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Abstract--The estimation of a normalized set of positive fuzzy weights constitutes the most 
important aspects in the fuzzy multiple attribute decision making process. A systematic treatment 
of this problem is carried out in this paper. The concept of fuzzy normalization is first defined 
and the meaning of consistency in a fuzzy environment is discussed. Based on these definitions 
and discussions, the various approaches in the literature are examined and several improvements or 
new approaches are proposed. Numerical examples are used to evaluate and to compare the various 
existing and the newly proposed approaches. 

K e y w o r d s - - N o r m a l i z e d  set of fuzzy weights, Positive fuzzy reciprocal matrix, Fuzzy pairwise 
comparison, Fuzzy normalization, Approximate fuzzy eigenvalue. 

1. I N T R O D U C T I O N  

One of the most important  problems in fuzzy multiple at tr ibute decision making is the estimation 
of a normalized set of fuzzy weights from a positive fuzzy reciprocal matrix, which was obtained 
by the use of fuzzy pairwise comparisons of the various factors based on the opinion of an expert. 
However, there exists no systematic treatment of this important  problem in the literature. The 
purpose of this paper is to examine the existing methods in the literature systematically and to 
propose some improvements based on this examination. 

In order to t reat  the fuzzy version systematically, the crisp version of this problem is first 
summarized in the following. Suppose we have N factors F1, F 2 , . . . ,  FN and a crisp (nonfuzzy) 
matrix M = [r i j ]gxN , we wish to estimate a set of positive weights, w = ( w l , w 2 , . . . , W N ) ,  

N ~-~i=1 wi ---- 1, from M. The elements rij in M are obtained in such a way that  they represent the 
estimates of the relative significance between the factors Fi and Fj,  or rij = w i / w j .  Therefore, 
rij can be assumed as a ratio from [1/9, 1] U [1, 9] [1] and rij = 1 / r j i  by the reciprocal property. 
Because of these assumptions, if M is consistent (i.e., r i j r jk  = rik), we can determine the set of 
crisp weights wi, i -- 1 , . . . ,  N, such that  

wi 
- -  = rij ,  Vi, j .  
w j  

Unfortunately, in real-world situations, we usually only have the estimates of rij,  and the actual 
value for rij  may not be known. The question then arises: how to find wi, i -- 1 , . . . ,  N,  such 
that  

wi 
rij ~ - - ,  Vi, j .  (1) 

w j  
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Various approaches have been proposed to obtain this set of crisp weights. They can be roughly 
classified as: 

(a) the eigenvector method [1-5], 
(b) the least squares method (LSM) [6,7], 
(c) the logarithmic least squares method (LLSM) [8,9], 
(d) the geometric row means method (GRM) [8-12], 
(e) the weighted least squares method (WLSM) [13], and 
(f) a category of methods that  involve only arithmetic operations: the row means of normal- 

ized columns approach [1, p. 239], the normalized row sums and the inverted column sums 
methods [9, p. 429]. 

The fuzzy version of this problem with fuzzy pairwise comparisons can be depicted as follows: 
How to find Wi, i = 1 . . . .  ,N,  such that  

Wi 
Rij ,~ Wj'  Yi,j, (2) 

where Rij, Wi and Wj represent fuzzy numbers, and M = (Rij)NxN is a fuzzy matrix obtained 
from fuzzy pairwise comparisons. 

Several fuzzy extensions of the nonfuzzy methods of (1) have been proposed in the litera- 
ture [14-18]. These extensions will be discussed in detail in this paper. One important advantage 
of the fuzzy approach is the fact that  opinions can be represented fuzzily. Since experts frequently 
cannot give clear cut opinions, there is a need to develop approaches which have the ability to 
represent fuzzy or vague opinions. With the use of the fuzzy approach, data can now be estimated 
and given with fuzziness, tolerance, or vagueness by the experts. 

In the investigation of the fuzzy approaches, the following issues are emphasized: 

(i) the meaning of fuzzy positive reciprocal matrix, fuzzy normalization, and fuzzy consistency 
in a fuzzy environment, 

(ii) the proper estimation or translation of the fuzziness of the original data  into a normalized 
set of fuzzy weights, 

(iii) the relationships between the estimated fuzziness of the original data  and the method of 
normalization used, and 

(iv) the limitations and the possible approaches to overcome these limitations for some of the 
existing methods. 

As a result of these investigations, several improvements or new approaches are proposed. Some 
of them are: 

(i) defined and investigated two different approaches for fuzzy normalization, 
(ii) fuzzy extension of the crisp (nonfuzzy) row means of the normalized columns method 

(RMNC) [1, p. 239] is defined and investigated, and 
(iii) a procedure for estimating an approximate fuzzy eigenvalue is proposed. 

Finally, numerical examples are used to evaluate and to compare the various existing and the 
newly proposed methods. 

2. P O S I T I V E  F U Z Z Y  R E C I P R O C A L  M A T R I C E S  

In order to construct the positive fuzzy reciprocal matrices, fuzzy arithmetic operations must 
be properly defined. Furthermore, since the representations are fuzzy and approximate, some 
approximations to simplify the arithmetic operations are also proposed in the following. 

2.1. Fuzzy Arithmetics  

The fuzzy numbers will be represented by the L-R type representation as was proposed by 
Dubois and Prade (see reference [19]). Two equivalent forms are usually used. The standard form, 
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A -- (m, f~, 7)L-R, where f~ and V represent the left and right spreads, respectively, m represents 
the mode, and the subscripts L and R represent the left and right reference (shape) functions of A, 
respectively. This standard form will be referred to as the spread form. The second equivalent 
representation of A is A = (/, m, u)L.R, where I < m < u, and l(= m - ~) and u(= m + 7) 
represent the lower and upper bounds of A, respectively. This second form will be referred to as 
the bounded form. Triangular fuzzy numbers with the following membership functions are typical 
examples: 

x - I  x - l  
m - l -  /3 ' x c [l,m], 

u - - x  u - - z  
- - - - - - ,  x e [m,u ] ,  
u - m  7 
0, otherwise. 

Flat fuzzy numbers are also used in the literature. In the bounded form, the flat fuzzy number 
can be represented by A = (l, m, n, U)L_R where l < m < n <_ u, and l and u represent the 
lower and upper bounds, respectively, and m and n represent the lower and upper endpoints of 
the modal interval of A, respectively, and #A(X) = 1, Vx[m, n]. Trapezoidal fuzzy numbers with 
trapezoidal shaped membership functions are typical flat fuzzy numbers. 

Fuzzy arithmetics can be defined by the use of Zadeh's extension principle. A unary operation, 
in the general form of B = f(A),  has the membership function 

#P(Y) = sup min(#A(X)). (3) 
y=f(x) 

Thus, the membership function of the resulting fuzzy number B from a unary operation is 
obtained by mapping the fuzzy number A through f .  For the binary operation, C -- f (A,  B), we 
have 

# c ( z ) =  sup min(#A(X),#s(y)). (4) 
z----f(x,y) 

Let A be in the bounded form, A --- (1,m,u)L-R (or A = (l, m, n, U)L.Ft as a flat fuzzy number) 
and be positive (i.e., 1 > 0 or / > 0), then the following unary fuzzy arithmetics can be obtained 
based on equation (3): 

(a) Scalar division, B = A/a,  Va E (1, +oo): 

#B(Y) = #A(X)[x=y~ and 

(b) Inverse, B = A- l :  

#B(Y) = #A(X)lx=l/y and 

(c) Logarithm, B = In(A): 

 B(y) =  A(x)lx=oxp(y , 

B ( l  m u )  ( o r b  ( ~  m us) ) , , , , n  
= = - ,  . ( 5 )  

(7 O" L-R. dr L-R 

B =  ' m ' i  a'-L' 

and 

( ° r B  (-lu ' 1  1 1 )  ) 
= , , . ( 6 )  

n m l R'-L' 

B = (ln(/), ln(m), ln(U))L,m, (or B = (ln(/), ln(m), ln(n), ln(U))L,m,). 

(d) Exponential, B = exp(A): 

#B(Y) = ~tA(X)[x=ln(y ) ,  and 

B = (exp(/), exp(m), exp(u))L,_ R, (or B = (exp(/), exp(m), exp(n), exp(u))L, R, ) . 

(e) N-root, B = A1/N: 

#B(Y) = #A(Z)[x=y,,, and 

B= ( ll/N'ml/N'ul/N)/L'-R' (or B= (ll/N'ml/N'nl/N'ul/N)L'-R')" 

(7) 

(8) 

(9) 
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It is important to notice that  in (6)-(9), the shapes of the resulting membership functions, #B(Y), 
are different from that of #A(Y)  of the original fuzzy number A. Therefore, different subscript 
notations L ~ and R ~ are used for the resulting fuzzy number B. 

