reference density, Hs is a measure
of thermocline thickness, and C a non-dimensional proportionality
constant (e.g., Bryan, 1987; Marotzke, 1997; De Boer et al., 2010).
Relation (1) can also be derived from scaling arguments, assuming
that the large-scale transports are in geostrophic balance (Bryan
and Cox, 1967; Park and Bryan, 2000). A useful aspect of (1) is that
it does not explicitly depend on upwelling mechanisms related to
mixing (e.g., Sandström, 1916; Robinson and Stommel, 1959; Munk
and Wunsch, 1998; Vallis, 2006) or the wind-forced divergence of
the surface flow (Wyrtki, 1961; Toggweiler and Samuels, 1995;
Tsujino and Suginohara, 1999). Information about all upwelling
processes is contained in the thermocline depth, which adjusts to
balance the upwelling and descending branches in an equilibrium
state (Gnanadesikan, 1999; Schloesser et al., 2012).

Of course, the MOC poleward branch is associated with a zonal,
not meridional, pressure gradient. Therefore, the existence of
dynamical processes that determine the factor C by linking the
meridional with the zonal pressure difference is a precondition
for (1) to hold.1 Several studies point toward the importance of pro-
cesses along and offshore from the eastern boundary (e.g., Winton,
1996; Marotzke and Scott, 1999; Spall and Pickart, 2001; Pedlosky
and Spall, 2005; Cessi and Wolfe, 2009; Spall, 2010; Schloesser
et al., 2012).

To explore this issue, Pedlosky and Spall (2005) used a 2-layer
model in which a surface buoyancy flux is parameterized by a term
(damper) in the continuity equation that relaxes the upper-layer
thickness, h1, to a prescribed value, H⁄(y). To represent poleward
cooling, H⁄ decreases monotonically from a value, Hs, in the tropics
to lower values (H⁄ < Hs) at higher latitudes. Kelvin waves adjust h1

to Hs along the eastern boundary but, when Rossby waves attempt
to carry that coastal thickness offshore, the damping thins h1 to H⁄,
thereby establishing a zonal pressure gradient that drives upper-
layer flow poleward in the northeastern ocean.

In an extension of the Pedlosky and Spall (2005) study, Schloes-
ser et al. (2012) used a variable-density, 2-layer model (VLOM), in
which a heat flux relaxes upper-layer temperature, T1, to a pre-
scribed temperature profile, T⁄(y), that decreases poleward, reduc-
ing to the lower-layer temperature north of a latitude y2 (as in Eq.
(6) below). In this case, Kelvin waves adjust h1 at the eastern
boundary to a profile, he(y), such that the depth-integrated, along-
shore pressure gradient in layer 1 vanishes. Because that coastal
pressure gradient depends on T1, he(y) must thicken polewards,
and it increases to the ocean bottom slightly south of y2 (see Eq.
(21)). As in the Pedlosky and Spall (2005) solution, Rossby waves
attempt to carry he(y) offshore. To damp them, Schloesser et al.
(2012) included a detrainment velocity, wd, in the continuity
equation that relaxes h1 to a prescribed thickness, hmax, wherever
he(y) > hmax. (The authors obtained comparable solutions to an
OGCM, and argued that wd in VLOM behaves much like mixing
processes in the OGCM.) Consistent with the transports in
corresponding OGCM experiments, the MOC strength in VLOM is
described by (1), in which the value of f�1 is its average over the
latitude band where he > hmax and
1 The previous statement assumes that the meridional flow is geostrophic. In
zonally-averaged and box models, viscosity (Raleigh damping) has been used to link
zonal and meridional flow (Stommel, 1961; Wright and Stocker, 1991; Wright et al.
1998); however, this ageostrophic linkage was shown to be inconsistent with the
circulation in more realistic models (Straub, 1996).
,

C ¼ 1� hmax

D
; ð2Þ

where D is the ocean depth.

1.1.2. Wind forcing
While the role of wind forcing in generating upwelling, partic-

ularly in the Southern Ocean, has been the focus of many studies,
there are only a few studies that directly investigate the impact
of wind forcing on the descending branch of the MOC. Tsujino
and Suginohara (1999), for example, obtained idealized OGCM
solutions in a rectangular basin that extends on either side of the
equator; they assumed that the cooling was confined to the south-
ern hemisphere and wind forcing to the northern hemisphere, so
that the thermohaline and wind forcings were completely sepa-
rate. The additional upwelling driven by Ekman suction in the
north increased M. Consistent with (1), the thermocline depth in-
creased throughout the basin to allow for the increase in M, a re-
sult of basin-wide Kelvin- and Rossby-wave adjustments. Similar
solutions were discussed by Klinger et al. (2004).

The upwelling caused by Ekman suction has also been studied
using 2-layer models. In the subpolar ocean, where the Ekman
pumping velocity is positive (wek > 0), the deep layer can outcrop
(h1 = 0) when the winds are sufficiently strong (Huang, 1986;
Huang and Flierl, 1987). Within this region, the geostrophic part
of the horizontal transport is evenly distributed over the water col-
umn, whereas elsewhere in the basin the Sverdrup flow is entirely
contained within the upper layer and the deep layer is at rest. In a
related study, Nonaka et al. (2006) prevent h1 from vanishing in re-
gions of Ekman suction by introducing a ‘‘mixed-layer’’ entrain-
ment velocity, we, which ensures that h1 never becomes thinner
than a minimum thickness, hmin.

The Nonaka et al. (2006) model includes a sponge layer along
the northern boundary of the basin, where h1 is strongly relaxed
towards a prescribed value (a representation of the similar sponge
layers that exist in many OGCMs). In their steady-state solutions,
upwelling in the subpolar ocean is balanced by a convergence of
layer-1 water into the sponge layer where it detrains into layer
2, forming a closed overturning cell. Although not noted by the
authors, their solutions therefore provide a dynamical explanation
for the strengthened MOC in the OGCM solutions of Tsujino and
Suginohara (1999) and Klinger et al. (2004). Similarly, Luyten and
Stommel (1986) and Radko and Kamenkovich (2011) analyzed
solutions to a 2 1

2-layer model, in which surface cooling is repre-
sented by a prescribed downwelling velocity from the surface into
the second layer and upper-ocean convergence is externally pre-
scribed. Just how the model can generate such a downwelling
internally cannot be assessed by their approach, and remains to
be understood.

1.2. Present research

In this paper, we extend the MOC study of Schloesser et al.
(2012) to include both buoyancy and wind forcing. Our focus is
to understand how wind-driven circulations impact the conver-
gence of the MOC surface branch into the northern ocean. Much
of the paper concerns the derivation and analysis of quasi-analytic
solutions to VLOM. (The solution for western-boundary response
must be obtained numerically.) These solutions allow the effects
of density and wind forcing to be readily distinguished. To validate
and extend the VLOM results, we also obtain solutions to an OGCM
(MITgcm), which solves a more accurate set of equations.

Several simplifications to our experimental design are needed
to allow for quasi-analytic, VLOM solutions. First, VLOM contains
no process corresponding to vertical diffusion in the interior ocean.
As a result, the model MOC is not closed by upwelling within the
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domain but rather by allowing flow across an open southern
boundary, specifically by regarding either Hs or M to be an exter-
nally prescribed parameter. For our purposes, the lack of interior
upwelling is acceptable, since we are interested in understanding
the dynamics of the MOC descending branch, which do not explic-
itly involve the processes that determine the MOC upwelling
branch (e.g., Ekman drift out of the Southern Ocean). Second, den-
sity is independent of salinity in our idealized experiments; fur-
thermore, solutions are obtained in the limit of very strong
surface temperature relaxation, thereby fixing the surface density
field to a prescribed value and eliminating any impact of density
advection. Both salinity and density advection are known to be
important in simulations of MOC variability (e.g., Stommel, 1961;
Bryan, 1986; Marotzke and Willebrand, 1991; Winton, 1996). Their
neglect in our solutions is acceptable because we explore the
dynamics underlying the MOC mean state, not its variability. (In
Section 6.5, we report a few OGCM solutions in which density
advection is active.) Finally, several simplifications of a mathemat-
ical nature are needed to obtain the the VLOM solutions, mostly
concerning the western-boundary response; they are noted at
the location where they are required in derivations.

Key results are the following. The VLOM solutions provide the
complete three-dimensional structure of the flow field, including
thermal-wind circulation, and they compare very well to their
OGCM counterparts. The dynamics of upper-ocean convergence
into the northern ocean change markedly depending on whether
the wind-driven Subpolar Gyre extends into the coldest part of
the basin: If it does not, the convergence is driven entirely by east-
ern-boundary adjustments and Rossby-wave damping, as in the
Pedlosky and Spall (2005) and Schloesser et al. (2012) studies (Sec-
tion 7.1); if it does, the convergence rate is also (in some cases en-
tirely) determined by northward, wind-driven flow in the interior
of the Subpolar Gyre (Section 5.1). The theory provides two differ-
ent measures for the strength of the overturning: the rate of deep-
water formation, Mn, and the rate of deep-water export from the
subpolar ocean, M (Section 5); the two measures differ because
upwelling in the interior subpolar ocean (Nonaka et al., 2006)
and in the western-boundary layer provide ‘‘shortcuts’’ for the lar-
ger-scale MOC. The theory also provides expressions that relate M

and Mn to wind amplitude so, Dq, and Hs. Thus, relationships like
(1) can be derived, with C changed from (2) to take wind forcing
into account.

The paper is organized as follows. First, we describe our layer
model, VLOM, and the experimental design in Section 2. We then
derive solutions without (Section 3) and with (Section 4) detrain-
ment wd, and obtain expressions for overturning transports in
VLOM (Section 5). To demonstrate the robustness of our results,
we compare our VLOM solutions to MITgcm solutions in Section 6,
and discuss applications of our VLOM solutions in Section 7. Final-
ly, a summary and discussion is provided in Section 8.
Fig. 1. Meridional profiles of the zonal windstress, sx(y), and the surface relaxation
temperature, T⁄(y), used in our standard solution.
2. The layer model

Here, we present our overall experimental design (Section 2.1),
discuss the general VLOM equations for the depth-averaged flow in
each layer and their simplifications in the interior ocean and wes-
tern-boundary layer (Section 2.2), and note that there are also z-
dependent flows within layer 1 (Section 2.3). The model is very
similar to the one used in Schloesser et al. (2012), the main differ-
ences being that the present version includes wind forcing, ne-
glects interior diffusion, and the MOC upwelling branch is
located outside the model domain. For simplicity, we use a b-plane
notation in the derivation of our solutions (i.e., we use Cartesian
coordinates and neglect terms of order by), whereas particular
solutions are evaluated on a sphere to allow for better comparison
to our OGCM experiments in Section 6. Solutions depend on sev-
eral parameters, and the specific values given below are those used
in our standard solution.

2.1. Experimental design

The model domain is a rectangular basin representing the North
Atlantic that extends meridionally from ys = 10�N to yn = 60�N, zon-
ally from xw = 0�E to xe = 40�E (see Fig. 2 below), and has a flat bot-
tom at a depth D = 4000 m. Closed conditions are imposed at all
boundaries except for the southern boundary, which is open.

The open southern boundary allows information to enter the
basin along the eastern boundary via the propagation of Kelvin
waves, thereby setting the upper-layer thickness in the southeast
corner of the basin to

h1ðxe; ysÞ ¼ Hs: ð3Þ

In steady state, water flows across ys only in a western-boundary
current. (There is no flow anywhere in the interior of the basin
south of y1w = 15�N because there is no interior diffusion or forcing
there; see Fig. 1.) Its upper-layer transport is M, the strength of the
large-scale MOC (Section 5), and to conserve mass the lower-layer
transport is �M. Because Hs and M are linked by dynamical adjust-
ments within the basin (Section 3), only one or the other must be
externally prescribed. In Sections 3 and 4, we treat Hs as an external
parameter because the derivation of solutions is more straightfor-
ward, commenting on how to obtain solutions with M specified
in Section 7.2. For comparison, in solutions in which all upwelling
processes occur within a closed basin, Hs and M are both deter-
mined internally by the requirement that the upwelling and sinking
branches balance in equilibrium (e.g., Gnanadesikan, 1999; Schloes-
ser, 2011, 2012).

For simplicity, salinity is kept constant and density is assumed
to depend only on temperature according to

q ¼ qoð1� aTÞ; ð4Þ

where qo = 1028 kg/m3 is a background density and
a = 0.00015 �C�1 is the coefficient of thermal expansion. Thus, there
is a one-to-one correspondence between density and temperature,
and the two variables can be viewed as being interchangeable. In
this regard, subscripts and superscripts are used consistently for
the two variables, for example, so that T1, Ts, T⁄ implicitly define
the corresponding densities q1 � q(T1), qs � q(Ts), and q⁄ � q(T⁄).
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The model is forced by a heat (buoyancy) flux spread uniformly
throughout layer 1. It has the form

Qðx; yÞ ¼ � T1 � T�ðx; yÞ
dt

; ð5Þ

where

T�ðyÞ ¼
Ts; y 6 y1;

Ts þ ðTn � TsÞ y�y1
y2�y1

; y1 < y 6 y2;

Tn; y > y2;

8><>: ð6Þ

dt is a relaxation time that measures the strength of the heating,
Ts = 23 �C, Tn = 3 �C, y1 = 30�N, and y2 = 50�N (compare Fig. 1). To al-
low for analytic solutions, we let dt ? 0 so that T1 = T⁄(y) always.
The deep-ocean temperature is everywhere set to T2 = Tn, the tem-
perature of the densest water formed at the surface. Thus, the mod-
el ocean is unstratified in the region north of y2.

The westerly wind stress applied on our model ocean is also
shown in Fig. 1, and has the form

sx ¼ 1
2

so

qo
cos 2p y� �yw

yw2 � yw1

� �
þ 1

� �
h y� yw1ð Þh yw2 � yð Þ; ð7Þ

where yw1 = 15�N, yw2 = 55�N, �yw ¼ ðyw1 þ yw2Þ=2; so > 0, and h(x) is
a stepfunction (i.e., h(x) = 1 for x P 0, and h(x) = 0 for x < 0). It drives
Subpolar and Subtropical Gyres north and south of �yw, respectively.
We note that the MOC structure in our solutions changes markedly
depending on whether the Subpolar Gyre extends into the unstrat-
ified part of the ocean (i.e., whether y2w ? y2; see Section 7).

2.2. Equations of motion

2.2.1. General equations
In the stratified part of the ocean (y 6 y2), VLOM is a 2-layer sys-

tem. South of y2, horizontal transports and layer thickness are de-
scribed by the equations

f k� Vi ¼ �h$pii þ di1sþ ½$ � mh$Vi�; ð8aÞ
hit þ $ � Vi ¼ ð�1Þi�1w1; ð8bÞ

where subscript i = 1, 2 is a layer index, Vi ¼ ðhi�ui;hi �v iÞ is the depth-
integrated layer transport per unit width in layer i; �vi ¼ ð�ui; �v iÞ is the
depth-averaged velocity, w1 is the across-interface velocity at the
bottom of layer 1, and s = (sx, 0) is the surface wind stress divided
by q1 (bottom stress is ignored). The depth-integrated pressure gra-
dients in each layer are

h$p1i ¼
gh1

qo
q1$ðh1 þ h2Þ þ

h1

2
$q1

� �
; ð9aÞ

h$p2i ¼
gh2

qo
½q2$ðh1 þ h2Þ � q21$h1 þ h1$q1�; ð9bÞ

where the depth-integrated value of a variable is denoted by h. . .i
and q21 = q2 � q1. Mathematical symbols are the horizontal-gradient
operator $ � ð@x; @yÞ, unit vector in the z-direction k, and the Kro-
necker delta symbol dij (d11 = 1 and d21 = 0). The horizontal viscosity
term in (8a) is enclosed in brackets to indicate that it is included only
formally to allow for a frictional western-boundary layer, but is
otherwise unused. Although we obtain steady-state solutions, it is
useful to consider how the ocean spins up to equilibrium, so we re-
tain hit in (8b), thereby allowing for Rossby-wave propagation.