The shapes of the resulting membership functions for B in (6)-(9) may be very complicated 
and difficult to manipulate. However, because of the fuzzy or approximate nature of the repre- 
sentation, approximations have been proposed in the literature for the resulting fuzzy numbers 
in (6)-(9). The general idea for the approximation is to use directly the original L and R refer- 
ence (shape) functions of the fuzzy number A for the bounds (or spreads) and the mode of the 
resulting fuzzy number B. In other words, 

( 1 1  1 )  (10) 
(b') Inverse: B ~ ' m '  1 a-L' 

(c') Logarithm: B -- ( ln l ,  l n m ,  lnu )L .R .  (11) 

(d') Exponential: B ~ (exp(/), exp(m), exp(u))L. R . (12) 

(e') N-root: B -~ (l  1/N, m 1/N u l / g ~  (13) 
' / L - R  " 

As an example, consider the fuzzy inverse of a triangular fuzzy number. Let A -- (/, m, U)L_ R 
be a triangular fuzzy number and B = A -1, then, according to (6), B has the following exact 
membership function 

# B ( y ) = # A ( X = ~ ) =  1 / y - I  1 / y - I  

m - l  13 ' y E  , , 

0, otherwise. 

According to (10), the membership function for B can be approximated as 

l / m - 1 / u '  u e  ' 

# B ( Y )  -- 1/ l  - y 
1/ l  - 1 / m '  y E , , 

0, otherwise. 

(14) 

(15) 

known fuzzy addition and fuzzy subtraction formulas are: 

(ll, m l ,  U l ) L - R  -~- (/2, m s ,  uS)L-R : ( l l  -~- 12, ml + ms, Ul + U2)L-R, (17a) 

( l l , m l , n l , U l ) L - R  ~- (12,m2,n2,U2)L-R -~ (/1 + / 2 , m l  -~- m s , n l  + nS ,  Ul  + US)L-R, ( 1 7 b )  

(li, m l ,  U l )L-R  -- (/2, ms, U2)L-R ~- ( l l  -- U2, m l  --  m 2 ,  u l  --  /2)L-R,  (17c) 

( l l , m l , n l , U l ) L - a  -- (ls, m 2 , n 2 ,  U2)L-R -= (11 -- u s , m 1  -- n 2 , n l  -- m 2 , u l  - - /S)L-R.  (17d) 

Obviously, flat fuzzy number arithmetic operations can be approximated in a similar manner. 
Another approximate formula for fuzzy inverse has also been proposed [19]. This approximate 

formula used essentially the same idea as that used in formulating (10) except in the spread form. 
Let A = (m,~,~')L-R, then B = A -1 was approximated as: 

Z, , m2 • 7rt2 ' R-L 

The differences between these two approximations are: 7/m s > (i/m - 1/u) and 13/m s < 

(I/l - l/m), for 7,, 13, l > 0. Formula (16) is best applied to situations where the fuzzy inverse 

(the resulting fuzzy number) occurs in the neighbor of its mode; i.e., its spreads must be relatively 
small compared to its mode. 

The arithmetics of binary operations can also be obtained based on the extension principle. 
Assuming all the fuzzy numbers have a same type of reference (shape) functions, then the well 
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Fuzzy multiplication changes the shape of the fuzzy number because of the nonlinear effect of 
multiplication. Suppose we have Ai = (li, mi, Ui)L-a, li >_ 0, i = 1 , . . . ,  N and C = I-IN=I Ai. Let 
Ai = [/~(~),ui(c~)] represent the c~-level set of A~, i = 1 , . . . ,  N, c~ e (0, 1]. Then, according to 

the extension principle, C has the c~-level set, 

c ~ = t~(a) ,  u ~ ( ~  , ~ ~ (0 ,11 .  ( i s )  

Thus, in general, the shape of the resulting membership function of C differs from that  of Ai. 

The same results hold for the flat fuzzy numbers A~ = (li, m~, ni, Ui)L-rt, i = 1 , . . . ,  N. The exact 
formula for multiplication is 

# c ( z )  = al r-rN , ,, where x i (a )  e {/ i (a) ,u i (a)}  i = 1 , . . .  N, c~ e (0,1], and 
z = l  l i=  1 xlt~) ~ 

C = li, mi, ui or C = li, mi, ni, ui • (19) 
i=1 L'-R' i=1 i=1 i=1 L'-R' 

As an example, consider the trapezoidal fuzzy number Ai = (li, mi, n i ,  Ui)L_R; f r o m  (18), we 

have 

C '~ = (mi  - li)c~ + li), H ( u i  - (ui - ni)c~) (20) 
i=1 

For triangular fuzzy numbers, simply let ni = mi, i = 1 , . . . ,  N, in the above formula. 
Analogous to the approximations for the unary operations, an approximate formula for fuzzy 

multiplication can be defined as 

C = li, mi, ui or C -~ i, mi hi, ui , (21) 
i=1 L-R i=1 i=1 i=1 L-R 

in which the reference functions L and R of Ai are directly applied to the lower and upper bounds 
and the mode of the resulting fuzzy number. 

Dubois and Prade [19] also proposed an approximate formula for fuzzy multiplication. For 
fuzzy numbers Ai = (mi,/~i, 7~)L-R, i = 1,2, rewrite (21) in the following equivalent form 

C ~ (mlm2, m1~2 + m2/31 - ~1~2, ml~f2 -1- m2"h q- ~ I ~ ' 2 ) L - R .  (22) 

When fi1,71,/~2, and 72 are small compared to ml  and m2, C = A1 x A2 may be approximated 
by 

C(mlm2, m l ~ 2  -b m2/31, ml ' ) '2  q- m2")'I)L-R. (23) 

2.2. Posit ive Fuzzy Reciprocal Matrices 

The positive reciprocal matrices are generally formed by pairwise comparisons among the 
various factors and is usually carried out by an expert based on certain criterion. A problem with 
N factors, F 1 , . . . ,  FN,  forms an N by N comparison matrix. In nonfuzzy pairwise comparisons, 
two crisp factors are compared and a ratio (rij) is determined from [1/9, 1 ]O[1 ,  9] (see [1]). 
Fuzzy pairwise comparisons can be conducted and defined similarly. The fuzzy ratio, Rij, can be 
defined as Ri j  = (l, m,  U)L.R, where l < m < u and l , m , u  E [1/9, 1] t_J [1, 9]. As an example, 
Ri j  = (1 /2 ,  1, 1.5)L.R. If fiat fuzzy numbers are used, then R~ 3 = (l, m, n, U)L_R, where 
l < m < n < u a n d l ,  m , n ,  u c [ 1 / 9 ,  1]U[1 ,  9 ]. An example can be (1/2,  1, 1.5, 2)L-ft. 

• The comparison matrix will be represented by M = (Rij)gxg. After the fuzzy pairwise 
comparisons for all these factors have been carried out, the elements of the upper triangle of the 
fuzzy matr ix M are obtained. The next step is to obtain the other half of the matrix M by using 
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the fuzzy inverse, Rj~ = 1/Rij ,  i , j  = 1 , . . . ,  N.  As has been discussed earlier, three fuzzy inverse 
formulas may be used: the exact formula (6) and the approximate formulas (10) and (16). Thus, 
three variations of the fuzzy matrix M are obtained. Let 

Rl l  R12 
R21 R22 

M =  : 

RN1 RN2 

"'" R 1 N  

• . .  R 2 N  

• . .  R N N  

where Rji  = 1/Rij ,  for j = 2 , . . . ,  N and i = 1 , . . .  , j  - 1. The three variations are: 

(a) Using the exact formula (6), we have 

(1, 1, 1) (/12, m 1 2 ,  U l2 )L-R  • '"  ( l l g ,  m l g ,  U l N ) L - R  

( 1 ,  1 1 )  (1, 1, 1) "'" ( 1 2 N , m 2 N , U 2 N ) L - R  
~ ~12'172 ~,_L, 

M(6) = 
: : • . .  : 

1 1) (1  1 1) 
UlN' mxN' l~N R'-L' u~N' m~N' I:~ ~'-L' 

(b) Using the approximate formula (10), we have 

(1, 1,1) ( l l 2 , m l 2 ,  Ul2)L-R "'" ( l l N , m l N , U l N ) L - R  

( 1  __1,  1 )  (1,1,1) "'" (12N,m2N,U2N)L-R 
2 ~ m 1 2  112 R-L 

M(10) = 
: : " . .  : 

(1  (1  1 ,  1,1,1/ 
UlN' mlN  l R-L U2N' m2N l R-L 

(C) Using the approximate formula (16), we have 

( 1 , 0 , 0 )  ( m 1 2 ,  ~12,  ")'12)L-R "'" ( m l N , ~ I N , " f l N ) L - R  

1 , (1, 0) "'" (m2N,/32N,3'2N)L-R 0, 
~1~ m~' m~]~_~ 

M(16) = 
: : " . .  : 

( 1  '71N /31N) ( 1 , ~2N ~2N'~ ""  (1,0,0) 
h-~ ,~ '~  ~1~ ~_L ~ ~ ' 

The matrices for fuzzy palrwise comparisons for flat (or trapezoidal) fuzzy numbers can be formed 
similarly. 

Before we can proceed further, we need to introduce the following definitions about fuzzy 
reciprocal matrices. 

DEFINITION 1. A fuzzy matrix M = (Rij)N×N is a positive fuzzy reciprocal matrix i f  

R 0 ×Rj~,-~I  and m~j × m j ~ = l ,  Vi, j = l  . . . . .  N, 

where ~ means approximately equal• According to Definition 1, M(6), M(lo) and M(16) are 
positive fuzzy reciprocal matrices. For example, in M(6), we have 

for i, j = 1, . . . , N .  
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DEFINITION 2. A positive fuzzy reciprocal matrix M = ( Rij ) is fuzzily consistent if 

R ~ j x R j k ~ R i k  and m i j x m j k = m i k ,  Vi, j , k = l , . . . , N .  

In other words, Definition 2 requires an exact consistency in the modes and approximate 
consistency in the spread, Rij x Rjk ~ Rik. However, this approximate consistency may be 
interpreted differently under different circumstances. 

Definitions 1 and 2 become even more fuzzier for flat or trapezoidal fuzzy numbers. It is 
because of the fact that,  with flat fuzzy numbers, it can only be required that  there are some 
cij • [mij, nij] and some cji • [ m j i ,  nji], satisfy cij × cji = 1 for Definition 1. We have a 
similar problem for Definition 2, that  is, mji and nj~ in cij • [m~j, n~j], Cjk • [mjk, njk], 
and cik • [mik, nik] can only be approximately fixed and thus, we cannot require the entire 

modal intervals of a flat fuzzy number satisfy mij x mjk -~ mik. 
Another problem is that  the lower bound of an element of Rji in the matrix M(16) (that is 

the fuzzy inverse of Rij) may be negative. For example, if Rij ---- (mij, ~ij, ~'i j)L-R = (2, 1, 2.5)L-R 
in the spread form, then the fuzzy inverse of R~j,Rj~ is (1/2,2.5/22, 1/22)R_L. Using (16), a 
negative lower bound, 1/2 - 2.5/22 < 0, is resulted. This confirms the fact discussed before, that  
is, the approximate formula (16), or the matrix M(16), is appropriate to use only when the fuzzy 
parameters are not too fuzzy. 

3. N O R M A L I Z A T I O N  

Normalization of a set of fuzzy weights is important not only for the reason of unbiasedness 
and easy interpretation, but also is necessary for reaching a unique solution for some methods 
such as the logarithmic least square method. In the crisp case, a set of positive crisp numbers 
is said to he normalized if their sum is equal to one. In the fuzzy situation, different meanings 
of "fuzzy normalization" can be formulated. Thus, we need a definition for fuzzy normalization. 
By using the (~-level set concept, the following definition can he formulated. 

DEFINITION 3. Let [l* (a), u~ (a)] represent the a-level set of the positive fuzzy number Wi in the 
set {Wi; i = 1 , . . . ,  N}. The set {Wi; i = 1 , . . . ,  N} is said to be fuzzily normalized if 

Va • (0, 1]. 

DEFINITION 4. I f  Definition 3 is satisfied only at a = 1 and a = O, then it is called the re- 
laxed fuzzy normalization. The equations for the relaxed normalization for the fuzzy number 

( l i ,  m i ,  Ui)L-R a r e :  

N N 
mi - 1, for a = 1, 

i=1 i = l  

N N N t'i N 
* Z  Z ~ ui - 1 ,  f o r a = O .  

i=1 i=1 i= l  "= 

and for the fiat fuzzy number, the first equation in the above two equations is replaced by: 

N N N N 
, m~ ~ n______j____~ = 1, for a = 1. 

m* ~ n~ = ~ ~.~N=l n i ~_~N=i m ~ 
i=1 i=1 i=1 "= 

The second equation for a = 0 remains unchanged. 

In the following, two different definitions, namely, fuzzy normalization with fuzzy division 
(FNFD) and geometric fuzzy normalization (GFN), are defined and discussed. 



28 P.-T. CHANG AND E. S. LEE 

3 . 1 .  F u z z y  N o r m a l i z a t i o n  w i t h  F u z z y  D i v i s i o n  ( F N F D )  

Fuzzy normalization can be considered as a fuzzy extension of the crisp normalization by the 
use of fuzzy addition and fuzzy division. But, in crisp normalization, only the modes appear 
in the equations and need to be considered. In fuzzy normalization, we must consider both the 
mode and the spreads and thus is much more complicated. In the following, the normalization 
of both the fuzzy number (l, m, U)L-R and the fiat fuzzy number (l, m, n, U)L-R in the bounded 
form are discussed. 

3.1.A. Fuzzy  n u m b e r  (li, m i ,  Ui)L_ R 

To normalize the fuzzy number Xi = (li, mi, Ui)L-R, li >_ O, i = 1 , . . . ,  N,  we first apply fuzzy 
addition (17a). 

T = E Xi = li, mi, ui . (24) 
i=1 i=1 i=1 L-R 

Then, each Xi is divided by T--or  multiplied by the inverse of T; that  is, by applying the exact 
formula (6) for fuzzy inverse and (19) for fuzzy multiplication. The final results are 

T ~-- , , - -  , i = 1 , . . . , N .  (25 / 

It is easy to show that  the results in equation (25) satisfy Definition 3. Let [Xi/T]a denote the 
a-level set of X~/T, i = 1 , . . . ,  N, 0 <_ a <_ 1; then by the extension principle, [XjT]a can be 
represented as 

Summing these lower and upper endpoints in the right-hand-side of equation (26) over all 
i = 1 , . . . ,  N, we obtain the desired result. 

If we use the approximate formula (10) for fuzzy inverse and the approximate (21) for fuzzy 
multiplication, we have 

X ~  ( l~ m~ u~ ) 
-~- = ~- ,EN= , N- l ' i = 1 , . . . , N .  (27) 

i=l Ui 1 nti ~-~i=1 i L-R 

Equation (27) satisfies only the relaxed fuzzy normalization, Definition 4. For 0 < a < 1, 
Definition 3 does not hold. 

Moreover, if we use the approximate formula (16) for fuzzy inverse and (23) for fuzzy multipli- 
cation, the results do not satisfy even the relaxed normalization definition. 

3.1.B. F l a t  fuzzy  n u m b e r  (l~, mi, hi, Ui)L-R 

By using the same procedure as that  used to obtain (25); we obtain, for fiat fuzzy number 
X i  = (l~, mi, ni, Ui)L-R, i = 1 , . . . ,  N, the following result: 

- y . . . .  i = 1 , . . . , N .  (28) 
)-~=1 ui ~ Y  1hi ~N=I mi  ~ N l l i  L'-R' 

It is easy to prove that  Equation (28) satisfies the fuzzy normalization, Definition 3. 
If we use the approximate formula (10) for fuzzy inverse and (21) for fuzzy multiplication, we 

have 

- -  = ~ N-- u ' ' ' l fl , i = l , . . . , N .  (29) 

Equation (29) satisfies only relaxed fuzzy normalization, Definition 4. 
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3.2. G e o m e t r i c  F u z z y  N o r m a l i z a t i o n  ( G F N )  

The second fuzzy normalization to be introduced is a variation of the FNFD through the use 
of "geometric fuzzy division" instead of the regular fuzzy division. 

The "geometric fuzzy division" uses the concept of geometric mean. Let the bounded form 
of fuzzy numbers be represented by A1 = (ll,ml,Ul)L-R and A2 = (12,m2, U2)L-R (or A1 = 
(11, ml ,  nl ,  UI)L-R, A2 = (/2, m2, n2, U2)L-R), then A1/A2 may be approximated by the use of the 
concept of geometric mean as: 

( ll , ml Ul ) 
A1 - ( 1 2 u 7 )  1 /2  , (30) A-~-  m 2  (/2~2) 1/2 L-R 

A1 ~ (12u~) 1/2 , , (31) or ~22 (m2n2) 1/2' (m2n2) 1/2 (12u2) 1/2 L-R 

where the reference (shape) functions L and R for A1 and A2 are directly applied to the lower 
and upper bounds and to the mode of the resulting A1/A2. 