The across-interface velocity, w1 = we + wc + wd, regulates the mass
transfer from one layer into the other. Its components are given by

we ¼
hmin � h1

te
hðhmin � h1Þ; ð10aÞ

wd ¼ �
h1 � hmax

td
hðh1 � hmaxÞ; ð10bÞ

wc ¼ �V1ðy2Þ dðy� y2Þ; ð10cÞ
where d is a Dirac delta-function. Velocity we P 0 simulates
entrainment into a surface ‘‘mixed layer’’ of thickness hmin = 100 m.
In order to derive analytical solutions for VLOM, we assume that
te ? 0, which ensures that h1 P hmin. Velocity wd 6 0 is a detrain-
ment velocity that occurs whenever h1 becomes thicker than a pre-
scribed maximum value hmax = 3Hs. It represents processes in the
ocean that tend to restratify the water column (e.g., Fox-Kemper
et al., 2008), and hence to damp Rossby waves, and it is essential
for generating an MOC in solutions without wind forcing (Section 7;
Schloesser et al., 2012). To allow for an analytic solution when
wd – 0, we assume that td ? 0, in which case wd acts to ensure that
h1 6 hmax almost everywhere in the basin; the exception is along
the eastern boundary, where we assume the time scale for the
adjustment by coastal Kelvin waves is much less than td (Section 4;
Schloesser et al., 2012).

Velocity wc is a special across-interface velocity that occurs
when water flows across y2. Layer 1 exists just south of y2 but
not just north of it, so that it has a ‘‘sidewall’’ there. Thus, north-
ward flow across y2 causes layer-1 water to detrain into layer 2,
and southward flow across y2 causes layer-2 water to entrain into
layer 1. As such, wc is conceptually useful for matching the 2-layer
and 1-layer regions of the model.

Schloesser et al. (2012) included another across-interface veloc-
ity, wm = (j/h1)h(D � h1), to represent vertical diffusion in the inte-
rior ocean that tends to thicken the thermocline. This process is of
secondary importance in our model, since our open southern
boundary allows the MOC upwelling branch to occur external to
the basin. For simplicity, then, we neglect it altogether.

2.2.2. Interior-ocean equations
It is possible to separate solutions into barotropic and baroclinic

parts. We assume that the barotropic flow is in a quasi-steady state
(h1t + h2t = 0 in Eq. (8b)), a reasonable assumption since barotropic
waves propagate so much faster than baroclinic ones. In the interior
ocean where viscosity is neglected, the sums of (8) and (9) then give

f k� V ¼ �$P þ s; $ � V ¼ 0; ð11aÞ

$P ¼ h$p1i þ h$p2i ¼
g

2qo
$ q1h2 þ q21h2

2

� �
; ð11bÞ

where V = V1 + V2 and h = h1 + h2.
Since $P is a perfect differential, Eq. (11a) give the depth-inte-

grated, Sverdrup transports and transport streamfunction (defined
by U = �Wy and V = Wx),

U ¼ �1
b
sx

yyðxe � xÞ; V ¼ �1
b
sx

y; W ¼ 1
b
sx

yðxe � xÞ; ð12Þ

where the boundary condition U(xe) = W(xe) = 0 is applied at the
eastern boundary. With W known, the sea-surface slope, $h, ob-
tained by substituting (11b) into (11a), is

g$h ¼ � g
2qo

D$q1 �
1

2D
$ g0h2

2

� �
þ 1

D
sþ f$Wð Þ; ð13Þ

where g0 � g(q2 � q1)/q2, and h1 + h2 � D and jqi � qjj 	 qi with i,
j = 0, 1, 2 are assumed. Expression (13) is a statement that the
sea-surface-height gradient consists of baroclinic (first two terms)
and barotropic (the last term) contributions. Eqs. (12) and (13) also
describe the solution in the northern, unstratified region north of y2,
where h1 vanishes, and the wind forcing acts directly on layer 2.

Using (13) to eliminate $h, the pressure gradient terms in layers
1 and 2 (Eqs. (9)) can be rewritten entirely in terms of h1 to get

h$p1i ¼
D� h1

D
$

1
2

g0h2
1

� �
þ h1

D
ðsþ f$WÞ; ð14aÞ

h$p2i ¼ �
D� h1

D
$

1
2

g0h2
1

� �
� ðsþ f$WÞ

� �
; ð14bÞ
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ithout the need for the ‘‘artificial’’ stepfunction in (17b). We have explored other,
ore accurate closures but the resulting increase in complexity is unwarranted for

ur purposes. Also note that if the stepfunction in (17b) were eliminated, the
ntrainment in the subtropics would still be small relative to the overturning strength
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where the first terms are associated with the baroclinic shear, and
the second terms with the depth-integrated geostrophic flow,
respectively. After inserting (14a) into (8a) and neglecting viscosity,
the layer-1 equations in (8) are a set of three equations with three
unknowns. It is the set solved in Sections 3–7 to obtain the baroclin-
ic part of the response in the interior ocean.

2.2.3. Western-boundary equations
The interior circulation is closed in a western-boundary layer.

For the purpose of studying the MOC, it is sufficient to know only
its zonally integrated properties, rather than details of its across-
shore structure. Specifically, we solve for the meridional layer
transports, ViwðyÞ �

R xþw
xw

Vi dx; i ¼ 1;2, and the zonally-integrated
upwelling into layer 1, WwðyÞ �

R xþw
xw

w1 dx, where xþw is the eastern
edge of the boundary layer. As discussed below, the set of equa-
tions that determine these quantities also involves knowing the
layer-1 thickness at the western boundary, hw(y) � h1(xw, y). The
equations rely on several approximations. One of them is the usual
restriction that the boundary layer is narrow enough so that we
can take the limit xþw ! xw, thereby eliminating the boundary-layer
width from the solution.

To conserve mass, the depth-integrated meridional transport
VwðyÞ � V1w þ V2w has to be opposite to the zonally-integrated
interior flow given by (12). Zonal integration of the interior flow
then yields

Vw ¼
Z xþw

xw

V dx ¼ �
Z xe

xþw

V dx ¼ 1
b
sx

yðxe � xwÞ; ð15Þ

where the narrowness of the current allows xþw to be replaced by xw

in the last term.
To obtain V1wðyÞ, we integrate the layer-1 continuity equation

across the boundary layer and equatorward from y2, because Kel-
vin waves propagate in that direction along a western boundary.
The resulting expression is

V1wðyÞ ¼ �
Z y2

y�2

Ww dy0 �
Z y�2

y
Ww dy0 þ

Z y2

y
Uþ1w dy0; y 6 y2; ð16Þ

where Uþ1w � U1 xþw
� 	

is the zonal transport/width in the interior
solution that flows into or out of the boundary layer across
x ¼ xþw, and y�2 ¼ y2 � d, d ? 0, is a latitude just south of y2. For com-
pleteness, we note that V1wðyÞ ¼ 0 for y > y2 since layer 1 does not
exist there. As discussed next, the Ww integral in (16) is split into
two parts in order to separate out the impact of wc.

North of y2 where the ocean is unstratified, the southward wes-
tern-boundary transport Vw has no baroclinic structure. As it flows
across y2, Q heats the upper part (z > �hmin) of the flow to a tem-
perature T⁄ > Tn, forming a layer 1 of thickness hmin and setting
V1wðy2Þ ¼ ðhmin=DÞVwðy2Þ. From the definition of wc, it follows that

�
Z y2

y�
2

Ww dy0 ¼ �
Z y2

y�
2

Z xþw

xw

wc dy0 ¼ V1wðy2Þ ¼
hmin

D
Vwðy2Þ; ð17aÞ

a statement that water shallower than z = �hmin that flows south-
ward across y2 is instantly entrained into layer 1.

South of y2, the only component of w1 that impacts the western-
boundary layer is we, which is given by (10a) in the limit that
te ? 0. (In all our solutions, wd = 0 in the western-boundary layer
because h1 < hmax there.) Since hþwðyÞ � h1 xþw; y

� 	
P hmin, and

assuming that h1 varies monotonically across the boundary layer,
we – 0 only where hw attains its minimum value hmin and where
there is a net divergence of the layer-1 flow across the current.
The zonally-integrated continuity equation then gives

WwðyÞ ¼
DhðDÞhðy� �ywÞ; hw ¼ hmin;

0; hw > hmin;



y < y2; ð17bÞ
where DðyÞ ¼ V1wy þ Uþ1w. An additional factor of hðy� �ywÞ is in-
cluded in (17b). It ensures that Ww = 0 everywhere in the subtropics
ðy < �ywÞ. This neglect is consistent with our OGCM solutions, for
which there is never any western-boundary upwelling in the sub-
tropics. It is also required to avoid inaccuracies that result from
the closure discussed below.

As assumed in (17b), h1 does vary monotonically across the
western-boundary layer if the horizontal viscosity has the form
of Raleigh damping (Stommel, 1948). On the other hand, it does
not vary monotonically for Laplacian horizontal viscosity, since
the boundary-layer structure oscillates as well as decays offshore
(Munk, 1950). The minimum value of h1 still occurs at x = xw when
the boundary current has northward shear hw < hþw

� 	
, however, a

minimum also occurs offshore, at the longitude of the first over-
shooting, for southward shear hw > hþw

� 	
. Thus, (17b) neglects con-

tributions to Ww in the latter case. This error, however, is small
because of the Munk layer’s offshore decay.

A final western-boundary equation is required relating V1w to
hw, either to calculate hw when Ww = 0, or V1w when hw = hmin

and Ww – 0. To obtain that expression, we adopt the typical
boundary-layer assumption that the alongshore flow is geo-
strophic. The zonal pressure gradient is given by (14a), and a zonal
integration of the geostrophic balance in (8a) gives

V1wðyÞ ¼
g0

2f
hþ2

w � h2
w �

2
3D

hþ3
w � h3

w

� �� �
þ
Z xþw

xw

h1

D
Vw dx: ð18aÞ

(The across-current integral of sx is negligible in Eq. (18a) in the
limit that xþw ! xw.)

The last term in (18a) depends on the structure of the boundary
layer. Since we wish to avoid having to calculate that structure, a
closure is required. We chooseZ xþw

xw

h1

D
Vw dx ¼ hw

D
Vw: ð18bÞ

This simple closure is particularly accurate in regions where wes-
tern-boundary upwelling occurs (Ww > 0), that is in the subpolar re-
gion where either hþw ¼ hmin (in the center of the Subpolar Gyre) or
Vw � 0 (near the gyre boundary �yw; see Section 3.3). It is less accu-
rate in regions where hþw is large and h1 varies considerably across
the boundary layer (i.e., in the subtropics); because Ww = 0 there,
such that (18) is only used to calculate hw(y) (a result without inter-
est in our study), the closure’s accuracy is irrelevant in that region.2

To summarize, Eqs. (16)–(18) involve the quantities, hþw and
Uþ1w, which either are known from the interior solution or are spec-
ified externally in the region covered by Rossby waves emanating
from the western boundary. Thus, they provide a set of three inde-
pendent equations in the three unknowns, V1w;Ww, and hw. Sec-
tion 3.3 describes a numerical algorithm for obtaining a solution
to this set of equations. With V1w known, V2w ¼ Vw � V1w, to com-
plete the western-boundary solution.

2.3. Depth-dependent currents

2.3.1. Overview
The above discussion concerns the depth-integrated currents

within each layer. The layer-1 currents, however, vary with z, ow-
ing to the presence of the wind-driven Ekman layer and thermal-
wind shear. Because we neglect density advection, the depth-inte-
grated flow �v1 is independent of the z-dependent (shear) part,
our standard solution.
w
m
o
e
in
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vs ¼ v1 � �v1. Thus, including vs is not essential for obtaining solu-
tions. Nevertheless, obtaining the full, 3-dimensional flow field is
useful for discussing where water sinks in solutions, and it allows
VLOM solutions to be more closely compared to corresponding
OGCM experiments (see Schloesser, 2011; Schloesser et al., 2012).
2.3.2. Interior-ocean currents
In the interior ocean, where viscosity is negligible, the complete

v1 field is

u1 ¼
U1

h1
�

g0y
f

zþ h1

2

� �
; v1 ¼

V1

h1
� sx

f
dðzÞ � 1

h1

� �
; ð19aÞ

where the last terms in u1 and v1 are the shear parts of the thermal
wind and the infinitesimally thin Ekman layer, respectively. (The
depth-integrated parts of the thermal wind and Ekman flow are in-
cluded in U1 and V1.) With the aid of (19a), the vertical velocity
within the upper layer (z P �h1) follows from a z-integration of
the continuity equation and imposition of the boundary condition
that w = 0 at z = 0, yielding

w ¼ �
Z z

0
ðu1x þ v1yÞdz ¼ wek 1� hðzÞ þ z

h1

� �
�w1

z
h1
; z > �h1;

ð19bÞ

where wek � �(sx/f)y is the Ekman-pumping velocity and h(z) = 1 for
z P 0 and h(z) = 0 otherwise. Similarly, the complete v2 field is

u2 ¼
U2

h2
; v2 ¼

V2

h2
� sx

f
dðzÞ � 1

D

� �
hðy� y2Þ: ð19cÞ

The term proportional to h(y � y2) in (19c) reflects the property that
the wind acts in layer 2 north of y2 where there is no layer 1. The w
field in layer 2 is then

w ¼
Z z

�D
ðu2x þ v2yÞdz

¼ wek 1� hðzÞ þ z
D

h i
hðy� y2Þ þw1

zþ D
h2

hðy2 � yÞ; z 6 �h1;

ð19dÞ

the last term active only south of y2 where layer 1 exists, and the
first term north of y2, where layer 2 is directly forced by the
wind.

Along the eastern and western boundaries, u1 must vanish. The
depth-averaged flow �u1 ¼ U1=h1 is brought to zero by the dynam-
ical processes discussed in Section 3. Boundary layers are needed
to ensure that us = 0 as well, and water sinks or rises to close the
shear circulation within them (see Schloesser et al., 2012).
3. Standard solution

In this section, we derive and discuss our standard VLOM solu-
tion. It assumes that wd = 0 so that the only process that allows
water to detrain from layer 1 to layer 2 is wc, that is, detrainment
occurs only across the sidewall of layer 1 at y = y2. It also assumes
that y2 < y2w, which ensures that the Subpolar Gyre extends into
the region where the model consists of a single layer. We begin
with a description of the spin-up of the response (Section 3.1),
which serves both to provide an overview of the solution and to
highlight the underlying physics. Next, we obtain the steady-state
flow field in the interior ocean (Section 3.2) and along the western
boundary (Section 3.3). We conclude by discussing the impacts of
including the shear flow within layer 1 (Section 3.4).
3.1. Spin-up and overview

Let the initial state of the model be a state of rest with h1 = Hs

everywhere. Barotropic waves quickly adjust the depth-integrated
circulation to Sverdrup balance (12), which for forcing (7) consists
of Subtropical and Subpolar Gyres. Substituting (12) and (14) with
h1 = Hs into (8), gives the interior-ocean transports in each layer at
this adjustment stage,

U1 ¼ �
D� Hs

D
g0y
2f

H2
s �

Hs

D
sx

yy

b
ðxe � xÞ; V1 ¼ �

sx

f
þ Hs

D
f
b

wek; ð20aÞ

U2 ¼
D� Hs

D
g0y
2f

H2
s �

D� Hs

D
sx

yy

b
ðxe � xÞ; V2 ¼

D� Hs

D
f
b

wek: ð20bÞ

Note that Eqs. (20) include depth-integrated flows from three com-
ponents: the geostrophic part of the Sverdrup flow, thermal-wind
shear, and Ekman transport.

At the eastern boundary (x = xe), the wind-driven component of
U1 vanishes in (20), but the thermally-driven part (proportional to
g0y) does not. As a result, in the latitude band where g0y < 0

T�y < 0
� �

, the thermally-driven flow converges in layer 1 and di-
verges in layer 2 there, and h1 thickens. The thickening continues
until the passage of coastal Kelvin waves, which adjusts the east-
ern-boundary layer thickness h1(xe, y) to a profile he(y) in which
the depth-averaged, meridional pressure gradient hp1yi, and hence
U1(xe, y), vanish. With the aid of (14a), hp1yi = 0 implies that

g0h2
1

� �
y
¼ 0 since w = 0 at the eastern boundary. Together with

boundary condition (3), it follows that

heðyÞ ¼
Hs

g0s
g0

� �1=2
; y < y0;

D; y P y0;

8<: ð21Þ

where g0s ¼ g0ðysÞ. According to (21), he increases northward as g0 de-
creases, and y0 is the latitude where it first reaches the bottom; that
is, y0 is defined by g0ðy0Þ=g0s ¼ H2

s =D2 (see the top panels of Fig. 6 be-
low). Because Kelvin waves propagate so rapidly, this adjustment
happens within the first year of the spin-up. Note that since sx does
not affect hpiyi, (21) is the same as in solutions without wind forcing
(Schloesser et al., 2012).

In the interior ocean, Ekman pumping begins to thicken and
thin h1 in the subtropical and subpolar ocean, respectively. At the
same time, baroclinic Rossby waves propagate away from the east-
ern boundary. After their passage, h1 is adjusted to an equilibrium
state in which Ekman convergence and divergence is balanced by
geostrophic flow. These processes are described by

h1t þ cr � $h1 ¼ �
D� h1

D
wek þw1; ð22aÞ

with

cr ¼ cx
r ; c

y
r

� 	
¼ �b

D� h1

D
g0h1

f 2 þ
h2

1g0y
2Df

�
sx

yy

Db
ðxe � xÞ

" #
iþ 1

D
f
b

wek

� �
j; ð22bÞ

obtained by eliminating v1 in the inviscid version of (8). According
to (22a), baroclinic Rossby waves propagate boundary values of h1

into the interior ocean along characteristic curves, [xr(s), yr(s)], de-
fined by integrations of dxr=ds ¼ cx

r and dyr=ds ¼ cy
r (see Eq. (28) be-

low), and they are altered by wind forcing and mixing (the terms on
the right-hand side). For example, the eastern-coastal profile he(y) is
carried westward by Rossby waves along characteristics, thinning in
regions where wek > 0 (Subpolar Gyre) and thickening where wek < 0
(Subtropical Gyre). Note also that cr is not oriented due westward
because it is impacted by the forcing, both by wind (Young, 1981;
Luyten et al., 1983; Rhines, 1986) and T�y (Schloesser et al., 2012).
Fig. 2 plots characteristic curves for our standard run (black and
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white curves), and their deviation from westward orientation is
apparent.

For weak winds, h1 > hmin and eastern-boundary characteristics
fill the entire basin (Region A in Fig. 2 extends to the western
boundary). For sufficiently strong winds, however, these properties
break down: (1) h1 can thin to hmin in a western region of the sub-
polar ocean (Region B1 in Fig. 2); and (2) cx

r can become positive, so
that baroclinic Rossby waves propagate eastward, in a region
where the Sverdrup flow has an eastward component (sx

yy < 0;
west of the orange curve in Fig. 2). Because of (2), there is a region
in the domain that is filled by Rossby-wave characteristics that
emerge from the western boundary (Region B2 in Fig. 2). The nature
of the solution in Region B2 is fundamentally different from that in
Regions A and B1, which are determined by Rossby waves that
propagate from the eastern boundary; to put it another way, the
western-boundary layer, which otherwise passively closes the
interior circulation, now actively affects it. As we shall see, how-
ever, the impact of this cx

r reversal on the large-scale MOC is rela-
tively small in our solutions. It is not necessary that Region B2 lie
inside of Region B1. In the standard run, although most of Region
B2 does lie within Region B1, a tiny part, very near its southern
edge, lies outside (the red curve in Fig. 2 intersects the western
boundary south of the magenta curve; see the discussion at the
end of Section 3.2.2.1).

The final stage of the spin-up is the adjustment of the western-
boundary currents to the interior circulation. Because western-
boundary Kelvin waves propagate southward, they extend to the
southern boundary of the basin. Furthermore, since there is no
barotropic flow south of yw1 for our wind forcing, the two layer
transports balance there, with the layer-1 and layer-2 flows corre-
sponding to the MOC upper and deep branches, respectively. It is
worth noting that in related closed-basin solutions (Kawase,
1987; Schloesser et al., 2012) the spin-up is not complete at this
stage. In these solutions, hw(ys) is propagated to the eastern bound-
ary by Kelvin waves along the southern boundary (or the equator if
ys < 0) where it resets Hs. Consequently, several series of wave
reflections similar to the spin-up described above are required
for solutions to reach a steady state.
Fig. 2. Map of Rossby-wave characteristics and layer thickness h1 (shading) in the
VLOM standard solution with Hs = 250 m and so = 0.12 Nm�2. Black/white curves
delineate characteristics starting from the eastern boundary, and red curves those
from the western boundary layer. Also indicated are the eastern edge of Region B2

(x̂2ðyÞ; the easternmost red curve), curve x0(y) (orange), along which the zonal
Rossby-wave speed vanishes, and the eastern edge of Region B1; x̂1ðyÞ (magenta
curve). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
3.2. Interior ocean

As noted above, solutions to the steady-state version of (22a)
are complicated by the possible presence of Regions B1 and B2.
We proceed by first assuming that Region A exists everywhere in
the basin (i.e., w1 = 0 and cx

r < 0 everywhere). Then we modify
the solution west of curve x̂ðyÞ ¼ max½x̂1ðyÞ; x̂2ðyÞ�, where x̂1ðyÞ
and x̂2ðyÞ are the eastern edges of Regions B1 and B2, respectively.

3.2.1. Region A
There are two subregions within Region A where h2 – 0 (Region

A1) and h2 = 0 (Region A2), the two separated by the curve xD(y) de-
fined below. The solution in Region A2 is just the barotropic re-
sponse (12), with h1 determined by (13) after setting h2 = 0. For
typical model parameters, Region A2 exists only very near y2. In
the standard run, for example, it lies so close to y2 that it is not vis-
ible as a distinct area in Figs. 2 and 3 (darkest-red shading) and is
barely visible in the upper panels of Fig. 4, which provides a merid-
ionally expanded view of the solution.

The solution in Region A1 can be found numerically by integrat-
ing the steady-state version of (22a), subject to the eastern-bound-
ary condition that h1(xe, y) = he(y). On the other hand, it is possible
to obtain the solution analytically after first noting that potential-
vorticity conservation requires that v2 = 0 (Luyten et al., 1983).
Using the layer-2 equations in (8) with h2t = w1 = 0 and (14b),
one can show that

$
h2

f

� �
� $w2 ¼ 0; ð23Þ

where w2 is the layer-2 streamfunction (U2 = �w2y, V2 = w2x).
According to (23), streamlines of the layer-2 flow are parallel to
lines of constant h2/f. Furthermore, setting h1t = w1 = 0 in (22) and
using $h1 ¼ �$h2, it is straightforward to show that
cr � $ðh2=f Þ ¼ 0, a statement that h2/f is conserved along Rossby-
wave characteristics. Since the entire Region A is covered by east-
ern-boundary characteristics, all isolines of h2/f intersect the eastern
boundary in that region. Because there can be no flow through that
solid boundary, it follows that w2 = v2 = 0 everywhere in Region A.

Since the layer-2 flow is geostrophic in Region A1, v2 = 0 implies
that h$p2i ¼ 0 as well, and it follows from (14b) that

$
1
2

g0h2
1

� �
¼ sþ f$W ¼ �$

f 2

b
wekðxe � xÞ

� �
: ð24Þ

To determine h1 at a point (x, y) in Region A1, we integrate (24)
along any pathway within Region A1 that extends from (x, y) to
the eastern boundary (where h1 is known). A convenient path is
from (x, y) to (xe, ys), which gives

h1ðx; yÞ ¼
g0s
g0

H2
s �

2f 2

g0b
wekðxe � xÞ

� �1=2

; x 6 xDðyÞ: ð25Þ

It is useful to backsolve (25) to obtain lines of constant h1 = H in Re-
gion A1,

xHðy;HÞ ¼ xe �
g0sH

2
s � g0H2

2ðf 2=bÞwek
: ð26Þ

The boundary between Regions A1 and A2, xD(y), is given by (26)
with H = D.

An interesting feature of (26) along y = y2 is that all h1 contours
within the Subpolar Gyre converge to a single point [xH(y2, H), y2].
This curious property happens because (26) is independent of H
when y = y2 since g0(y2) = 0. Provided that so is strong enough or
Hs small enough (cc P 1 defined below), xH(y2, H) > 0 and lies with-
in the model domain. This property holds for the standard run, and
is visible in Fig. 2 by the convergence of all color shadings to the



Fig. 3. Maps of the layer thickness h1 (shading) and the horizontal transports/width v1 (arrows) in layer 1 (left panel), and the across-interface velocity w1 (shading) and
horizontal transports/width v2 (arrows) in layer 2 (right panel) in the VLOM standard solution with Hs = 250 m and so = 0.12 Nm�2. Detrainment wc(y2) < 0 is indicated as a
blue line to the east of x̂ðy2Þ, and entrainment wc(y2) > 0 as a red line farther to the west. Corresponding boundary current transports are shown in Fig. 5. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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point [x̂ðy2Þ; y2]. As a result, h1(y2) jumps from D at x > x̂ðy2Þ to hmin

at x < x̂ðy2Þ.
An expression similar to (26) holds for the characteristic curves

in Region A1. Recall that h2/f is conserved along characteristics. It
follows that

q � D� h1

f
¼ D� heðYÞ

f ðYÞ ; ð27Þ

for the characteristic that emerges from the eastern boundary at lat-
itude y = Y. Using (27) to eliminate H from (26) yields the curve,

xYðy;YÞ ¼ xe �
g0sH

2
s

2ðf 2=bÞwek

þ g0

2ðf 2=bÞwek
D� f

f ðYÞ D� heðYÞ½ �

 �2

; ð28Þ

for that characteristic. Generally, xH(y, H) and xY(y, Y) are not the
same curve, as is evident in Fig. 2, the only exception occurring
when H = D and Y = y0. (Recall that y0 is the latitude where he = D oc-
curs first; thus, curve xY(Y = y0) defines the boundary between Re-
gions A1 and A2).

According to (28), all characteristic curves intersect y2 at the
same focal point as for h1 contours. In Fig. 2, however, many of
them are not able to do so because they first intersect Region B1

south of y2. Inequality

D� heðYÞ
f ðYÞ <

D� hmin

f ðy2Þ
; ð29Þ

provides a necessary condition for characteristic xY(x, Y) to intersect
the focal point. Since q is constant along xY(x, Y), (29) ensures that
h1 > hmin everywhere along its path, and hence it remains within Re-
gion A south of y2.

With h1 known everywhere in Region A, the layer-1 flow v1 can
be determined from (8a) and (14a). Since the depth-integrated
flow is the Sverdrup circulation (12) and v2 = 0, v1 is just (12),
i.e., the Sverdrup flow is contained entirely within layer 1. Fig. 3
plots the Region-A flow field, and the Sverdrup Gyres are apparent
in layer 1 (left panel).

Since V1(y2) > 0 within the Subpolar Gyre, layer-1 water flows
northward across y2. It is cooled to Tn as it does, and hence detrains
into layer 2 at the rate
wcðx; y2Þ ¼ �V1ðy2Þ ¼ �
sx

y

b
; x P x̂: ð30Þ

This detrainment is apparent in Fig. 3 in that the layer-1 Sverdrup
flow shifts to layer 2 north of y2. Thus, flow within the Subpolar
Gyre provides another mechanism (other than Rossby-wave damp-
ing when wd – 0; see Section 4) for the convergence of the MOC
surface branch into the northern ocean.

3.2.2. Region B
Although the dynamics that determine the responses in Re-

gions B1 and B2 are distinctly different, the solutions in each re-
gion have a similar structure; moreover, we adopt an
approximation for the Region-B2 solution that ensures they are
the same (see below). It is therefore useful to define the entire
area covered by Regions B1 and B2 to be Region B (i.e.,
B = B1 [ B2), such that x̂ðyÞ refers to its eastern edge. In addition,
we define latitudes ŷs and ŷn to be the southernmost and north-
ernmost latitudes of Region B.

3.2.2.1. Region B1. In the subpolar ocean, Ekman suction (wek > 0)
thins h1 away from the eastern boundary. Depending on the
strength of the winds and the value of Hs, h1 may reach its min-
imum thickness hmin along curve x̂1ðyÞ in the interior ocean. In
that case, w1 = we ensures that h1 = hmin west of x̂1 by transfer-
ring mass from layer 2 to layer 1, thereby establishing Region
B1. When Region B1 exists, x̂1ðyÞ is defined by (26) with H = hmin,
that is,

x̂1ðyÞ ¼ xe �
g0sH

2
s � g0h2

min

2ðf 2=bÞwek
: ð31Þ

For the standard run, Region B1 extends meridionally from latitude
y = 36.8�N to ŷn ¼ y2 (Fig. 2, the region west of the magenta curve).

Region B1 exists only if x̂1ðyÞ > xþw for some y, and since
g0sH

2
s > g0h2

min and wek > 0, (31) implies that Hs must be sufficiently
small or wek sufficiently large. By differentiating x̂1 with respect to
y, it is straightforward to show that the maximum value of x̂1ðyÞ
occurs in the Subpolar Gyre at a latitude y = yb somewhat south
of the latitude where sx

yy ¼ 0, and for the standard run
yb = 44.5�N. Eq. (31) implies that Region B1 exists (x̂1 > xe) only if
Hs < Hb, where



Fig. 4. Maps providing a meridionally enlarged view of upper-layer thickness h1 (shading and white contours) and layer-1 transports v1 (arrows) in the left panels and across-
interface velocity w1 (shading) and layer-2 transports v2 (arrows) in the right panels. Each row corresponds to a different solution. The standard solution is presented in the
top panels. The other solutions shown differ from the standard run by having wd – 0 (upper-middle panels), so = 0.07 N/m2 (lower-middle panels), and so = 0 (bottom panels).
Gray curves indicate the either the southern edge of Region A2 (top panels) or Region N (all other panels). The green curve in the lower-middle right panel marks the
characteristic ~xY ðyÞ as defined in Section 5.1.2. Magenta curves show the boundary between Regions A and B, x̂ðyÞ. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Hb ¼
g0

g0s
h2

min þ
2f 2

g0sb
wekðxe � xþwÞ

� �1=2

; y ¼ yb: ð32Þ

The dimensionless parameter,

cb ¼
H2

b

H2
s

; ð33Þ

then indicates whether an outcropping of the deep layer does
(cb > 1) or does not occur (cb 6 1).