Thus, for the fuzzy number {Xi; i = 1 , . . . ,  N}, X~ = (li, mi, Ui)L-R, the GFN can be defined 
as :  

- -  = ' 1 / 2  , i = l , . . . , N .  ( 3 2 )  

Notice that  equation (32) does not alter the normalization of the modes of Xi/T .  The geometric 
mean of the sums are only used in the normalization of the lower and upper bounds. Equation (32) 
satisfies the relaxed concept of fuzzy normalization, Definition 4. 

N N 

l, E u~ = 1. (33) 

For flat fuzzy numbers, Xi = (li, mi, n~, Ui)L-R, i = 1 , . . . ,  N, the geometric fuzzy normalization 
is defined in a similar manner as: 

X__~i __ ( li mi 

for i = 1 , . . . , N .  
normalization. 

ni ui 

L-R 

(34) 

It can be shown that  equation (34) satisfies the relaxed concept of fuzzy 

3.3. C o m p a r i s o n s  b e t w e e n  F N F D  a n d  G F N  

First, we shall show that  GFN always provides a result of normalized set of positive fuzzy 
numbers that  are less fuzzier than those provided by FNFD. 

From equations (27) and (32) for (li, m~, Ui)L-R, we obtain the following inequalities: 

l~ < li u.i _< ui 
i=1 i=1  i=1 

(35) 
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and 
l~ l~ ui ui 

- -  <_ < < ( 3 6 )  
N l 1/2 -- g xl/2 -- " ziN=lui ( Z i = l  i Z N : l u i )  ( z / N = l l i ~ i = l ~ i )  ~/N:I li 

Thus, FNFD always gives a result that  is fuzzier than that  obtained by GFN. 
For flat fuzzy numbers, in addition to inequality (35), we also obtain the following inequalities 

from equations (29) and (34): 

m, < m, ~ n, < ~ n,, (37) 
i=1 i=l i=l 

and 
mi mi ni ni 

--< 1/2 < (38) 
~-~i=1 i ~N=I rti ~2..~i~-1 mi 2..~i=1 ni E i = l  mi 

Thus, for fiat fuzzy numbers, GFN not only gives a result which is less fuzzier, but also has a 
narrower modal interval than that obtained by FNFD. 

Next, we wish to discuss the limitations of the GFN approach. The main problem with this 
approach is that  the results may contain expressions that  are not fuzzy numbers, or, violating 
the assumptions of fuzzy numbers. For example, the resulting fuzzy number may not obey the 
requirements: lower-bound <_ mode <_ upper-bound. 

This limitation becomes even more critical for flat fuzzy numbers, because for flat fuzzy num- 
bers, the modal intervals are also influenced by the GFN approach. 

4. N O R M A L I Z E D  F U Z Z Y  W E I G H T S  

The approaches proposed in the literature for estimating a normalized set of fuzzy weights 
from a positive fuzzy reciprocal matrix are summarized in the following. Emphasis is placed 
on the advantages and problems of these approaches. As a result of these summaries, two new 
approaches are proposed. These various approaches will be examined in more detail in the next 
section by the use of numerical examples. 

4.1. T h e  Fuzzy  L o g a r i t h m i c  Leas t  Square  M e t h o d s  ( F L L S M )  

The fuzzy logarithmic least square methods (FLLSM) were proposed by van Laarhoven and 
Pedrycz [16] and Soender et al. [14]. 

Laarhoven and Pedrycz used triangular fuzzy numbers, the approximate formulas (10)-(12) 
and (21), and the exact formula (17). The fuzzy pairwise comparison matrix was constructed 
as M(10). Assuming the matrix was M = (Ri j )g×g with Rij = (lij, mi j ,  Uij)L-R of the bounded 
form and also assuming ~ij expert(s) were used to give their opinions for the pairwise com- 
parison, R i j ( i , j  = 1 , . . . , N ) .  Denote each of these Rij as Rijk (k = 1 , . . . , ~ i j )  and Rijk = 
(lijk, mi jk ,  Uijk)L_ R. Generally, $ij can be 1, 2 . . . .  , etc. The problem is to estimate the normal- 
ized set of positive fuzzy weights {Wi; i = 1 . . . .  , N}, W~ = (wiz, wire, Wi~)L-R of the bounded 
form. 

These investigators used the following logarithmic least square minimization: 

~ ln (R i /k ) -  In --~ min. 

By using the fuzzy division (equations (10) and (22)) for W~/Wj  and equation (11) for the fuzzy 
logarithmic operation, the above problem was transformed into 

- ln(w  ) + ln(wj )} 2 + {ln(m j ) - ln(w m) + ln( jm)} 
i<j k=l 

+ {ln(uijk) - ln(wiu) + ln(wjt)} 2 --~ min. (39) 
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From (39), the following system of normal equations can be obtained: 

N N N ~o 

ln(wa) E $ij - E 5ijln(wju) = E E ln ( l i J  k)' 
j # i  j # i  j # i  k=l 

N N N 50 

In(wire) E ~Sij - E 50In(wire) = E E ln(mOk)' 
j # i  j # i  j # i  k=l  

N N N ~,3 

i = 1 , . . . ,N ,  (4Oa) 

i = 1 , . . . ,N ,  (40b) 

( Z S 1  exp (x i l )  ~-~N=I e x p ( x i u ) ) 1 / 2 '  

N 

E exp(xim)b' = 1, 
i=1 

1 
b' = 

EiN=I exp(xim) " 

which implies that 

a ! 

N N 

E exp(x i l )a 'E  exp(xi,)a' = 1, 
i=I  i=1 

numbers, then we should have 

in(wi~) E ~ f O - E S o l n ( w j ~ ) =  E E l n ( u o k ) ,  i=  1 , . . . ,N.  (40c) 
j#i j#i j#i k=l 

Notice that (40b) is for the modes ln(w~m), and (40a) and (40c) for the lower and upper bounds, 
respectively. Since ln(lijk) + ln(lj~k) = ln(uok ) + ln(ujik) = O, equations (40a) and (40c) sum 
to zero and are thus linearly dependent. The subsystem (40b) for the modes coincides with the 
conventional nonfuzzy LLSM. The system has an indefinite number of solutions. 

To solve the system (40); we first set any one of the unknowns in ln(wim), i = 1, . . . ,  N, equal to 
an arbitrary given constant (say, c > 0); and also set any one of the other unknowns in ln(wa) and 
ln(wiu), i = 1 , . . . ,  N, equal to an arbitrary given constant (say, d > 0); then the other unknowns 
are obtained by solving equations (40). Let X~, i = 1,. . .  ,N  and Xi = (xa,xim,xiu) be an 
arbitrary solution thus obtained, then, the general solution for system (40) can be represented 
by 

(xu +a, xim + b, x~ + a), i = 1 , . . . ,N,  (41) 

where a, b :> 0 are arbitrary constants. If a = b = 0, then c and d must be nonzero. 
After first taking the fuzzy exponential by using (12), and then normalizing the general solu- 

tion (41), a unique solution can be obtained which is a normalized set of fuzzy weights: 

( e x p ( x i l + a )  exp(xim + b) exp(x~ + a) ) , i = l , . .  . ,N  ' 
Wi = ~_~N_ 1 exp(xiu + a)' EN=I exp(xim + b)' EiN__I exp(xil + a) L-R 

(42) 
where fuzzy normalization by the use of fuzzy division (FNFD) has been carried out. 

It was noted by van Laarhoven and Pedrycz, solution (41) may not always satisfy the condition: 
xa +a < xi,~ +b < xiu +a,  i = 1 , . . . ,  N. But, in general after normalization, the final normalized 
results (42) form a set of correct fuzzy numbers. 

Boender et al. [14] observed that the normalized set of fuzzy weights (42) does not actually 
minimize the least square problem (39). This is because the fuzzy weights were obtained by 
dividing the lower and upper bounds by different constants. Therefore, starting from the fuzzy 
exponential (12) of the general solution (41), 

(exp(xiz)a', exp(zim)b', exp(xiu)a'), i = 1, . . . ,  N, (43) 

where a' = exp(a) and b ' = exp(b), Boender et al. proceeded to seek the values for a ~ and b' 
such that the optimal solution for (43) was also normalized. Their idea happens to coincide with 
the relaxed concept of fuzzy normalization; that is, if (43) represents a normalized set of fuzzy 
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Thus, we should obtain 

= l (  exp(xa) exp(xim) 

EN=I exp(xiz) E~=I exp(xiu))1/2, E~=, exp(xim)' 

exp(xiu) .) , 
( N ~-'~i=1 exp(xil) Ei=l exp(xi~)) 1/2 L-R 

(44) 

with i = 1, 2 . . . .  , N. As can be seen, equation (44) uses the geometric fuzzy normalization and 
satisfies the relaxed concept of fuzzy normalization. 