Solutions also change their properties depending on whether
the northern edge of Region B1 intersects the western or northern
boundary. The value of Hs at which x̂1 intersects the corner point
(xþw; y2), found by setting x̂1 ¼ xþw and g0(y2) = 0 in (31), is

Hc ¼
2f 2

g0sb
wekðxe � xþwÞ

� �1=2

; y ¼ y2: ð34Þ
The dimensionless parameter,

cc ¼
H2

c

H2
s

; ð35Þ

then determines whether h1 contours intersect the western bound-
ary (cc 6 1) or latitude y2(cc > 1). As illustrated for the standard run
in Fig. 2 (magenta curve) and in Fig. 4 (top panel; magenta curve),
cc > 1 and x̂1ðy2Þ ¼ 12:8
.

3.2.2.2. Region B2. Provided the wind is sufficiently strong, there is
also a region in the basin filled by Rossby waves that emerge from
the western boundary (Region B2). The Region-A and Region-B1

solutions are not valid there because they are determined by
applying the eastern-boundary condition, h1(xe) = he. To obtain
the Region-B2 solution, hþw must be specified in the latitude band
where Rossby waves propagate away from the western boundary.
Let ~hþw designate the values of hþw in that band.
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Because we do not resolve the structure of the western-bound-
ary layer, it is not possible to determine ~hþw from dynamical princi-
ples alone, and so we set ~hþw ¼ hmin. This choice is sensible for
several reasons. First, since cx

r xþw
� 	

must be eastward in the band,
the terms in square brackets in (22b) must be positive at the wes-
tern boundary, which, for the parameters and forcings in the stan-
dard run, requires that ~hþ1 < 134 m � hmin. Second, even if
~hþ1 J hmin, Ekman pumping will rapidly ensure that h1 thins to hmin

in the interior ocean. Finally, a region corresponding to Region B2 is
present in the OGCM solutions and it has ~hþw � hmin (Fig. 10).

With this choice for ~hþw, (22a) implies that h1 = hmin throughout
Region B2: Rossby waves carry ~hþw ¼ hmin eastward and northward
(assuming that Region B2 lies within the Subpolar Gyre) and h1 is
maintained at hmin by the forcing terms. When Region B2 extends
south of Region B1 (as is the case for a tiny part of Region B2 in
our standard run), part of the southern boundary of Region B is
determined by Region B2. In this case, characteristics emerging
from the western boundary intersect those from the eastern
boundary, and their intersection defines the boundary curve x̂2ðyÞ
between Regions A and B2. Furthermore, because the western-
and eastern-boundary characteristics are associated with different
values of h1, h1 jumps across x̂2ðyÞ to form a sharp front (shock).

We use the steady-state version of (22) to derive an equation for
x̂2ðyÞ. (See Dewar, 1991; Dewar et al., 2005, for discussions of sim-
ilar ‘‘shock’’ solutions.) Since j$h1j ! 1 across the front, and all
other variables are continuous in (22a), the highest-order balance
along x̂2ðyÞ is cr � $h1 ¼ 0, which can be rewritten

�
sx

yy

Db
ðxe�xÞh1x�

bg0

f 2 h2
1

� �
x
þ bg0

3Df 2 h3
1

� �
x
þ

g0y
6Df

h3
1

� �
x
þ f

Db
wek

� �
h1y ¼0:

ð36Þ

We integrate (36) over the area of a box with the corners
½x̂2ðyÞ; y�; ½x̂2ðyÞ; yþ Dy�; ½x̂2ðyþ DyÞ; yþ Dy�, and ½x̂2ðyþ DyÞ; y�, which
extends on either side of the front. In the limit that Dy is small, the
coefficients of the h1 terms are constant over the box, and the inte-
gral gives

x̂2y ¼ lim
Dy!0

Dx̂2

Dy
¼ �

sx
yy

Db
ðxe � xÞ � bg0

2f 2 ðhA þ hminÞ þ
bg0

3Df 2 þ
g0y

6Df

 !"

h2
A þ hAhmin þ h2

min

� �# f
Db

wek

� ��1

; ð37Þ

where Dx̂2 � x̂2ðyþ DyÞ � x̂2ðyÞ and hA � h1½x̂2ðyÞ; y� is the value of
h1 on the eastern flank of the front. Eq. (37) can be integrated from
the southwestern edge of Region B2, ðxþw; ŷsÞ, to obtain x̂2ðyÞ. Note
that the right-hand side of (37) goes to cx

r=cy
r as hA ? hmin; therefore,

(37) also defines x̂2ðyÞ when Region B2 lies within Region B1.
To illustrate the above ideas, Fig. 2 plots the curve x0(y) where

cx
r ¼ 0, obtained by setting the term in square brackets in (22b)

to zero and backsolving for x = x0(y) (orange curve). West of
x0ðyÞ; gcx

r > 0 and hence the slope of characteristics is positive
(white and red curves in Fig. 2). The latitude band where Rossby
waves emerge from the western boundary lies between the two
intersections of x0(y) with the western boundary. The thick red
curve extending from the point (xþw; ŷs ¼ 36:6
N) indicates x̂2ðyÞ
in Fig. 2; a shock exists only very near the western boundary,
where the red curve extends south of the magenta one.

3.2.2.3. Currents. Since h1 = hmin throughout Region B, the layer-1
flow there is given by the inviscid versions of (8a) with h1 = hmin,

U1 ¼ �
D� hmin

D
g0y
2f

h2
min �

hmin

D
sx

yy

b
ðxe � xÞ; x < x̂; ð38aÞ

V1 ¼ �
sx

f
þ hmin

D
f
b

wek; x < x̂: ð38bÞ
The layer-2 flow is non-zero, so that the total transport still adds
up to the Sverdrup transport (12). The layer-2 circulation in Re-
gion B is apparent in Fig. 3 (arrows). The layer-1 flow, however,
is too weak to be visible: It is dominated by weak southward Ek-
man drift, and the other contributions to (38) are small due to the
factor hmin/D.

For completeness, we note that if part of the southern boundary
of Region B is determined by Region B2 rather than B1 (i.e., x̂2 > x̂1),
a northeastward boundary current exists along x̂2ðyÞ there (A sim-
ilar boundary current is also described by Parsons, 1969). It exists
because of the shock in layer thickness, in which h1 = hmin north of
x̂2ðyÞ and is given by (25) south of it. Assuming that the along-
boundary current is geostrophic, its transport is given by

VB ¼
g0

2f
h2

A � h2
min �

2
3D

h3
A � h3

min

� �� �
: ð39Þ

Eq. (39) is derived by integrating (8a) across the jump in h1, e.g.,
from x̂2 � Dx to x̂2 þ Dx and then taking the limit Dx ? 0. In the
standard run, this current only exists very near the western bound-
ary, where the red curve in Fig. 2 extends south of the magenta one.

There is upwelling throughout Region B. Substitution of (38)
into the continuity equation gives the entrainment velocity

w1 ¼ we ¼ �
D� hmin

D
sx

f

� �
y

¼ D� hmin

D
wek; ð40Þ

which is essentially Ekman suction since hmin	 D. When cc > 1, as
in the standard run, there is also entrainment in Region B1 across
the sidewall of layer 1 at y = y2. Specifically, as layer-2 water moves
southward across y2, it entrains into the newly formed layer 1 at the
rate,

wcðy2Þ ¼ �V1ðy2Þ ¼
sx

f
� hmin

D
f 2

b
wek; x < x̂ðy2Þ: ð41Þ

It is slightly less than the southward Ekman transport, as it is partly
compensated by the northward, geostrophic gyre transport con-
tained in the upper layer.

As reviewed in Section 1, entrainment similar to (40) also oc-
curs in the solutions of Nonaka et al. (2006). It does not occur in
the Huang (1986) and Huang and Flierl (1987) solutions because
they do not allow for an exchange of mass between the layers;
as a result, the upper layer entirely vanishes in Region B, thereby
requiring a boundary current to conserve mass. Entrainment corre-
sponding to (41) does not occur in any of the aforementioned stud-
ies models, because they do not have a northern region where the
layer structure consists of a single layer.

3.3. Western boundary

The western-boundary solution is obtained by integrating Eqs.
(16)-(18), starting in the north at y2, and proceeding southward
in the direction of Kelvin-wave propagation. First, the solution in
the subpolar ocean ð�yw 6 y 6 y2Þ is obtained numerically on a lat-
itudinal grid, Yi = y2 � (i � 1)Dy, i = 1, 2, 3, . . ., with Y1 = y2.

Evaluating (16) at Yi and Yi�1, subtracting the two expressions,
and writing integrals in finite-difference form gives

V1wðYiÞ ¼ V1wðYi�1Þ �Ww Yi�1
2

� �
Dyþ Uþ1w Yi�1

2

� �
Dy; i P 2;

ð42Þ

where Yi�1
2
¼ Yi � Dy=2. Flow Uþ1w is given either by U in (12) in Re-

gion A or by (38a) in Region B, both evaluated at x ¼ xþw. The solu-
tion to (42) requires that V1w Y1ð Þ ¼ V1wðy2Þ is known, and it is
given in (17a).

It remains to evaluate WwðYi�1
2
Þ at each point in the integration.

In a first step, we set Ww = 0 in (42) to calculate a preliminary
boundary-current transport, V01wðYiÞ. In a second step, we set hw = -
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hmin in Eqs. (18) to calculate a second test-transport, ~V1wðYiÞ. Be-
cause V1w increases as hw decreases (see Eq. (18)) and entrainment
ensures that hw P hmin, it follows that ~V1wðYiÞ is the upper limit for
the boundary-current transport (i.e., V1w 6

~V1wÞ. Therefore, if

V01w > ~V1w, (42) cannot be satisfied with Ww Yi�1
2

� �
¼ 0, and so we

set hw ¼ hmin;V1wðYiÞ ¼ ~V1wðYiÞ, and calculate Ww Yi�1
2

� �
from

(42). Conversely, if V01w 6
~V1w, we set

V1wðYiÞ ¼ V01wðYiÞ; Ww Yi�1
2

� �
¼ 0, and, if desired, solve (18) for hw.

With V1wð�ywÞ known, and since there is by assumption no wes-
tern-boundary upwelling in the subtropics (Ww = 0 at y < �yw),
transports at y < �yw are obtained directly by integrating the
layer-1 continuity equation from xw to xþw and from y to �yw,

V1wðyÞ ¼ V1wð�ywÞ �
Z �yw

y
Uþ1wdy

¼ V1wð�ywÞ �
1
b
sx

yðxe � xwÞ; y < �yw: ð43aÞ

In deriving (43a), we use the properties that the interior flow field is
in Sverdrup balance and contained entirely in layer 1 so that
Uþ1w ¼ �Wy (see the discussion after Eq. (23)) and the property that
Wðx; �ywÞ ¼ 0. A similar integral of the layer-2 continuity equation
gives

V2wðyÞ ¼ V2wð�ywÞ ¼ �V1wð�ywÞ; y < �yw; ð43bÞ

the latter statement following from the fact that
V1wð�ywÞ þ V2wð�ywÞ ¼ Vð�ywÞ ¼ 0 by (15). According to (43), layer 1
contains all of the wind-driven, western-boundary current as well
as the constant MOC upper branch V1wð�ywÞ, and layer 2 contains
the MOC lower branch that balances V1wð�ywÞ.

Fig. 5 plots the resulting profiles of V1w;Vw from (15), and
V2w ¼ Vw � V1w for the standard run; it also plots the cumulative
western-boundary entrainment from the northern boundary,
Ww ¼

R y2
y Wwdy, with Wwðy2Þ ¼ �V1wðy2Þ being the entrainment

across the sidewall of layer 1 due to wc. As discussed next, proper-
ties of the western-boundary transports change in the intervals,
ŷs < y 6 y2; �yw < y < ŷs, and y < �yw.

Since Region B extends from ŷs to y2 in the standard run,
hþw ¼ hmin and Uþ1w is given by (38a) in that interval. It is then
Fig. 5. Meridional profiles of western-boundary-current transports in layer 1 V1w

(red curve) and layer 2 V2w (blue curve) in the VLOM standard solution with
Hs = 250 m and so = 0.12 Nm�2 (The interior solution is shown in Fig. 3). Also shown
are the barotropic boundary-current transport Vw (black curve), and the western-
boundary entrainment integrated southward from y2; Ww (cyan curve). The unit is
Sv. The dotted lines indicate the latitudes �yw; ŷs and ŷn . (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
straightforward to show that V01w P ~V1w throughout the interval.
Consequently, hw = hmin,

V1w ¼ ~V1w ¼ �
hmin

D
sx

y

b
ðxe � xwÞ; ŷs 6 y 6 y2; ð44aÞ

and

Ww ¼ ~V1wy þ Uþ1w ¼ �
D� hmin

D
g0y
2f

h2
min; ŷs 6 y < y2: ð44bÞ

Because hw ¼ hþw, the meridional current does not have a baroclinic
structure (i.e., depth-averaged meridional velocities are the same in
layers 1 and 2); thus, the layer-2 transport is much larger than the
layer-1 transport because h1	 h2 (compare red, blue, and black
curves north of ŷs). Entrainment Ww increases to the south since
Ww – 0 (cyan curve in Fig. 5).

In the interval from �yw to ŷs; hþw is given by (25) and is deeper
than hmin. Consequently, the baroclinic term in square brackets in
(18) is positive. It is strong enough to reverse the weak southward
flow from the last term, so that V1w > 0 (red curve in Fig. 5). This
northward transport provides an additional source (other than
Ww) to feed the eastward interior flow given by (12). In the stan-
dard solution, however, it is still too weak to eliminate the need
for upwelling (i.e., D is large in Eq. (17b)), and so hw = hmin through-
out the Subpolar Gyre. In addition, the upwelling in the interval is
even stronger than it is farther to the north (the slope of the cyan
curve is steeper than farther north), because the offshore, upper-
layer transport, Uþ1w, is larger in D.

South of �yw, transports are determined by (43). Accordingly, Ww

and V2w remain constant, and V1w has a recirculation part of the
Subtropical Gyre on top of the constant MOC part.

3.4. Shear flow

The total velocity field within layer 1 is given by (19), and con-
sists of depth-averaged and shear parts. Just offshore from the
eastern boundary, h1 = he(y), ensuring that the depth-averaged
component of u1 vanishes. The shear flow of u1 remains, however,
consisting of eastward (westward) flow in the upper (lower) part of
layer 1 in the region where T�y – 0 (upper-left panel of Fig. 6). Right
at the eastern boundary, that circulation is closed in a horizontal
Ekman layer, where water sinks (upper-right panel of Fig. 6; see
Schloesser et al., 2012). The maximum sinking transport/width at
the eastern boundary occurs at a depth of z0 = �he/2, which by con-
tinuity is

WeðyÞ �
Z xe

x�e

wðx; y; z0Þ dx ¼ �
Z 0

�he=2
u1ðx�e ; y; zÞ dz ¼

g0y
8f

h2
e ; ð45Þ

where x�e ¼ xe � Dx is a longitude just west of the eastern-boundary
layer. Downwelling (45) corresponds to the eastern-boundary sink-
ing found in the OGCM solutions of Spall and Pickart (2001); how-
ever, in our model it occurs isothermally and is not related to
diapycnal overturning.

In the interior ocean, a consequence of the thermal-wind shear
is that layer-1 currents are surface (bottom) intensified in regions
of eastward (westward) Sverdrup flow (bottom-left panel of Fig. 6).
South of 30�N, there is no shear flow since g0y ¼ 0. From 30 to 42�N,
the depth-averaged flow is eastward, the shear flow has about the
same strength, and hence the eastward flow is surface intensified.
North of 47�N, where h1 is thick, the depth-averaged flow is weak
but the shear flow is large; as a result, velocities are eastward in
the upper part of the layer, even though the Sverdrup transport
is westward. From 42 to 47�N, the section intersects Region B, so
that h1 = hmin and both zonal-velocity components are small: the
Sverdrup part because it is distributed over the entire water col-
umn, and the shear part because the upper layer is thin.
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Fig. 6. Meridional sections of depth-dependent, zonal velocities (shading, left panels) and vertical transports/velocities (shading, right panels) at the eastern boundary (upper
panels), and at x = 20�E (lower panels), for the VLOM standard solution with Hs = 250 m, so = 0.12 N/m2, hmin = 100 m, D = 4000 m and wd = 0. The thick, black curve indicates
the layer interface, and thin contours correspond to isotherms.

F. Schloesser et al. / Progress in Oceanography 120 (2014) 154–176 165
Vertical motion w in the interior ocean is given by (19b) and
(19d). In Region A, w is confined to layer 1 since w1 = 0, and its
direction is determined by the sign of the Ekman pumping wek

(bottom-right panel of Fig. 6). In Region B (42�N [ y [ 47�N in
Fig. 6) and to the north of y2 (>50�N), w and wek extend to the ocean
bottom. Note that interior sinking is confined to the upper ocean in
the Subtropical Gyre; deep sinking of cold water occurs only near
the eastern boundary, where it is given by (45).
4. Solution with wd 6¼ 0

The standard run illustrates how northward flow in the Subpo-
lar Gyre can generate the surface convergence needed to establish
the MOC descending branch. In OGCMs, however, mixing tends to
restratify the water column in the northern ocean, providing an-
other process for generating MOC downwelling (Schloesser et al.,
2012). Here, we extend the solution obtained in Section 3 to in-
clude that process by allowing wd – 0. In this case, solutions have
a northern-boundary layer (Region N) just south of y2 where
he(y) > hmax, and wd relaxes h1 back to hmax there. Because h1 < hmax

everywhere outside Region N, the solution of Section 3 is
unchanged in Regions A and B. In the following, then, we obtain
the solution in Region N and determine its influence on the
western-boundary currents.

The analytic solution obtained here requires that td ? 0 in wd.
As a result, all detrainment is confined to an eastern-boundary
layer, and w1 = wd = 0 in the interior of Region N. When td is finite,
the eastern-boundary layer broadens into the interior of Region N,
the two regions are no longer dynamically distinct, and the solu-
tion must be obtained by numerical integration. For our purposes,
the td ? 0 restriction is reasonable because we are interested in
understanding the impact of wd on the large-scale MOC, which
does not change appreciably provided that td is short compared
to the time it takes Rossby waves to cross the basin.
4.1. Definitions

Region N lies north of the characteristic curve, y00(x), that extends
from the point xe; y00e

� 	
, where y00e is the latitude at which he first

deepens to hmax. Since y00(x) lies on the edge of Region A, (28) holds
so that y00(x) is the inverse function of xY(y, Y) with Y ¼ y00e . The
upper-middle panels in Fig. 4 show the wd – 0 solution that uses
the standard-run parameters and forcing and with hmax = 750 m
in a meridionally expanded view. With these parameter choices,
characteristic y00(x) (gray curve) satisfies (29) and so extends from
ðxe; y00eÞ to the focal point [x̂ðy2Þ; y2]. For smaller values of so or larger
values of Hs (so that cc < 1), the characteristic intersects the western
boundary at y00ðxwÞ � y00w (lower-middle panels of Fig. 4), and when
so = 0 the southern boundary is flat, that is, y00ðxÞ ¼ y00e (bottom pan-
els of Fig. 4); in these cases, Region N has a western edge just out-
side the western-boundary layer at x ¼ xþw. 3
4.2. Eastern-boundary layer

The inclusion of wd generates an eastern-boundary layer in Re-
gion N. Because td ? 0 in (10b), wd causes h1 to jump from he at
x = xe to hmax just offshore at x ¼ x�e . As a result, there is a geo-
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strophic current along the eastern boundary with the upper-layer
transport

V1eðyÞ �
Z xe

x�e

hp1xi
f

dx ¼ g0

Df
D
2
ðh2

e � h2
maxÞ �

1
3
ðh3

e � h3
maxÞ

� �
; ð46aÞ

where contributions from the sx and w integrals vanish in the limit
that x�e ! xe. Note that V1eðy00eÞ ¼ V1eðy2Þ ¼ 0 since heðy00eÞ ¼ hmax and
g0(y2) = 0, so that there is no flow across the meridional boundaries
of Region N. There is also a zonal transport into the coast given by

U1ðx�e ; yÞ ¼ �U2ðx�e ; yÞ ¼ �
D� hmax

2Df
g0yh2

max: ð46bÞ

This convergence and the corresponding eastern-boundary detrain-
ment by wd are evident in all solutions with wd – 0 in Fig. 4. Be-
cause Eqs. (46) do not depend on the wind forcing, the eastern-
boundary circulation is identical in all three cases shown; it is also
the same in the solutions of Schloesser et al. (2012).

4.3. Interior-ocean response

As in Region A, the response in the interior of Region N is de-
scribed by (22a) with w1 = 0. Because U2ðx�e ; yÞ – 0, however, the
property that v2 = 0 no longer holds and so (24) is not valid. To ob-
tain a solution, we rewrite (23) as qðx; yÞ ¼ Qðw2Þ. It follows that
$qðx; yÞ ¼ Qw2

$w2 and, since Q depends only on w2 (not explicitly
on x or y), along layer-2 streamlines Qw2 ¼ a where a is a constant.
As noted just below (23), when w1 = 0 characteristic curves are
parallel to isolines of q and hence to layer-2 streamlines. Therefore,
along any characteristic curve in Region N, both w2x/qx = V2/qx = a
and w2y/qy = �U2/qy = a hold, and we can write

V2½xrðyÞ; y�
qx½xrðyÞ; y�

¼ �
U2 x�e ; yr x�e

� 	� 
qy x�e ; yr x�e

� 	�  ; ð47Þ

where the characteristic is designated by yr(x) or its inverse xr(y).
To obtain an expression that can be zonally integrated along a

latitude circle, we rewrite the right-hand side of (47) in terms of
variables evaluated at y rather than yrðx�e Þ. Since U2 x�e ; yr x�e

� 	� 
is

given by (46b), and definition (27) implies that

qy x�e ; yr x�e
� 	� 

¼ �
b½yr x�e

� 	
�

f 2 yr x�e
� 	�  ðD� hmaxÞ; ð48Þ

the only latitude-dependent variables that need to be replaced in
(47) are f and b. Using (27), and the property that q is constant along
characteristics, we have

f yr x�e
� 	� 

¼ f ðyÞðD� hmaxÞ
h2½xrðyÞ; y�

: ð49Þ

Variables f and b are related by the identity, f2 + (Reb)2 = 4X2, where
Re is the radius of the earth and X = 2p day�1. With the aid of (49),
that identity can be rewritten

b½yr x�e
� 	
� ¼ f D� hmaxð Þ

Reh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2h2

2 � 1
q

;

a�1 � ðD� hmaxÞ sin
y
Re

� �
; ð50Þ

where h2, f, and a are evaluated at [xr(y), y]. Setting V2 = hp2xi/f, qx = -
h2x/f, and using (46b), (48), (49) and (50), and the approximation
h1x � �h2x (which is consistent with the level of approximation
in our baroclinic equations), (47) can be rewritten

g0ðD� h2Þh2

D
þ h2

D
f 2

b
wek

h2x
¼

g0yh2
max

2D
Reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2h2
2 � 1

q ; ð51Þ
with both sides of (51) now evaluated at the point [xr(y), y]. Since
xr(y) corresponds to any characteristic curve that intersects y within
Region N, (51) holds for all x and y therein, and we can set xr(y) = x.

After some reorganization, we zonally integrate (51) using
the boundary condition h2 x�e

� 	
¼ D� hmax, the identity

h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2h2

2 � 1
q� ��1

h2x ¼ �½sin�1 ðah2Þ�1�x, and the definition of a

rewritten as y/Re = sin�1[a�1(D � hmax)�1]. With the replacement
h1 = D � h2, the result is

h1 ¼ D�
ðD� hmaxÞ sin y

Re

sin
y
Re
þ

2ðf 2=bÞwek x�e � x
� 	

g0yReh2
max

� g0

g0yRe

h2
max � h2

1

h2
max

" # ; ð52Þ

an implicit equation for h1(x, y) that can be readily solved numeri-
cally. Note that because sin (y/Re) = f(y)/(2X), (52) is essentially a
statement of PV-conservation along characteristics in layer 2, anal-
ogous to (27) in Region A, with the argument of the denominator in
(52) giving the latitude where the characteristic intersects with
x ¼ x�e . Furthermore, when evaluated along y = y2 (52) simplifies to

h1 ¼ D�
ðD� hmaxÞ sin y

Re

sin
y
Re
þ 2ðf 2=bÞwekðx�e � xÞ

g0yReh2
max

" # ; y ¼ y2; ð53Þ

since g0(y2) = 0, an explicit expression for h1(x, y2) since the right-
hand side no longer involves h1. With h1 known everywhere in Re-
gion N, so are the transports.

A noteworthy feature of the solutions in Fig. 4 is that h1 does not
vary much throughout Region N (the interval between white con-
tours in the left-middle panels is only 10m). The small meridional
change is understandable since Region N is so narrow. The small
zonal variation is particularly interesting (counterintuitive), given
that in a 11

2-layer model the zonal slope would be much larger
(the same as in Region A). It happens because of (47), the con-
straint that PV is conserved in layer 2; this constraint is not consid-
ered in a 11

2-layer model, which neglects layer-2 flow altogether.

4.4. Western boundary

In solutions where Region N has no western edge (cc > 1), Uþ1w is
unchanged from the standard run, and so allowing wd – 0 does not
affect the western-boundary response at all. If Region N has a wes-
tern edge (cc < 1), the transport/width across xþw is

Uþ1w ¼ �
D� hþw

D

g0hþ2
w

� �
y

2f
� hþw

D
sx

yy

b
ðxe � xþwÞ; y00w 6 y 6 y2; ð54Þ

where hþw is given by (52) with x ¼ xþw. The western-boundary solu-
tion is then obtained using the same procedure as in Section 3.3.
Note that because the western-boundary response is obtained by
integrating southward from y = y2, the western-boundary current
is impacted everywhere along the boundary, even though Uþ1w differs
from the standard run only north of y00w. As discussed in Section 5,
the impact on the western-boundary transport can be significant.

5. Overturning transports

We define the transport M of the large-scale MOC to be the
aggregate of all across-interface transports in the subpolar ocean,

M �Mn �Min �Ww ¼ � Wd þW�
c

� 	
� Wb þWþ

c

� 	
�Ww: ð55Þ

Transport Wd is the detrainment in Region N due to
wd;Wb ¼

R
B wedA is the area integral of (40) over Region B, and

Ww ¼
R y2

�yw
Wwdy is the entrainment in the western-boundary layer

determined as described in Section 3.3. Transports
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W�
c ¼

R xe

xþw
wc hð�wcÞdx are the interior entrainment and detrain-

ment transports across the sidewall of layer 1 at y = y2, which occur
west and east of x̂ðy2Þ, respectively.

The total detrainment Mn ¼ � Wd þW�
c

� 	
and entrainment

Min ¼Wb þWþ
c terms are of interest in themselves. Transport

Mn is the net formation of deep water in the northern ocean.
Transport Min is the net entrainment of deep water into layer 1
in the interior of the northern ocean. Together, Min and Ww pro-
vide an overturning ‘‘shortcut’’ for the MOC, so that M is less than
Mn.
Fig. 7. Profiles of MOC transports as a function of so for the VLOM standard run
(wd = 0) and the corresponding solution with wd – 0, showing M (solid/dashed
black line), Mn (solid/dashed blue curve), U2w for the wd – 0 solution (cyan curve),
Min (red curve) and Ww (solid/dashed magenta line). Curves for the wd – 0 run are
solid everywhere. Curves for the standard solution are the dashed, except in the
regions where the transports are the same as in the wd – 0 solution and curves are
solid. The unit of all transports is SV. In the wd – 0 solution, Hs = 250 m and
hmax = 750 m. The critical wind strengths sa, sb and sc are indicated by vertical,
dotted lines; the smaller one of the two sa corresponds to the solutions with wd – 0.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
5.1. Detrainment Mn

5.1.1. wd = 0 case
When wd = 0, wc is given by (30) and

Mn ¼ �W�
c ¼ �

Z xe

x̂
wc dx ¼ �

sx
y

b
ðxe � x̂Þ; y ¼ y2; ð56Þ

that is, it is the Sverdrup transport across y2 east of x̂ðy2Þ. When
cc 6 1, we define x̂ðy2Þ ¼ xþw for notational convenience and the inte-
gral extends over the entire basin so that

Mn ¼ �
sx

y

b
ðxe � xþwÞ; y ¼ y2; cc 6 1: ð57aÞ

When cc > 1, (26) with y = y2 can be used to eliminate ðxe � x̂Þ to get

Mn ¼
g0s
2f

H2
s Cs; with Cs �

�sx
y=b

sx=f � sx
y=b

; y¼ y2; cc > 1: ð57bÞ

Therefore, Mn is proportional to the wind amplitude so when cc 6 1,
but is independent of it when cc > 1 because wind terms appear in
both the numerator and denominator of Cs in (57b). Expressed in
physical terms, the independence happens when cc > 1, because
an intensification of the Sverdrup transport across y2 due to an in-
crease in so is exactly compensated by a decrease in the length,
xe � x̂ðy2Þ, over which it occurs.

Fig. 7 plots Mn as function of so for the standard run (wd = 0,
blue curve). Its form changes markedly at a critical wind ampli-
tude, sc = 0.082 N/m2, the value of so where cc = 1. Consistent with
Eqs. (57), Mn increases linearly with so for so < sc, whereas it is
constant for so > sc.

Fig. 8 (top panel) illustrates the dependence of Mn on both Hs

and so when wd = 0, plotting MnðHsÞ in solutions for four values
of so. From its definition in (35), it follows that cc > 1 when Hs < Hc.
In that range, then, MnðHsÞ satisifies (57b), and so is independent
of so and grows parabolically with Hs. When Hs P Hc;MnðHsÞ sat-
isfies (57a), and remains constant for Hs P Hc (dashed curves). (The
property holds for the so = 0 solution as well, except that Mn ¼ 0 is
the maximum value in that case.) The maximum value of Mn and
critical layer thickness Hc vary among the solutions, both increas-
ing with so.

Remarkably, (57b) exhibits the same relation between the
meridional pressure difference g0sH

2
s =2

� �
as derived from scaling

arguments and in solutions without winds (Park and Bryan,
2000; Schloesser et al., 2012, Eqs. (1) and (2) in this manuscript).
The difference is that Cs depends on the wind forcing rather than
the coefficient of diffusive mixing, a statement that flow within
the Subpolar Gyre provides another mechanism (other than Ross-
by-wave damping) for causing the MOC surface branch to converge
into the northern ocean. Since sx > 0; sx

y < 0 and sx=f < �sx
y=b in

the Subpolar Gyre, it follows that Cs satisfies the inequality,
1
2 < Cs < 1, its value being closest to one in the northern part of
the gyre where the Ekman transport is small.
5.1.2. wd – 0 case
When wd – 0, detrainment within Region N also contributes to

Mn. Since h1 < hmax west of x�e , all the wd detrainment occurs at the
eastern boundary. With the aid of (6) and (21), which give the rela-
tions g0y ¼ �g0ðy00eÞ= y2 � y00e

� 	
and g0ðy00eÞh

2
max ¼ g0sH

2
s , and (46b), conti-

nuity requires that its net contribution is

Wd ¼
Z xe

x�e

Z y2

y00e

wd dx dy ¼ �
Z y2

y00e

U1ðx�e ; yÞdy

¼ D� hmax

2D
f�1g0sH

2
s ; ð58Þ

where f�1 ¼
R y2

y00e
f�1dy= y2 � y00e

� 	
is the average of f�1 over the latitu-

dinal extent of Region N. Since the flow in the eastern-boundary
layer is not affected by the wind forcing, detrainment (58) is the
same as in Schloesser et al. (2012).