As has been pointed before in discussing the Laarhoven-Pedrycz's FLLSM, the general solution 
for (41) may have some fuzzy numbers where xil > x~m or xiu > xim. This same phenomenon may 
also occur in the above modified FLLSM due to Boender et al. However, after experimenting with 
a number of examples, we reached the same conclusion as that  reached by Laarhoven and Pedrycz 
for their FLLSM: in general, this phenomenon does not cause any problem in the applications of 
FLLSM due to Boender et al. 

However, as was discussed in Section 3.3, the GFN does have some limitations. To illustrate, 
consider the following bounded form example. 

R12 -- (3, 4.5, 5)L-R, R13 -- (6, 8, 8.5)L-R, R14 : (5, 5.5, 6)L-R, 
(45 )  

R23 --  (3, 4, 4.5)L.R, R24 = (4, 4.5, 5)L-R, R34 = (4, 5, 5.5)L.R, 

Using the above numerical values, solving (40) we obtain: 

X1 = (2.862, 3.027, 3.051), 

X3 = (1.169, 1.241, 1.373), 

X2 -- (1.943, 2.051, 2.182), 

X4 = (0.5, 0.5, 0.531). 

Using (44) the following final results are obtained: 

W1 = (0.541, 0.616, 0.654)L-R, 
W3 -: (0.100, 0.103, 0.122)L-R, 

W2 = (0.216, 0.232, 0.274)L_R, 

W4 = (0.051, 0.049, 0.053)L_R, 

in which, unfortunately, we have wal = 0.051 > w4u = 0.049 for the fuzzy weight Wa. On the 
other hand, if formula (42) of Laarhoven-Pedrycz's FLLSM were used, a normalized set of correct 
fuzzy numbers would have been obtained. 

The above example indicates that  a more critical problem for formula (44) is due to the 
geometric fuzzy normalization. For a possible remedy for these limitations, we may have to 
return to the original least square problem (39) and solve it with additional conditions. For 
example, for the matrix (45), the following condition 

exp(xi/) exp(xiu) _> exp(x~m) 
i= l  

may have to be added. 
Besides the above discussed FLLSM, Boender et al. [14] also proposed another FLLSM, in 

which geometric ratio scales were employed for quantifying the gradations of the decision maker's 
judgment. Because of our discussions restricted to the L-R type fuzzy numbers, this FLLSM shall 
not be discussed here. 
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4.2. The  Fuzzy Geometric  Row Means Methods  (FGRM) 

The fuzzy geometric row means method (FGRM) was proposed by Buckley [15] and Loots- 
ma [17]. 

In Buckley's FGRM, exact formulas (6), (9), and (17)-(19) were used with trapezoidal fuzzy 
numbers. The fuzzy pairwise comparison matrix was constructed as M(6 ) with trapezoidal fuzzy 
numbers. Assuming the matrix was represented by M = (Rij)g×N with the bounded form 
Rid = (lid,mid,nij ,Uid)a-R, the normalized set of fuzzy weights {Wi; i = 1 , . . . , N } ,  Wi = 
(Wil,Wim,Win,Wiu)L-R is to be estimated. If mid = nij ,  then the above trapezoidal number 
becomes the triangular fuzzy number. 

The fuzzy GRM with fuzzy pairwise comparisons Rid leads to: 

I N \ I /N  
wi= (,rIj:, Rid) 

Y'~N=I (l-I;_l Rij) llN' i= 1,...,N. (46) 

To determine the normalized set of fuzzy weights Wi for (46), the numerator on the right-hand- 

side of equation (46) was first obtained. Let Xi  = (l-I;=1 Rid) 1/y represents the geometric mean 
for row i. Applying the exact formulas (19) and (9) and the extension principle with a-level cut 
of Xi ,  denoted as [Zi],~ = [fi(a),gi(a)],  the following expressions are obtained: 

f i ( a )  : ((mid - l id)a + l,d) , gala)  = (uid - (uid - n i j ) a )  
j = l  j = l  

for 0 < a < 1. The denominator on the right-hand-side of equation (46) can be expressed as 
)--~N_ 1 Zi ,  which can be determined by the use of the a-level cut, [~N=I Xi]a = If(a),  g(a)], where 

N N 

f ( a )  = ~ f i ( a ) ,  g (a )  = ~ g i ( a )  
i= l  i= l  

The a-level cut for Wi can be determined as [ f i ( a ) / g (a ) , g i (a ) / f ( a ) ]  and Wi can be expressed 
as: 

w~ = 

I / N \ 1/N 1/N 

v--.,g ['r"rg k 1/N E N = I  [ N "~ 1 /g  ' 
2-.~i=1 ~l ld=lUi j )  kI-Id=lniJ) 

(n;:,n,) 
.~ I / N  ' 

N ,, 1/N 
l Id:l u,)  

r ~ ,  (1-I~=l lij) llsv 
L'-R' 

, (47) 

i = 1 , . . . ,  N. Equation (47) reduced to an equation for triangular fuzzy numbers if mid = nij ,  
i , j  = 1 , . . . ,  N. Fuzzy normalization with fuzzy division has been used to obtain equation (47) 
and this equation satisfies the concept of fuzzy normalization, Definition 3. 

Another FGRM approach was proposed by Lootsma [17, p. 103]. Approximate formulas (10), 
(13), and (22), and the exact addition formula (17) with triangular fuzzy numbers were used. 
This FLLSM appears to be an approximate version of Buckley's FLLSM approach. The results 
were shown to be: 

I ~ 1/N / N \ 1/N \ 

(n;:l,,D"" I (48) 
/ N \ I / N ' ~ " ~ N  (1-iN l..~ I l N ]  (n;:, u,D ''<' r :l tn,:, , , , : 1  l i l j = l  z3.] ] L-R 

29-5-D 
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with i = 1 , . . . ,N .  Due to approximation, equation (48) satisfies only the relaxed concept of 
fuzzy normalization, Definition 4. 

Another FGRM approach was proposed by Wagenknecht and Hartmann [18], where the bell 
shaped membership function was used. Extension principle was applied with the form of max- 
product instead of the usual max-min approach. This approach shall not be discussed here. 

4.3. The  Fuzzy L e a s t  S q u a r e  Method  (FLSM) 

A fuzzy extension of the least square method (FLSM) was proposed by Wagenknecht and 
Hartmann [18]. 

The approximate formulas (16) for fuzzy inverse and (23) for fuzzy multiplication with the 
fuzzy number (m, ~, 7)L-R in the spread form were used. The fuzzy pairwise comparison matrix 
was constructed as M(16). Assuming the matrix was represented by M -- (Rij)NxN with Rij = 
(?nij, ~ij, ~ij)L-R in the spread form, a normalized set of fuzzy weights {Wi; i = I,..., N}, Wi = 
(wire, wi~, Wi~)L-a is to be estimated. 

The fuzzy LSM with fuzzy palrwise comparisons Rij can be depicted as: 

Z ~  R i j -  -* rain. 
j=l iCj 

Let C~j = W i / W j ,  and applying the approximate formulas (16) and (23), Cij = W j W j  may be 
obtained as follows. 

Cij may also be written as (cijm, c~jZ, c/jr)L_R, where 

Wim (Wj*rWim --~ WiBWjm ) (WjBWim ~- Wi ,rWjm ) 
Cijrn -- , Cij~ -~ 2 ' Cij? ~ 2 

W j m  Wjrn W j m  

The fuzzy least square problem is then transformed into the following: 

N N 

~ [(Cijm _ 77~ij)2 .~_ (Cij ~ _ Zk j )2  ..~ (Cij,r _ , , / i j)2] ._+ rain, 

j=l ~¢j (49) 
N 

~-~ Wim : 1, Wire ~ O. 

There are several problems with the use of equation (49). First, (49) normalizes only the modes 
of the fuzzy weights, and thus the results do not satisfy either the concept of fuzzy normalization, 
Definition 3, nor the relaxed normalization, Definition 4. 

Second, problem (49) automatically assumed that all w~, w~ >_ 0. This prevents any possi- 
bility of lower-bound > mode or mode > upper-bound in the resulting fuzzy weights. 

Third, as already indicated in Section 2.2, if the values for Rij from some expert are too fuzzy, 
the fuzzy matrix M(16) may contain some Rji(= 1/Rij)  whose lower-bounds become negative 
(mj~ - j3ji < 0). As will be shown later, in some cases this may in turn leads to negative lower 
bounds (i.e., wire - wi~ < 0). These various factors will be shown more clearly in Section 5 with 
numerical examples. 