The layer-1 detrainment across y2 in Region N is

W�
c ¼

Z xe

x̂
wcdx ¼ �

Z xe

x̂
V1dx ¼ �

Z xe

x̂
ðV � V2Þdx

¼
sx

y

b
ðxe � x̂Þ þ

Z xe

x̂
V2dx; y ¼ y2; ð59Þ

and it does not simplify to (56) because V2(x, y2) – 0 when wd – 0.
To evaluate the V2 integral, consider the wedge-shaped region
bounded by y ¼ y2; x ¼ x�e and the characteristic ~xY that intersects
the northwestern corner of Region N, that is, the point [x̂ðy2Þ; y2]
(see the lower-middle right panel of Fig. 4). Since characteristics
are also layer-2 streamlines, an area integral of the layer-2 continu-
ity equation givesZ xe

x̂ðy2Þ
V2ðx; y2Þdx ¼ �

Z y2

Y
U2ðx�e ; yÞdy ¼

Z y2

Y
U1 x�e ; y
� 	

dy; ð60Þ

with Y being the latitude where characteristic ~xY intersects the east-
ern boundary. Next, we solve for Y, using (53) and (27) with y = y2

and h1 x�e ;Y
� 	

¼ hmax, to get

Y ¼ y2 þ 2
f 2

b
wek

g0yh2
max

ðxe � x̂Þ; y ¼ y2: ð61Þ



Fig. 8. Profiles of Mn (upper panel) and M (lower panel) as a function of Hs in
VLOM solutions with wd = 0 and wd – 0 and for four different wind strengths: so = 0
(green), 0.07 N/m2 (cyan), 0.12 N/m2 (blue) and 0.17 N/m2 (black). Curves for the
wd – 0 solutions are solid everywhere. Curves for the wd = 0 solution are the solid,
except in the regions where the curve is dashed. Also shown are MITgcm data
points (stars), indicating max (wT) in the upper and max½wT ð�ywÞ� in the lower panel,
and using the same color code as for the VLOM solutions. The unit of the transports
is Sv. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Note that when x̂ðy2Þ > xþwðcc > 1Þ, the corner characteristic ~xY coin-
icides with the streamline y00(x), so that Y ¼ y00e (upper-middle right
panel of Fig. 4). This property also follows directly from (61), using
(28) evaluated at y = y2 so that ~xYðy2Þ ¼ x̂ðy2Þ, and the relations
g0y ¼ �g0ðy00eÞ=ðy2 � y00eÞ and g0 y00e

� 	
h2

max ¼ g0sH
2
s .

Eqs. (59), (60), and (46b) combine to give

W�
c ¼

sx
y

b
ðxe � x̂Þ

����y2

� D� hmax

2D
g0yh2

max

Z y2

Y
f�1dy: ð62Þ

According to (62), in comparison to the wd = 0 solution, W�
c is re-

duced by the amount of water that detrains along the eastern
boundary north of Y; moreover, when cc > 1 and Y ¼ y00e , the amount
equals Wd so that W�

c is reduced by all the detrainment in Region N.
In either case, the total detrainment is

Mn ¼ � W�
c þWd

� 	
¼

sx
y

b
ðxe � x̂Þ

����y2

þ U2w; ð63aÞ

where

U2w ¼
D� hmax

2D
g0yh2

max

Z Y

y00e

f�1dy: ð63bÞ
From the layer-2 continuity equation, U2w ¼ �
R Y

y00e
U2ðx�e ; yÞdy ¼

�
R y2

y00w
U2 xþw; y
� 	

dy, so that U2w is the westward transport in layer 2
that crosses xþw south of y2 in the range y00w 6 y 6 y2. When cc < 1
and Y > y00e ;U2w > 0 and hence increases Mn (lower-middle right
panel in Fig. 4). When cc P 1 and Y ¼ y00e , however, Region N does
not extend to the western-boundary layer, all the water that is de-
trained by wd near the eastern boundary crosses y2 before joining
the deep western-boundary current, and hence U2w ¼ 0 (upper-
middle right panel in Fig. 4). In this case, Mn reduces to (57b), that
is, it has the same value as in the wd = 0 solution.

Fig. 7 plots MnðsoÞ when wd – 0, hmax = 3Hs = 750 m, and all
other parameters as in the standard run (blue curve). The transport
again increases linearly with wind strength until so = sc(cc = 1) and
thereafter is the same as in the standard run. For so < sc;U2w (cyan
line) also contributes to Mn, so that Mn – 0 when so = 0; as so in-
creases, U2w decreases as the meridional extent of the western
boundary of Region N (y2 � y00w) diminishes, and it vanishes when
so = sc.

Fig. 8 (top panel) plots MnðHsÞwhen wd – 0 and with hmax = 3Hs

(solid curves everywhere). The curve deviates from the profile with
wd = 0 only for Hs > HcðU2w > 0Þ, where Mn continues to grow due
to the contribution from U2w.

5.2. Entrainment Min

Recall that wd, which occurs only within Region N, does not af-
fect the solution in Regions A and B at all. Thus, the following der-
ivation of Min, which utilizes transports from Regions A and B
assuming that wd = 0, is also valid when wd – 0.

When cb > 1, there is entrainment due to we in (40) wherever
layer 2 outcrops (h1 = hmin). In addition, if cc > 1, so that the bound-
ary of Region B intersects y2 at x̂ðy2Þ > xþw, there is also entrainment
due to wc in (41). For the first part, an area integral of the layer-1
continuity equation over Region B gives

Wb ¼
Z

B
w1 da ¼

Z xe

xþw

V1ðx; ŷnÞdx�
Z xe

xþw

V1ðx; ŷsÞ dx�
Z ŷn

ŷs

Uþ1w dy;

ð64aÞ

where the zonal extent of the integral is extended to x = xe since
w1 = 0 in Region A. Note that (64a) allows x̂ðyÞ to intersect either
the northern or western boundary: In the former case, ŷn ¼ y2 and
x̂ðy2Þ > xþw, whereas in the latter x̂ðy2Þ ¼ xþw and ŷn 6 y2. Substituting
transports (12) and (38a) into (64a), and accounting for transport
(39) at the southwestern corner of Region B in the integral along
ŷs, gives

Wb ¼
Z x̂ðy2Þ

xþw

V1ðx; y2Þdxþ
sx

y

b
ðxe � x̂Þ

� �ŷn

ŷs

� VBðŷsÞ

� hmin

D
f�1 Dg0

2
h2

min �
hmin

D
sx

y

b
ðxe � xþwÞ

� �ŷn

ŷs

; ð64bÞ

where f�1 ¼ ð1=DyÞ
R ŷn

ŷs
f�1 dy and Dg0 ¼ g0ðŷ2Þ � g0ðŷsÞ. Finally,

Min ¼Wb þWþ
c ¼

sx
y

b
ðxe � x̂Þ

� �ŷn

ŷs

� VBðŷsÞ �
hmin

D
f�1 Dg0

2
h2

min

� hmin

D
sx

y

b
xe � xþw
� 	� �ŷn

ŷs

; ð65Þ

since the first integral on the right-hand side of (64b) is �Wþ
c .

Fig. 7 plots Min as function of so (red curve). Region B exists
(cb > 1) provided that s0 > sb = 0.056 N/m2, with Min increasing
away from this critical value as the area of Region B and w1 in-
crease. Note also that the curve has a slight bend in slope across
sc, a consequence of x̂ switching from xþw to x̂ðy2Þ in (65).
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5.3. Western-boundary entrainment Ww

Western-boundary-layer entrainment, Ww ¼
R y2

�yw
Wwdy �

W
�

w þW 0
w, has two components. The first,

W 0
w ¼ �

hmin

D
sx

y

b
xe � xþw
� 	

; y ¼ y2; ð66Þ

is due to entrainment by (17a) as the barotropic, western-boundary
current of the Subpolar Gyre flows southward across y2 and layer 1
is formed by surface heating. It is of the order ðhmin=DÞMn, small
compared to the other overturning transports. The second compo-
nent, W

�
w, due to entrainment by (17b), occurs along the western

boundary south of y2, and it can reach appreciable values.
As so increases, eventually hw thins to hmin and western-bound-

ary entrainment begins south of y2 ðW
�

w – 0Þ. Interestingly, for
realistic parameter choices W

�
w occurs first at y ¼ �yw. To see why

this property is robust, consider the continuity equation integrated
zonally across the basin and from y to y2,

V1ðyÞ ¼ �
Z y2

y
W
�

wdy0 � W 0
w þ

Z y2

y

Z xe

xþw

w1 dx dy0
 !

; y 6 y2;

ð67Þ

where V1 �
R xe

xw
V1dx is the zonally integrated meridional transport,

W
�

w �
R xþw

xw
we dx, and w1 is known in the interior. Analogous to their

western-boundary counterparts in Section 3.3, we define two test
transports related to V1 : V01ðyÞ given by (67) with W

�
wðyÞ ¼ 0; and

V
�

1ðyÞ �
R xe

xþw
V1dxþ ~V1wðyÞ, where ~V1wðyÞ is given by (18) with hw(-

y) = hmin, so that ~V1ðyÞ is the maximum meridional transport that
can be sustained by the model at latitude y. It follows that if
V01ðyÞ > ~V1ðyÞ western-boundary upwelling (W

�
w > 0) must occur

somewhere in the interval [y, y2].
Now, suppose that so is initially small enough for W

�
w ¼ 0 every-

where. As so increases, it follows from the preceding discussion
that W

�
w will appear first at the latitude where ~V1ðyÞ has a mini-

mum value. We assume that its minimum value occurs far enough
south of y2 for he/D	 1 (verified below). Then, a zonal integration
of (8a) from xw to xe, with (14a) and hw = hmin gives

~V1 �
g0

2f
h2

e � h2
min

� �
� sx

f
ðxe � xwÞ; h1 	 D; ð68Þ

where terms that include factors of he/D and hmin/D are neglected.
Because g0h2

e is constant (Eq. (21)), hmin is relatively small, and
sx(y) varies much faster than f, changes with latitude of ~V1 are dom-
inated by the southward Ekman transport (last term in Eq. (68)),
which reaches its maximum just south of �yw. Since W

�
w ¼ 0 south

of �yw;W
�

w – 0 first occurs at y ¼ �yw.
A corollary of this result is that ~Ww > 0 only when hwð�ywÞ ¼ hmin

so that V1ð�ywÞ ¼ eV1ð�ywÞ. Evaluating (67) at �yw and solving for fWw,
then gives

fWw ¼ Mn �Min �W 0
w

� 	
� eV1ð�ywÞ

h i
hðfWwÞ; ð69aÞ

where
R y2

�yw

R xe

xþw
w1 dx dy0 ¼Min �Mn because �yw is less than ŷs and

y00e in (65) and (63), repsectively, and

~V1ð�ywÞ ¼
g0

2f
h2

e � h2
min �

2
3D

fh3
e � h3

min

� �� �
� sx

f
ðxe � xwÞ; y ¼ �yw:

ð69bÞ

Eq. (69b) is obtained using (18a) and (24),

f � 1� 2sxðxe � xwÞ= g0h2
e

� �h i3
, the property that V = Vw = 0 at

y ¼ �yw, and retaining all terms of order h1/D for accuracy. According
to (69a), western-boundary upwelling exists only when

hw �ywð Þ ¼ hmin and W
�

w is positive; in that case, it is the difference be-
tween V
�

1ð�ywÞ and the aggregate of all entrainments and detrain-
ments farther to the north. Based on (69a), we introduce the non-
dimensional parameter

ca ¼
Mn �Min �W 0

w

V
�

1ð�ywÞ
; ð70Þ

with ca > 1 indicating that W
�

w > 0.
It is noteworthy that when there is western-boundary upwell-

ing, M is given by (69b). Therefore, M satisfies the remarkable
property that it is independent of any of the diapycnal processes
in the northern ocean. In other words, as long as there is any wes-
tern-boundary upwelling, M is unaffected by the parameteriza-
tions of deep-water production and interior entrainment in the
northern ocean, depending only on g0, Hs (since he / Hs), and so.

Fig. 7 plots WwðsoÞ both for the standard run and when wd – 0
(solid/dashed and solid magenta curves, respectively). There are
two critical values of so at which W

�
w first becomes active:

sa = 0.072 N/m2 for the standard run and 0.046 N/m2 for the
wd – 0 solution. For so 6 sa;Ww ¼W 0

w, which increases linearly
from zero at so = 0. For sa < so 6 sc;Ww increases sharply due to
W
�

w. Finally, Ww decreases slowly for so > sc, because Mn has then
reached its maximum and the increase of �V

�
1ð�ywÞ is overcompen-

sated by the increase in Min in (69a).
5.4. Transport M

Fig. 7 also plots M ¼Mn �Min �Ww, a combination of the
transports discussed above. Interestingly, in the upper panel
MðsoÞ reaches a maximum at sa both in the standard run (dashed
black curve) and in the wd – 0 solution (solid black curve). When
so < sa;M increases with so, because of its effect on Mn. When
so > sa, however, M ¼ V

�
1ð�ywÞ in (69b), which decreases roughly

linearly with so. In the wd = 0 solution, the slope of M flattens
somewhat in the region sb < so < sa, where Min becomes active
and partly compensates for the increase in Mn; this effect is not
observable for the solution with wd – 0 because sa < sb.

Fig. 8 (bottom panel) plots MðHsÞ for the same solutions for
which MnðHsÞ is shown in the top panel. In the solutions with
wd ¼ 0;M ¼ V

�
1ð�ywÞ when Hs is small enough for western-bound-

ary entrainment to occur (solid curves; Eq. (69b)). For larger Hs,
the wd = 0 profiles flatten markedly (dashed curves): M increases
slightly with Hs until the interior entrainment Min vanishes at
Hs = Hb, and thereafter remains at its maximum value, Mn �W 0

w,
which is determined by sx and independent of Hs (Eqs. (57a) and
(66)). Solutions with wd – 0 (solid curves) have essentially the
same regimes as the wd = 0 solutions, with M ¼ V

�
1ð�ywÞ for small

Hs. Western-boundary upwelling W
�

w persists for larger Hs than
for corresponding wd = 0 solutions, however, because Mn is larger
for Hs > Hc (see top panel). Furthermore, since Mn does not reach a
maximum value (Eq. (58)), M continues to increase with Hs for
Hs > Hb. A comparison of the four curves shows that M decreases
with increasing so for smaller Hs because it is in the regime of
M ¼ ~V1ð�ywÞ here (Fig. 7); for larger Hs;M increases with increasing
so because it is in the regime of M ¼Mn �W 0

w (Fig. 7).
6. OGCM solutions

In this section, we compare the VLOM solutions to correspond-
ing numerical solutions to an OGCM (MITgcm). As we shall see, the
solutions are strikingly similar, indicating that the dynamics con-
tained in VLOM are also the dominant processes at work in the
OGCM. There are also secondary differences that arise from pro-
cesses not included in VLOM.
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6.1. Overview

The MITgcm is a numerical-modeling toolbox designed at the
Massachusetts Institute of Technology to solve different sets of
equations describing the atmosphere, ocean, and climate (Hill
and Marshall, 1995; Marshall et al., 1997). In the present study,
it is configured to solve a finite-volume form of the standard
hydrostatic, Boussinesq, primitive equations on spherical coordi-
nates with a free surface. It uses a flux-limiting, third-order scheme
for tracer advection. The C-grid has 36 vertical levels with a uni-
form resolution of 20 m in the upper 400 m, gradually decreasing
to 540 m near the bottom, and its horizontal resolution is
0.5
 � 0.5�. The parameterization of horizontal mixing is Laplacian,
with coefficients mh = 2 � 104 m2s�1 for viscosity and jh = 102 m2 s�1

for diffusion. Neither isopycnal diffusion (Redi, 1982; Cox, 1987)
nor thickness diffusion (Gent and McWilliams, 1990) is used, and
no mixed-layer parameterization is employed. Coefficients of ver-
tical viscosity and diffusivity are both 10�5 m2 s�1 except when
the stratification becomes statically unstable, in which case verti-
cal diffusivity is increased to a large value. As in VLOM, salinity is
neglected and the equation of state is given by (4).

The MITgcm experiments are designed to be as similar to the
VLOM standard run as possible. The ocean basin extends from
the equator to 60�N, is 40� wide and 4000 m deep. The model is
forced by a surface heat flux

Qðx; y; zÞ ¼ � T � T�ðx; yÞ
dt

hðzþ hminÞ: ð71Þ

According to (71), Q differs from that in VLOM, (5), in that it acts on
a ‘‘mixed layer’’ of thickness hmin = 100 m, rather than the entire
upper layer. For most solutions, dt = 3 days, ensuring that the sur-
face temperature stays close to T⁄; to test the effects due to temper-
ature advection, solutions are also obtained for larger dt
(Section 6.5). The wind stress is (7), and solutions are obtained for
so = 0, 0.7, 0.12 and 0.17 Nm�2. We use closed, no-slip conditions
at the lateral boundaries. In a sponge layer adjacent to the southern
boundary, temperature (density) is strongly relaxed towards an
exponential profile,

T
�
ðzÞ ¼ Tn þ ðTs � TnÞ exp

zþ hmin

DHs
hð�z� hminÞ

þ ðTs � TnÞ hðzþ hminÞ; ð72Þ

and solutions are obtained for DHs = 100, 150, 200, 250 and 300 m.
The northern boundary of that sponge layer, y0s ¼ 10
N, then corre-
sponds to the southern boundary of the basin along ys in VLOM.
Solutions are integrated for 1100 years at which time they are close
to equilibrium, and we analyze the variables averaged over the last
100 years of integration.

6.2. Definitions

To allow a comparison of VLOM and MITgcm solutions, we de-
fine a measure for the upper-layer thickness in MITgcm, namely

h1 � 2
Z 0

�D

Z z

�D

qn � q
qn � q0

dz0 dz
� �1=2

; ð73Þ

where q0 = q(x, y, 0). The tropical eastern-boundary thermocline
thickness and the density profiles in the sponge layer are then re-
lated by

Hs � ðhmin þ DHsÞ2 þ DH2
s

h i1=2
: ð74Þ

This choice for h1 is motivated by the property that the upper-layer,
no-flow condition

g0h2
1

� �
y
¼ 0; g0 ¼ gðqn � q0Þ=qn; x ¼ xe; ð75Þ
holds along the eastern boundary, analogous to (21) for VLOM. See
(Schloesser, 2011) for a more detailed discussion of the properties
of (73).

There is also a homogeneous layer of thickness hm along the
eastern boundary (upper panels of Fig. 9 below). A condition sim-
ilar to (75) also holds for hm, namely,

hmz ¼
hm

2
1

qAðzÞ � q�ðyÞ ; ð76Þ

where qA(z) is the density below, and q⁄(y) within the surface layer
(Sumata and Kubokawa, 2001; Schloesser et al., 2012). In general,
h1 P hm, with h1 = hm only in case qAz = 0 (as in VLOM) or where
h1 = D.

The strength of the meridional overturning circulation is mea-
sured using the meridional streamfunction in temperature (den-
sity) space, that is, wTðy; TÞ ¼

R xe

xw

R 0
zT

v dz dx, where zT is the depth
of the T-isotherm. In particular, we define the deep-water forma-
tion rate Mn �maxðwTÞ, and the deep-water export
M �max½wTð�ywÞ�, to compare them to their VLOM counterparts.
6.3. Standard run

To illustrate the interior circulation in the standard run
(DHs = 100 m, so = 0.12 Nm�2, and dt = 3 days), Fig. 9 shows merid-
ional sections of temperature and zonal and vertical velocities, and
Fig. 10 provides a map of h1 determined from (73); they are com-
parable to the plots of the VLOM standard solution in Figs. 6 and 3,
respectively. Fig. 10 also includes upper-ocean transports,
V1 �

R 0
�h1

v1dz.
As shown in the upper panels of Fig. 9, the eastern-boundary

temperature structure adjusts in MITgcm such that the depth-inte-
grated geostrophic transport in the vertically uniform surface layer
hm (magenta curve) vanishes, and isotherms are approximately
horizontal below. Furthermore, h1 (cyan curve) adjusts to the same
profile (21) as in VLOM (the theoretical curve is not plotted in Fig. 9
because it is visually indistinguishable from the actual h1 curve);
the patterns of zonal (left panel) and vertical velocities (right pa-
nel) are quite similar as well. This striking response is independent
of the zonal wind forcing, and is the same as discussed in Sumata
and Kubokawa (2001) and Schloesser et al. (2012).

The sections at 20�E in the lower panels of Fig. 9 illustrate that
isotherms and h1 are depressed in the Subtropical Gyre from
15�N 6 y 6 35�N, and raised in the Subpolar Gyre for
35�N 6 y 6 55�N. As in Region A for the VLOM solutions, the zonal
current is mostly confined to the upper layer, and flows in the
direction of the gyre circulation (compare to Fig. 6). There is also
a region in the Subpolar Gyre (42�N [ y [ 44�N) where h1 is near
hmin and the flow extends over the entire water column, as in Re-
gion B for VLOM. Furthermore, in the northern part of the Subpolar
Gyre, the thermal-wind shear has about the same strength as the
gyre flow, so that the flow is eastward near the surface. The maps
of layer thickness for the MITgcm (Fig. 10) and VLOM solution
(Figs. 3 and 4) have the same basic features, including the eastward
extent of Region B. A northern-boundary layer just south of y2 is
apparent in Fig. 10, where U1 is opposite to the direction of the
Sverdrup circulation, suggesting that Rossby waves are damped
by a mechanism similar to wd in VLOM (upper-middle left panel
of Fig. 4).

Vertical velocities, and isotherms along the western boundary
are shown in Fig. 11. In the Subpolar Gyre (y > �yw ¼ 35
), all iso-
therms are near hmin before they outcrop, and relatively strong
upwelling occurs. South of �yw, upwelling weakens, and and the
coastal h1 deepens abruptly as in VLOM, where these properties
are ensured through the stepfunction in (17b).



3.1
3.2

3.2

3.5

5
6

8
10

14

16

20

22

10 20 30 40 50

0

100

200

300

400

500

600

700

800

900

1000 −0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

3.1

3.1

3.2

3.2

3.5
4

5

5

6

6

8

10
12

14

1618

10 20 30 40 50

0

100

200

300

400

500

600

700

800

900

1000 −1e−4

−1e−5

−1e−6

 0

1e−6

1e−5

1e−4

3.1

3.
1

3.2

3.5

5

5

68

1012

16
18

2022

10 20 30 40 50

0

100

200

300

400

500

600

700

800

900

1000 −1e−4

−1e−5

−1e−6

 0

1e−6

1e−5

1e−4

3.1

3.1

3.2

3.
2

3.5

3.5

4

4

5

5

6

8

10
12

1418
20

22

10 20 30 40 50

0

100

200

300

400

500

600

700

800

900

1000 −0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 9. Meridional sections from the MITgcm run with so = 0.12 N/m2, DHs = 100 m (Hs = 223 m) and dt = 3 days after 1000 years of integration showing temperature
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m2, DHs = 100 m (Hs = 223 m), and dt = 3 days.
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Despite these many similarities, the MITgcm solution also
exhibits (secondary) features not explained by our VLOM solutions.
A flow-pattern somewhat similar to the Stommel and Arons (1960)
circulation develops below the wind-driven upper-layer flow,
which is characterized by northward flow at depth and weak, inte-
rior upwelling (lower-right panel in Fig. 9). As suggested by Sch-
loesser et al. (2012), the upwelling in the deep layer is strongest
at the eastern boundary, where a sharp thermocline is maintained
by the upper-ocean sinking and fast Kelvin-wave response. We
also find that thermocline slopes are slightly flatter in MITgcm
than predicted by VLOM, and hence that Region B is slightly smal-
ler in the MITgcm. These features are attributable to the interior
diffusion in MITgcm, and qualitatively similar features arise in
VLOM when diffusion in the form of a w1 = wm = j/h1 is included
(e.g., Schloesser et al., 2012).
6.4. Overturning strength

Fig. 8 plots data points for MnðHsÞ and MðHsÞ from a number of
MITgcm solutions with different Hs and so values. As in VLOM, Mn

is nearly independent of so for the experiments with Hs = 223 m,
but the difference among them increases as Hs increases. Overall,
the agreement between the two models is very good, supporting
the conclusion that the processes causing the diapycnal overturn-
ing are similar between the two models.

The strength of the deep-water export M is shown in the lower
panel of Fig. 8. Regardless of the strength of the winds, M increases
with thermocline thickness Hs. Because M increases faster with Hs

for stronger winds, however, M decreases (increases) with so for
small (large) Hs. These general properties are the same as in the
VLOM solutions. The agreement between M in MITgcm and VLOM
is particularly good when Hs is relatively shallow. A possible
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explanation for the discrepancy at larger Hs values is diffusive mix-
ing, which provides another ‘‘shortcut’’ (other than wind-driven
upwelling in the interior ocean and western-boundary upwelling)
for the MOC in the Subpolar Gyre in the MITgcm, and is not in-
cluded in VLOM.
6.5. Solutions with large dt

All prior solutions assume that dt is small, thereby eliminating
surface temperature advection as a significant process. To demon-
strate that this restriction does not severely affect our conclusions,
we obtained a test solution in which dt = 50 days and with other
parameters the same as for the standard run. In the test, the
near-surface temperature field deviates significantly from T⁄ in
the standard run, with the line y2(x) where surface temperature
first decreases to its coldest value shifted north about 2–3�. Never-
theless, the overturning transports are Mn ¼ 6:8 Sv and M ¼ 2:4
Sv in the test, close to their values in the standard run (Mn ¼ 7:0
Sv and M ¼ 2:4 Sv) and consistent with values in VLOM when y2

is shifted northward similarly. When dt is relaxed further, however,
advection becomes so strong that finally the coldest surface tem-
perature, and hence the deep-ocean temperature, is no longer pre-
scribed but internally determined by the model (e.g., Park and
Bryan, 2000).

The above tests do not fully explore the possible effects of
advection. For example, it is known that the effect of density
advection increases when the meridional flow is concentrated in
an eastern-boundary current over a continental slope (e.g., Spall
and Pickart, 2001). Furthermore, understanding the full impact of
density advection requires fresh-water forcing to be included in
the model. A consideration of either of these processes is beyond
the scope of this paper.
7. Applications

In this section, we apply VLOM to solutions that differ from the
standard run in two key aspects: In the first case, the Subpolar Gyre
does not extend into the northern part of the basin, where T1 = Tn

(i.e., y2w < y2 or sx = 0). Second, solutions are forced by a prescribed
overturning rate, M, rather than by a layer thickness Hs at the
southern boundary. Besides allowing for our results to be directly
related to some previous studies, these examples demonstrate
the robustness of the relations between thermocline depth, over-
turning circulation and wind and buoyancy forcing in VLOM.
7.1. Solutions with y2w < y2 and sx = 0

The solutions in Sections 3 and 4 illustrate how northward flow
in the Subpolar Gyre can generate the surface convergence needed
to establish the MOC downwelling branch. In the real ocean and
OGCM solutions, however, MOC deep-water formation also occurs
north of the Subpolar Gyre, such as in the GIN Seas. An analogous
situation in our model occurs when y2w < y2, in which case there
is no flow across y2 and hence W�

c ¼ 0.
If y2w < y2 and wd = 0, there is no mechanism left for water to

detrain in the northern ocean; consequently, Mn ¼ 0 and no
MOC descending branch can be established in the north. On the
other hand, water can still upwell in Region B if cb > 1, in which
case a ‘‘reversed’’ MOC ðM < 0Þ flows southward across the open
boundary. This solution then resembles that in the Tsujino and
Suginohara (1999) model (Section 1), in which water that upwells
due to Ekman suction in the northern hemisphere downwells in
the southern hemisphere. If wd – 0, a northern sinking branch with
Mn ¼ �Wd is established as shown in the lower panels of Fig. 4.
The MOC is still affected by the wind forcing, however, if upwelling
in the interior of the Subpolar Gyre ðMinÞ or in the western-bound-
ary layer ðWwÞ occurs. As in the standard run, these processes then
provide a shortcut for the MOC, and M is reduced south of �yw.

In the limit that sx = 0, the wind-driven circulation disappears
from our solutions, and hence they are an extreme example of
the case with y2w < y2. They are similar to the solutions discussed
in Schloesser et al. (2012), except the Schloesser et al. (2012) solu-
tions are closed by diffusive upwelling (wm – 0) within the north-
ern hemisphere. Interestingly, when wd = 0, the response is a state
of rest, even though the meridional density and pressure difference
remain unchanged; the response is the same as the no-MOC solu-
tion with wm = 0 discussed in Schloesser et al. (2012).

7.2. Solutions forced by M

In all previous solutions, we have assumed that the eastern-
boundary layer thickness Hs is prescribed, and solved for the
resulting overturning strength, M. The same steady-state solution
results if M is prescribed by external processes in the South Atlan-
tic (e.g., wind-driven upwelling in the Southern Ocean; Toggweiler
and Samuels, 1995) and Hs responds to that forcing (Schloesser
et al., 2012).

Since in a steady state, the solution is indistinguishable from a
corresponding solution with a prescribed Hs, the same relations
for MðHsÞ and its components hold as derived in Section 5. Thus,
Fig. 8 also provides HsðMÞ, that is, gives the eastern-boundary
layer thickness Hs that results from a prescribed M. From this per-
spective, it is clear that if M is externally specified (e.g., by South-
ern Ocean winds as in Wyrtki, 1961; Toggweiler and Samuels,
1995; Samelson, 2009), the thermocline depth throughout the ba-
sin is determined.