One possible approach to prevent the fuzzy weights having negative lower bounds is to add the 
constraints, 

Wire -- Wi~ > O, i = 1 , . . . , N .  (50) 

Another approach is to add the following normalization constraint on the lower and upper bounds 
of W~: 

N N 

i----1 i ~ l  

With (51) and the original constraint )-~N=I wire = 1, a normalized set of fuzzy weights can be 
obtained and the results satisfy the relaxed concept of fuzzy normalization, Definition 4. 
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4.4. T h e  F u z z y  R o w  M e a n s  of  N o r m a l i z e d  C o l u m n s  M e t h o d s  (FR1VINC) 

Sal ty  pointed out in [1, p. 239] that  the approach of row means of normalized columns may 
provide an estimation of a normalized set of crisp (nonfuzzy) weights. In the following, this 
approach will be extended to fuzzy problems. Two variations of the fuzzy extension will be con- 
sidered: one uses fuzzy normalization with fuzzy division (FNFD), and the other uses geometric 
fuzzy normalization (GFN). A procedure for checking the consistency of a fuzzy matrix is also 
proposed based on the computation of an approximate fuzzy eigenvalue A = (At, Am, Au)L.R in 
the bounded form. 

4.4.A. F R M N C  w i t h  fuzzy  n o r m a l i z a t i o n  w i t h  fuzzy  d i v i s i o n  

In this approach, matrix MOo ) is used. Assuming the matrix is represented by M = (Rij)N×N 
with Rij = (lij, mij ,  uij)L-R in the bounded form, a procedure for estimating a normalized set of 
approximate fuzzy weights {Wi; i = 1 , . . . ,  N}, Wi = (wiz, wire, Wi~)L-R from M is introduced in 
the following steps. 

STEP 1. Compute a column-normalized matrix M* = (Ri*j)g× N from M by 

. . . .  Rij ~ lij mij uij ) 
RiJ ( l i j 'mij '  uij)L-R EiN=I Rij ~ Ei=l  uij EiN=l ~'tiJ EiN=l lij - L-R 

(52) 

with i , j  = 1 , . . . , N .  Fuzzy addition (17a) and approximate fuzzy division were used in equa- 
tion (52), where fuzzy division is carried out by first using fuzzy inverse (10) and then using fuzzy 
multiplication (22). 

STEP 2. Compute the row means of M* by 

; (% wi - E 1 Rij _ lij E =l mij E j = l  (53) 
N ' N ' N ' 

L-R 

with i = 1 , . . . , N .  Scalar division (5) is used in equation (53). The normalized set of fuzzy 
weights is thus obtained. 

STEP 3. Compute an approximate fuzzy eigenvalue by the following procedure: Consider the 
following fuzzy version of the eigenvector problem, 

M W  = A T ,  (54) 

where M is the fuzzy pairwise comparison matrix and W = (W1, W2, . . . ,  WN) T is obtained in 
Step 2. Our problem is to find the fuzzy eigenvalue A. 

First, let P = M W ,  where P = (P1, Pu . . . . .  PN) T can be determined by 

Pi = E R i jWj  -- lijwjl, mi jwjm,  uijwj~ , (55) 
j = l  j = l  j = l  ,] L-R 

with i = 1 , . . . ,  N. Approximate fuzzy multiplication (22) and fuzzy addition (17a) are used in 
equation (55). From equation (54), we also have the following relations 

Pi ~ AiWi, for each Pi, i = 1 , . . . ,  N, 

where A~ represents an approximate fuzzy eigenvalue from the ith relation. Let P~ = (Pil,Pim, 
Piu)L-R for all i, it follows from the ith relation that  

(Pit , Pim , Piu )L-R ~ ( Ail , Aim, Aiu)L-R × (Wit, Wire, Wiu )L-R -~ ( AilWil , Airn Wim , Aiu Wiu )L-R. 
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Using this relation and equation (55), we determine Ai as 

/~i "~ ( ) q l , ) ~ i m , / ~ i U ) L . R  = ~-~J=l-'~jWjl, EN=l m'3w~m , )"~3=! U~----3W3~' , (56) 
\ w~l wire wi~ ) L-R 

with i = 1 , . . . ,  N.  It should be emphasized that equation (56) was not obtained by the use of 
fuzzy division. A final approximate fuzzy eigenvalue may be determined as 

N 'Z..~ N '/__Z~l L-R i=1 i=1 

This approximate fuzzy eigenvalue obtained from the above procedure can be used to check 
the consistency of the fuzzy palrwise comparison matrix. 

4.4.B. F R M N C  with geometric fuzzy normalization 

The other variation of the FRMNC is obtained with the use of the geometric fuzzy normal- 
ization instead of using fuzzy normalization with fuzzy division. This variation can be obtained 
easily by simply replacing equation (52) in Step 1 by the following equation: 

/ \ 
_-- / m'J / R~ (58) 

[x-'N I - v ' N  \112' n ' 
kA-~i=l ,3 A.~i=l UiJ) Ei=x mi~ {X'-,N l X-"N U" "~ 1/Z I ~,I-.~i=1 ~,j L.~i=I ~3 ] ] L-R 

and leaving Steps 2 and 3 unchanged. 
Because geometric fuzzy normalization is used, some of the Ri*j (particularly the Ri*i) in Step 1 

may exhibit the phenomenon lower-bound > mode or mode > upper-bound. In general, however, 
the final results in Step 2 will be a normalized set of correct fuzzy numbers. This is the same 
phenomenon which also occurs in both the Laarhoven-Pedrycz and the Boender et al. approaches. 

5. N U M E R I C A L  E V A L U A T I O N S  A N D  C O M P A R I S O N S  

In this section, the various versions of the approaches, which were summarized in the previous 
section, will be evaluated and compared by the use of numerical examples. A total of eight 
methods were considered. 

Since Buckley and Lootsma give exactly the same lower and upper bounds, and also the same 
mode, these two approaches will be treated as one approach and will be abbreviated as "B-L." 
Three separate versions can formed based on the approach of Wagenknecht-Hartmann: 

(a) Equation (49) and abbreviated as "WHI," 
(b) equation (49) with constraint (50) and abbreviated as "WH2," and 
(c) equation (49) with constraint (51) and abbreviated as "WH3." 

The two variations of FRMNC are: 

(a) fuzzy normalization with fuzzy division (FNFD) and abbreviated as "CL-D," and 
(b) geometric fuzzy normalization (GFN) abbreviated as "CL-G." 

The Laarhoven-Pedrycz approach will be abbreviated as "LP," and the Boender et al. approach 
will be abbreviated as "B." 

Twelve numerical examples were solved. Six are for the comparisons of four factors and the 
other six are for the comparisons of six factors. Among the twelve examples, six (three for 
the four factors and three for the six factors) were used as the base examples. Based on these 
base examples, the other six examples which are the fuzzier versions of the base examples were 
constructed. They were constructed with an increased upper bound and a decreased lower bound 
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Table 1. Fuzzy pairwise comparison matrices 1,2,3 in 4 factors. 
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M R12, R13,/~14, R23, R24, R34 M(lo) M(16) 

4-1 (3,4,5),(3,4.5,5.5),(6,6.5,7.5),(1/5,1/4,1/3),(5.5,6.5,7),(1,2,2.5).  0.387 0.350 
4-24 (2,4,5.5),(3,4.5,6.5),(5,6.5,8.5),(1/6,1/4,1/2.5),(4.5,6.5,8),(1,2,4).  0.674 0.645 
4-3 (6, 7, 8), (2, 3.5, 4), (1, 1.5, 2), (1/7, 1/6, 1/5.5), (4, 5, 6), (5, 6.5, 7). 0.339 0.308 
4-4 (5, 7, 8.5), (2, 3.5, 5), (1/2, 1.5, 3), (1/8, 1/6, 1/4.5), (3.5, 5, 7), (4.5, 6.5, 8.5). 0.689 0.615 
4-5 (1 /7 ,1 /6 ,1 /5) , (2 ,3 ,4) , (6 ,6 .5 ,7 .5) , (4 ,5 ,6) , (1 /5 ,1 /4 ,1 /3) ,  

(1/4.5, 1/3.5, 1/2.5). 0.349 0.350 
4-6 (1/8 ,1/6 ,1/4) , (1 .5 ,3 ,5) , (5 ,6 .5 ,8 .5) , (3 ,5 ,7) , (1/6 ,1/4 ,1/2) ,  

(1/5.5, 1/3.5, 1/1.5). 0.749 0.7865 

1The entries of the upper triangle are listed. 
2 Rij  = (lij, ml j ,  uij )L-R of the bound form. 
3With P~i = (1,1,1), i - 1,2,3,4; Rji = 1/Ri j ,  j = 2, 3,4 and i = 1 , . . . , j  - 1. 
4M-(4-2) is the fuzzier version of M-(4-1), M-(4-4) is the fuzzier version of M-(4-3), etc. 
5When constructed as M(16) contains negative lower bound(s) on some fuzzy entries Rji. 

Table 2. Fuzzy pairwise comparison matrices 1,2,3 in 6 factors. 

M R12, R13, R14, R15, R16, R23, R24, R25, R26, R34, R35, R36, R45, R46, R56 

¢ 

M(lo) M(16) 
6-1 

6-24 

6-3 

6-4 

6-5 

6-6 

(3, 4, 5), (1, 2, 3), (4, 5.5, 6), (7, 8, 9), (6, 6.5, 7), (1, 2, 3), (2, 3, 4), (1/2, 1, 2), 0.506 
(4, 5, 6), (5, 6, 7), (6, 7, 8), (2, 3, 3.5), (6, 7, 8), (3, 4.5, 5.5), (2, 2.5, 4). 
(2, 4, 5.5), (1, 2, 4), (3.5, 5.5, 7), (6, 8, 9), (5, 6.5, 8), (i/2, 2, 4), (i, 3, 5), 0.952 
(1/2, 1, 3), (3, 5, 6.5), (4, 6, 8), (5, 7, 8.5), (1.5, 3, 4.5), (5, 7, 9), 
(2.5,4.5,6),(1,2.5,4.5). 
(3, 3.5, 4), (3, 4.5, 5), (7, 8, 9), (5, 6.5, 7), (2, 3, 4), (1/4, 1/3, 1), 0.500 
(1/7, 1/6.5, 1/5.5), (3.5, 4.5, 5), (5, 5.5, 7), (1, 2, 3), (2.5, 3, 4), 
(1/2, 1, 1.5), (1/8, 1/7, 1/6), (1/2, 1/1.5, 1), (3, 4, 5). 
(2.5, 3.5, 5), (2, 4.5, 6), (6, 8, 9), (4, 6.5, 8), (1.5, 3, 5), (1/4.5, 1/3, 2), 1.025 
(1/7.5, 1/6.5, 1/4.5), (3, 4.5, 5.5), (4, 5.5, 7.5), (1/2, 2, 3.5), (1.5, 3, 5), 
(1/3, 1,2), (1/8, 1/7, 1/5), (1/3, 1/1.5, 1.5), (2,4,5.5). 
(6 ,7 ,8) , (1 /8 ,1 /7 ,1 /6) , (1 /5 ,1 /4 ,1 /3) , (2 ,2 .5 ,3 .5) , (6 ,7 ,8) , (6 ,7 ,8) ,  0.316 
(1, 2, 3), (7, 7.5, 8), (4, 4.5, 5.5), (7, 8, 8.5), (1/6, 1/5, 1/4), (4, 4.5, 5), 
(1/4, 1/3, 1/2.5), (5, 6, 7), (7, 8, 8.5). 
(5, 7, 9), (1/9, 1/7, 1/5.5), (1/6, 1/4, 1/2.5), (1, 2.5, 4), (5.5, 7, 8.5), 0.606 
(5, 7, 8.5), (1, 2, 4), (6, 7.5, 8.5), (3, 4.5, 6.5), (6, 8, 9), (1/7, 1/5, 1/3), 
(3.5, 4.5, 6), (1/5, 1/3, 1/2), (4, 6, 7.5), (6.5, 8, 9). 

0.478 

0.8365 

0.5115 

1.0195 

0.308 

0.579 

1The entries of the upper triangle are listed. 
2Rij = (llj, mij ,  •ij)L-R of the bound form. 
aWith Ri~ = (1, 1, 1), i ---- 1,2,3,4,5,6; Rj~ = 1/Rij,  j = 2,3,4,5,6 and i -- 1 , . . . , j  - 1. 
4M-(6-2) is the fuzzier version of M-(6-1), M-(6-4) is the fuzzier version of M-(6-3), etc. 
5When constructed as M(16) contains negative lower bound(s) on some fuzzy entries Rji. 

as  c o m p a r e d  to  t h e  base  e x a m p l e s .  T h e  m o d e s  of  t he se  c o n s t r u c t e d  e x a m p l e s  r e m a i n  u n c h a n g e d .  
T a b l e s  1 a n d  2 l i s ted  t he se  12 e x a m p l e s  b y  t a b u l a t i n g  on ly  t h e  e l e m e n t s  of  t h e  u p p e r  t r i a n g l e  of  
t h e  fuzzy  m a t r i x .  

In  o r d e r  to  give  s o m e  idea  a b o u t  t he  fuzziness  of  t h e  e x a m p l e s ,  t he  fol lowing p a r a m e t e r  is a lso  
c o m p u t e d  a n d  l i s ted  in T a b l e s  1 a n d  2: 

1 N 

i,j = 1 m i j  
(59) 
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Table 3. The results of normalized set of fuzzy weights of the six matrices in 4 
factors. (LP: Laarhoven-Pedrycz FLLSM; B: Boender et al. FLLSM; B-L: Buckle:/ 
and Lootsma FGRM; WIl l :  Wagenknecht-Hartmann FLSM, problem (49); WH2: 
Problem (49) and constraints (50); WH3: Problem (49) and constraint (51); CL-D: 
Ft~MNC with FNFD; CL-G: FI~MNC with GFN.) 

M Method Wl, W2, W3, W,, ¢ Fuzzy eigenvalue 

4-I 

4-2 

4-3 

4-4 

4-5 

4-6 

LP 
B 
B-L 
Will  
WH2 
WH3 
CL-D 
CL-G 

LP 
B 
B-L 
WHI,2 
WH3 
CL-D 
CL-G 

LP 
B 
B-L 
WHI,2 
WH3 
CL-D 
CL-G 

LP 
B 
B-L 
WHI,2 
WH3 
CL-D 
CL-G 

LP 
B 
B-L 
WHI,2 
WH3 
CL-D 
CL-G 

(.478,.590,.716)(.122,.143,.176)(.139,.207,.294)(.052,.059,.079) 0.497 
(.538,.590,.636)(.137,. 143,. 156)(. 156,.207,.262)(.058,.059,.070) 0.253 
(.412,.590,.833)(. 104,. 143,.206)(. 131 ,.207,.314)(.045,.059,.092) 0.775 
(.461,.512,.577)(. 196,.257,.301)(. 121,.165,.208)(.067,.067,.067) 0.290 

ditto 
(.469,.513,.582)(.200,.256,.304)(. 124,, 164,.210)(.067,.067,.067) 0.288 
(.383,.545,.778)(.132,. 177,.234)(. 138,.215,.33 I)(.048,.064,. 107) 0.786 
(.455,.545,.639)(. 155,. 177,.204)(. 169,,215,.272)(.057,.064,.088) 0.397 

(.406,.590,.810)(.103,. 143,.222)(. 125,.207,.357)(.042,.059,.091) 0.866 
(.494,.590,.666)(.126,. 143,. 183)(.152,.207,.293)(.05 !,.059,.075) 0.444 
(.315,.590,1.05)(.082,. 143,.283)(. 106,.207,.422)(.033,.059,. 115) 1.39 
(.437,.543,.570)(.084,. 193,.282)(.086,. 193,.269)(.056,.071,.071) 0.609 
(.495,.543,.628)(. 105,. 193,.302)(. 107,. 193,.290)(.064,.071,.079) 0.609 
(.305,.545,.969)(.099,. 177,.327)(. 108,.215,.468)(.036,.064,. 123) 1.39 
(.404,.545,.702)(. 134,. 177,.245)(. 152,.215,.329)(.047,.064,.091) 0.677 

(.318,.469,.61 7)(.097,. 112,. 130)(.291,.348,.462)(.058,.072,.100) 0.502 
(.364, .469, .540)(. 111,. 112,. 114)(.333, .348,.404)(.067, .072, .088) 0.224 
(.301,.469,.654)(.084,. 112,. 151)(.262,.348,.514)(.054,.072,. 109) 0.713 
(.354,.381,.434)(.068,.070,.075)(.433,.459,.510)(.090,.090,. 105) 0.163 
(.342,.381,.423)(.066,.070,.073)(.419,.459,.496)(.087,.090,. 1 02) 0.163 
(.295,.451,.641)(.096,.133,.192)(.233,.308,.440)(.072,. 109,.176) 0.781 
(.354,.451,.527)(.115,. 133,. 160)(.278,.308,.369)(.086,. 109,. 147) 0.394 