When M is fixed, Hs depends on so. To illustrate this depen-
dence, Fig. 12 plots Hs(so) for a solution with the same parameter
values as in the standard run, wd – 0, hmax = 3Hs, and M ¼ 10 Sv.
For reference, the figure also provides the interior (Min) and wes-
tern-boundary entrainment ( ~Ww), as well as critical wind strengths
sa, sb and sc. For so 6 sa, no entrainment occurs (i.e.,
~Ww ¼Min ¼ 0), and hence M ¼Mn �W 0

w �Mn ¼ �Wd �W�
c

(Section 5); consequently, Hs decreases as so increases, such that
the increase in wind-driven convergence ðW�

c Þ is balanced by a de-
crease in convergence caused by detrainment (Wd). When
so > sa; ~Ww > 0 and hence M ¼ ~Vwð�ywÞ; in that case, Hs is deter-
mined by inverting (69b), and has to increase with so. Thus, when
so increases further, such that Min > 0 for so > sb, and finally so > sc,
such that Mn becomes independent of so (i.e., cc < 1), Hs is no long-
er affected by the diapycnal processes in the subpolar ocean. The
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finding that ðHsÞso
70 for so ? sa is consistent with ðMÞso

?0 for
so ? sa (Fig. 7), because ðMÞHs

> 0 (Fig. 8, wd – 0).
8. Summary and discussion

A hierarchy of solutions to models of different complexity has
been developed to investigate the dynamics of the deep, meridio-
nal overturning circulation (MOC). Recently, Schloesser et al.
(2012) explored solutions at the base of that hierarchy, forced only
by a surface buoyancy flux. In their study, a variable-density, 2-
layer model (VLOM) proved to be a useful tool to identify key pro-
cesses that establish the descending branch of the MOC. Here, we
extend that study to include wind forcing: The near-surface circu-
lations in all the solutions now in our hierarchy are illustrated in
Fig. 13. Collectively, they provide a general theory that relates
MOC strength and structure to the thermocline depth in the
eastern, tropical ocean, the meridional surface-density difference,
mixing processes, and zonal wind forcing.

Model and experimental design: We obtain analytic solutions
to VLOM in an idealized, flat-bottom basin in the northern hemi-
sphere. Because density depends only on temperature, and the
equation of state is linear, density and temperature are essentially
equivalent. The southern boundary is open, and solutions are de-
rived for a prescribed southeastern upper-layer thickness, Hs. This
southern-boundary closure does not affect the generality of our
equilibrium solutions: The relation between Hs and the mass flux
across the southern boundary M, as determined by the descending
branch of the MOC, holds regardless of the southern-boundary
condition. To demonstrate this point, we also discuss solutions
where M is prescribed, rather than Hs (Section 7.2). In more com-
plete (closed) models of the MOC, a second relation relating M to
Hs is determined by the physics of the upwelling branch, and equi-
librium solutions are then found by matching both relations (Gna-
nadesikan, 1999; Schloesser et al., 2012).

The model is forced by a surface heat flux Q, which instantly re-
laxes near-surface temperature to a prescribed T⁄(y) that decreases
linearly from a maximum Ts south of y1 = 30�N to the deep-ocean
temperature Tn at y2 = 50�N. North of y2, then, the upper layer van-
ishes and the model ocean simplifies to a 1-layer system. The mod-
el is also forced by westerly winds, which drive a Subtropical and a
Subpolar Gyre. In most solutions, the Subpolar Gyre extends north
Fig. 12. Eastern-boundary layer thickness, Hs (black curve), in VLOM as a function of win
of M ¼ 10 Sv. Other parameters are as in the standard run, with wd – 0 and hmax = 3Hs. I
are also shown for reference. The critical wind strength sa indicates whether W

�
w ¼ 0 (so 6

and sc whether cc < 1 (so < sc) or cc P 1 (so P sc). (For interpretation of the references to
of y2 (i.e., y2w > y2), in which case it impacts the MOC downwelling
branch.

To generate an MOC, several processes are included in the
model to allow mass to transfer between the two layers. These
processes are specified as across-interface velocities, w1 = we +
wc + wd: we represents mixed-layer processes that prevent h1 from
becoming smaller than a minimum thickness hmin by entraining
water into layer 1 (Nonaka et al., 2006); wc allows mass to transfer
from layer 1 into layer 2 when water flows northward across y2

and hence is cooled to Tn by Q, and vice versa; finally, wd represents
mixing processes that prevent h1 in the interior ocean from becom-
ing thicker than a maximum thickness hmax by restratifying the
water column (Fox-Kemper et al., 2008; Schloesser et al., 2012).

VLOM solutions: We obtain solutions with and without wd, and
for y2w ? y2, and for each of the solutions we vary the wind
strength so. In most cases, there are three critical values of so, as
measured by the non-dimensional parameters, ca, cb, and cc, above
which solutions change their character: upwelling begins at the
western boundary (ca > 1); h1 = hmin in the interior ocean
(Region B; cb > 1); and the boundary of Region B intersects
y2 (cc > 1).

Solutions with wd = 0 and y2w > y2: Our standard solution as-
sumes that wd = 0, that is, there is no process that allows detrain-
ment across the bottom of layer 1; as a result, wc is the only
process that can generate the MOC downwelling branch (Section 3).
Along the eastern boundary, h1 thickens poleward in response to
the surface temperature gradient, a consequence of the no-nor-
mal-flow boundary condition, which requires cancelation of the
depth-integrated, alongshore pressure gradient. Just south of y2,
h1 extends over the entire water column, before it outcrops and
vanishes farther to the north. This eastern-boundary structure
(Eq. (21)) is equivalent to that discussed in Sumata and Kubokawa
(2001) and Schloesser et al. (2012).

In the interior ocean, Rossby waves adjust the layer interface
such that the interior-ocean Sverdrup transport is entirely con-
tained in the upper layer, and the deep layer is at rest (Region A).
As in corresponding isopycnal layer model solutions (Huang,
1986; Huang and Flierl, 1987; Nonaka et al., 2006), a region where
layer 1 outcrops (h1 = hmin; Region B) can exist in the western part
of the subpolar ocean if so is sufficiently strong (cb > 1). Within Re-
gion B, Ekman suction in layer 1 is balanced by entrainment we,
and the geostrophic part of the Sverdrup transport is evenly
d strength, so, in solutions with a prescribed transport across the southern boundary
nterior (Min; cyan curve) and western-boundary entrainment (W

�
w; magenta curve)

sa) or W
�

w > 0 (s o > sa), sb indicates whether Min ¼ 0 (so 6 sb) or Min > 0 (so > sb),
colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 13. Schematic maps of layer-1 flow in the subpolar ocean with (right panels) and without restratification process wd (left panels). The top panels show the circulation in
solutions without winds, the middle panel with winds and cc < 0, and the bottom panels with winds and cc P 1. Region B, where h1 = hmin and we > 0, is indicated by light
shading, and Region N by dark shading.
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distributed over the entire water column. Interestingly, if so is
strong enough for the eastern edge of Region B, x̂ðyÞ, to intersect
y2 (cc > 1), h1 isolines and Rossby-wave characteristics in the Sub-
polar Gyre converge to a single point ½x̂ðy2Þ; y2�.

Since wd = 0, the MOC downwelling branch occurs entirely by
wc, that is, when layer-1 water within the Subpolar Gyre flows
northward across y2; at that latitude, layer 1 disappears (since T1

is cooled to T2) and hence layer-1 water necessarily detrains into
layer 2 (middle-left and bottom-left panels of Fig. 13). When Re-
gion B intersects y2 (cc > 1), the detrainment occurs entirely east
of x̂ðy2Þ (middle-left panel of Fig. 13). This downwelling mecha-
nism differs fundamentally from that in previous idealized models,
in which downwelling occurs across the bottom of the upper layer
(e.g., Luyten and Stommel, 1986; Pedlosky and Spall, 2005; Sch-
loesser et al., 2012), and the associated w drives the meridional
near-surface flow, V1. Here, V1 is entirely driven by Ekman pump-
ing, which, in concert with Q, forces the geostrophic flow to cross
isopycnal surfaces.

The circulation is closed in a western-boundary layer, where we
solve for the boundary-current transport V1wðyÞ and entrainment
transport Ww(y) by integrating the zonally integrated continuity
equation southward from y2, in the direction of Kelvin-wave prop-
agation. Western-boundary entrainment becomes necessary when
the wind forcing is strong enough for the interior circulation in the
Subpolar Gyre to draw more water from the boundary layer than
can be supplied by the surface branch of the boundary current
(ca P 1). When so increases until entrainment begins (ca becomes
greater than 1), for typical model parameters it does so first at the
gyre boundary y ¼ �yw, and for larger so spreads northward to fill
the entire subpolar western-boundary region. By assumption,
there is no entrainment in the subtropics, either in the interior
ocean or western-boundary layer. The boundary-current transport
remains constant south of the Subtropical Gyre and across the
southern boundary, forming a large-scale MOC.

Solutions with wd – 0 and y2w > y2: When detrainment wd – 0,
solutions are altered in a northern-boundary layer (Region N) adja-
cent to y2 (Section 4). In the limit that td ? 0, h1 relaxes to hmax in-
stantly, and so wd is only active in a narrow eastern-boundary layer
x�e 6 x 6 xe
� 	

. The circulation in this eastern-boundary layer is not
affected by the wind, and hence is the same as described by Sch-
loesser et al. (2012). West of the eastern-boundary layer, layer-2
potential vorticity is conserved throughout the interior of Region
N. Because h1 x�e

� 	
¼ hmax is constant and f does not change much

in Region N, h1 [ hmax throughout Region N, and the geostrophic
part of the Sverdrup flow is almost evenly distributed over the
water column. In addition, the surface density gradient drives an
eastward current in layer 1 that converges to the eastern bound-
ary; there, layer-1 water detrains into layer 2, and returns to the
interior ocean in layer 2. If the focal point of Rossby-wave charac-
teristics exists inside the domain (cc P 1), wd affects the circulation
only within Region N and does not impact the transport of the large-
scale MOC (bottom-right panel of Fig. 13). If cc < 1, however, the flow
in Region N connects to the western-boundary current, and so does
impact the MOC transport (middle-right panel of Fig. 13).

Solutions with y2w < y2: When the Subpolar Gyre does not ex-
tend into the homogeneous part of the ocean (y2w < y2), wd is the
only mechanism by which water can detrain. With wd – 0, the
sinking branch is established entirely by Rossby-wave damping,
as in solutions without wind forcing (Section 7; Schloesser et al.,
2012; top-right panel of Fig. 13). With wd = 0, no detrainment
can occur within the model domain, and so the model cannot gen-
erate am MOC with a northward surface branch (M > 0; top-left
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panel of Fig. 13). On the other hand, if there is wind-driven upwell-
ing in the northern ocean (cb P 1), a ‘‘reversed’’ MOC is formed
ðM < 0Þ, with southward upper-layer flow across the southern
boundary of the model domain and the MOC descending branch lo-
cated in the southern hemisphere, as in the solutions of Tsujino
and Suginohara (1999).

Overturning transports: A strength of VLOM is that it allows
for relatively simple, analytic expressions for the rate of deep-water
formation, Mn (Section 5). In most cases, our results recover (1) in that
Mn is (roughly) proportional to the meridional pressure difference
(e.g., Park and Bryan, 2000). On the other hand, because the processes
that generate detrainment are somewhat different in VLOM than in
previous idealized models and scalings, the proportionality function
C in (1) has a different form. When the descending branch is well sep-
arated from the western-boundary layer in the subpolar ocean (cc > 1),
C depends on the relative strength of the Ekman and Sverdrup trans-
ports across the outcropping latitude y2, as in (57b). Interestingly,
(57b) is independent of the presence of detrainment wd when cc > 1:
If wd is included, the detrainment by wc is reduced by the same
amount that is generated by wd. The deep-water formation rate is af-
fected by wd, however, when Region N extends to the western bound-
ary (cc < 1), as given by (63). As a result, Mn then also depends on the
strength of the Rossby-wave damping (hmax) in the northern-boundary
layer, and it has a slightly different form than (1). When the Subpolar
Gyre does not extend into the homogenous part of the ocean (y2w < y2),
such that detrainment occurs only by wd;Mn is independent of the
winds, the same as in Schloesser et al. (2012).

Upwelling occurs in the Subpolar Gyre when the layer interface
outcrops in the interior ocean (Tsujino and Suginohara, 1999; Nonaka
et al., 2006). It can also occur in the western-boundary layer, and may
be of the same order as the deep-water formation rate, Mn. Because
these upwellings provide a ‘‘shortcut’’ for the MOC, the export of deep
water from the subpolar ocean, M, defined as the formation rate
minus the total upwelling in the subpolar ocean, constitutes a better
measure for the strength of the large-scale MOC in our model. Remark-
ably, however, in some of our solutions M is independent of the dia-
pycnal processes occurring within the Subpolar Gyre (e.g., Mn),
namely, when western-boundary upwelling occurs at the boundary
between the two gyres, �yw. In that case, M ¼ ~V1wð�ywÞ (Eq. (69b)) is
the maximum meridional transport that can be sustained by the model
across �yw, and hence determined by local processes (geostrophy and
Ekman transport). For example, if Mn is increased by increasing wind
curl near y2, the western-boundary upwelling just north of �yw also in-
creases in such a way that M remains unchanged.

OGCM solutions: We validate our analytic theory by comparing
VLOM solutions to corresponding solutions to an OGCM (MITgcm;
Section 6). Despite its simplicity and limited vertical resolution,
VLOM reproduces many features of the three-dimensional circula-
tion in MITgcm, and there is a relatively good correspondence be-
tween the strength of overturning in the two models (Fig. 8). From
these similarities, we conclude that the physical mechanisms that
control the MOC in VLOM are also at work in a fundamental way in
more realistic models.

The temperature relaxation time scale is extended to
dt = 50 days in one of our MITgcm experiments, such that the sur-
face heat flux Q is weak enough for surface temperatures to be
influenced by advection. Somewhat surprisingly, the solution does
not change much, the most apparent difference being that outcrop-
ping lines are shifted somewhat farther to the north in the Subpo-
lar Gyre. Even in this case, then, the large-scale MOC is still
determined by the same dynamical processes identified in VLOM.
We note, however, that the above test is insufficient to fully ex-
plore the possible effects of advection. For example, it is known
that the effect of density advection increases when the meridional
flow is concentrated over topography. Moreover, a more compre-
hensive understanding of the impact of advection requires
fresh-water forcing to be included in the model. A consideration
of either of these processes is beyond the scope of this paper.

Variability: Although our model is steady state, our solutions
are still useful for interpreting long-term (quasi-steady) changes
in the AMOC. For example, Lozier et al. (2010) recently noted that
changes in AMOC strength over the past 50 years did not occur
coherently throughout the North Atlantic, with the AMOC weaken-
ing in the subtropics and strengthening in the subpolar region. Our
model cannot explain the weakening of the large-scale, subtropical
AMOC transport, since solutions are externally forced by prescrib-
ing Hs (or M). It can, however, provide a possible explanation for
the relative changes between the subpolar and subtropical over-
turning strengths, which are consistent with an increase of the
westerlies in our VLOM solutions. Consider the case with wes-
tern-boundary upwelling (ca > 1). The subtropical overturning
strength (y 6 �yw) is then given by M ¼ ~V1ð�ywÞ. Recall that ~V1ð�ywÞ
changes with so roughly like the zonally integrated Ekman trans-
port across �yw (Eq. (69b)) so that a strengthening of the westerlies
implies a weakening of M. At the same time, the strengthened
winds increase the Subpolar Gyre circulation, and Mn either re-
mains constant (cc > 1) or increases (cc < 1). While the impact of
varying winds on salinity advection towards high latitudes (not in-
cluded in VLOM) has been emphasized (e.g.,Häkkinen et al., 2011),
our solutions also suggest a more direct control of the AMOC struc-
ture in the North Atlantic, somewhat consistent with the numerical
experiments of Biastoch et al. (2008).

In conclusion, our overall goal is to derive a hierarchy of MOC
models that is as complete as possible, one that fills gaps in the
existing one. In the current study and in Schloesser et al. (2012),
we have explored the effects of surface density and wind forcing
in detail. Nevertheless, our models still lie near the bottom of a
hierarchy that extends to real-world simulations. In future studies,
we hope to include processes associated with bottom topography,
realistic basin geometry, time-dependent forcing, and surface den-
sity advection within our idealized modeling framework.
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