(.235,.469,.807)(.090,. 112,. 150)(.256,.348,.504)(.044,.072,. 14 I) 0.957 
(.297,.469,.637)(. 113,. I12,. 118)|(.324,.348,.399)(.055,.072,. 112) 0.441 
(.210,.469,.917)(.067,.I 12,.204)(. 199,.348,.659)(.038,.072,. 163) 1.446 
(.365,.384,.488)(.071,.071,.092)(.425,.456,.573)(.077,.089,. 114) 0.336 
(.331,.384,.454)(.065,.071,.086)(.384,.456,.532)(.069,.089,. 106) 0.336 
(.222,.451 ,.816)(.072,.133,.255)(. 173,.308,.564)(.042,. 109,.353) 1.707 
(.311 ,.451 ,.584)(. 101,.133,. 179)(.239,.308,.407)(.061,. 109,.238) 0.841 

(.245,.293,.352)(.303,.361 ,.435)(.063,.08 I,. 112)(.212,.265,.316) 0.431 
(.270,.293,.319)(.334,.36 I,.395)(.069,.08 I,. I02)(.234,.265,.286) 0.233 
(.213,.293,.405)(.264,.36 I,.500)(.058,.08 I,. 122)(. 186,.265,.360) 0.689 
(. 124,. 168,.218)(.471 ,.487,.487)(.070,.086,. 100)(.203,.259,.270) 0.301 
(. 130,. 169,.224)(.487,.487,.504)(.073,.086,. 103)(.212,.259,.279) 0.301 
(.229,.303,.409)(.253,.355,.501)(.036,.049,.074)(.188,.293,.449) 0.739 
(.263,.303,.352)(.300,.355,.416)(.044,.049,.06 I)(.228,.293,.366) 0.360 

LP (.210,.293,.414)(.247,.361 ,.542)(.05 I,.081 ,. 160)(. 155,.265,.392) 0.938 
B (.258,.293,.338)(.304,.361 ,.442)(.063,.081 ,. 130)(. 190,.265,.319) 0.493 
B-L (.156,.293,.562)(.188,.361,.716)(.002,.081,.193)(.122,.265,.499) 1.533 
WHI (. 146,.263,.406)(. 180,.359,.503)(.074,.078,.078)(-.039,.300,.374) ~ 0.829 
WH2 (.168,.258,.419)(.223,.364,.530)(.078,.078,.087)(0,.300,.393) 0.810 
WH3 (. 198,.242,.423)(.336,.388,.567)(.080,.080,. 107)(.054,.290,.397) 0.762 
CL-D (. 167,.303,.579)(. 179,.355,.722)(.028,.009,. 119)(. 113,.293,.704) 1.691 
CL-G (.226,.303,.415)(.259,.355,.495)(.002,.049,.082)(. 168, .293,.459) 0.776 

0.98,4.72,5.87) 
(3.98,4.72,5.87) 
(3.95,4.72,5.84) 
(4.22,5.35,6.25) 

(4.22,5.35,6.25) 
(4.00,4.78,5.87) 
(3.98,4.78,5.89) 

0.45,4.73,6.71) 
0.45,4.73,6.71) 
(3.43,4.73,6.68) 
0.36,4.89,6.61) 
(3.28,4.89,6.57) 
0.46,4.78,6.76) 
(3.45,4.78,6.76) 

(4.48,5.47,6.66) 
(4.48,5.47,6.66) 
(4.47,5.47,6.61) 
(4.84,6.08,7.17) 
(4.84,6.08,7.17) 
(4.59,5.63,6.79) 
(4.59,5.63,6.79) 

(3.96,5.47,8.93) 
(3.96,5.47,8.93) 
(3.90,5.47,8.75) 
(3.71,6.00,8.10) 
(3.70,6.00,8.10) 
(3.92,5.63,9.27) 
(3.94,5.63,9.12) 

(5.65,6.70,8.01) 
(5.65,6.70,8.01) 
(5.65,6.70,8.00) 
(6.63,7.63,8.41) 
(6.61,7.63,8.42) 
(5.81,6.94,8.37) 
(5.80,6.94,8.34) 

(4.56,6.70,9.52) 
(4.56,6.70,9.52) 
(4.55,6.70,9.49) 
(2.35,6.80,9.15) 

.._3 

(2.07,6.87,8.97) 
(4.66,6.94,10.05) 
(4.63,6.94,9.94) 

qncorrect fuzzy number: lower-bound>mode or upper-bmmd<mode. ZNegative lower-bound. 
3Due to zero lower-bound, mode, or upper-bound, the fuzzy eigenvalue cannot be computed. 
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M Method W 1, W=, W~, W.,, Ws, We ~, Fuzzy eigenvalue 

6-1 

6-2 

6-3 

LP (.333,.434,.526)(. 106,. 167,.255)(. 155,.212,.313)(.082,.099,. 126) 0.604 (5.75,7.31,9.72) 
(.000, .05 !, .072)(.03 I, .037, .049) 

B (.385,.434,.455)(. 123,. 167,.220)(. 180,.212, .270)(.094,.099,. ! 09) 0.298 (5.76,7.31,9.72) 
(.046, .051, .062)(.036, .037, .042) 

B-L (.259,.434,.655)(.092,.167,.296)(. 131 ,.212,.374)(.066,.099,.158) 1 .033 (5.74,7.31,9.67) 
(.033, .051, .087)(.025,.037, .060) 

WHI,2 (.389,.389,.402)(. 122,. 150,. 195)(.249,.269,.297)(.072,.092,. 125) 0.269 (5.65,7.59,9.55) 
(.002,.o45,.o5o)(.o52,.o54,.o6o) 

WH3 (.380,.389,.394)(. 119,. 150,. 192)(.243,.269,.291)(.070,.092,. 123) 0.269 (5.65,7.59,9.55) 
(.001,.005,.049)(.051,054,.059) 

CL-D (.244,.390,.603)(.095,. 177,.327)(. 139,.212,.355)(.080,. I i 8,. 175) 1 .080 (5.78,7.39,9.77) 
(.037,.064,. 131)(.026,.039,.063) 

CL-G (.309,.390,.462)(. 125,. 177,.245)(. 174,.212,.284)(.097,. 118,. 143) 0.529 (5.77,7.39,9.75) 
(.047, .064,. 101)(.034, .039, .048) 

LP (.291,.434,.585)(.075,. 167,.342)(.123,.2 ! 2,.390)(.070,.099,. ! 58) 1 .068 (4.74,7.31,11.66) 
(.032, .051, .080)(.027, .037, .065) 

B (.370,.434,.460)(.095,.167,.269)(. 156,.212,.306)(.089,.099,. 124) 0.534 (4.74,7.31,11.66) 
(.001, .051, .063)(.034, .037, .051) 

B-L (. 196,.434,.879)(.058,.167,.448)(.089,.212,.542)(.048,.099,.233) 1 .967 (4.69,7.31,11.50) 
(.023, .051,. 115)(.019, .037, .095) 

WHI,2 (.371,.384,.437)(. 115,. 156,.248)(.206,.253,.324)(.056,. 110,. 182) 0.514 (4.16,7.53,11.01) 
(.044, .004, .052)(.050,.053, .064) 

WH3 (.353,.384,.419)(.I07,. 156,.240)(. 195,.253,.312)(.051 ,. I 10,. 177) 0.514 (4.21,7.53,11.03) 
(.042,.044, .050)(.047,.053, .062) 

CL-D (. 184,.390,.849)(.059,. 177,.500)(.099,.212,.503)(.060,. 118,.256) 2.031 (4.71,7.39,11.56) 
(.024, .064,. 178)(.020, .039, .098) 

CL-G (.272,.390,.534)(.092,. 177,.312)(. 147,.212,.337)(.086,.II 8,. 175) 0.929 (4.69,7.39,11.53) 
(.036, .064,. 112)(.03 !, .039, .062) 

LP (.390,.476,.541)(.096,. I09,. 15 I)(.095,. 163,.246)(.063,.075,.099) 0.533 (7.44,9.20,11.65) 
(.095, 107,. 128)(.052, .069, .098) 

B (.439,.476,.48 I)(.I08,.I09,.135)(.I07,.I 63,.219)(.071,.075,.088) 0.289 (7.44,9.20,11.65) 
(. 107,. 107,. 114)(.058, .069, .088) 

B-L (.311 ,.476,.683)(.078,.109,18"/)(.084,.163,.280)(.051 ,.075,. 122) 0.969 (7.41,9.20,11.57) 
(.075,. 107,. 163)(.044,.059,. I 18) 

WHI,2 (.470,.470,.470)(.100,. 112,. 161)(.086,. 166,.226)(.055,.061 ,.068) 0.399 (6.87,9.68,11.95) 
(.080, .093,118)(.077,.098, ! 15) 

WH3 (.470,.470,.470)(. 100,. 1 i 2,. 160)(.085,. 166,.226)(.054,.06 ! ,.068) 0.399 (6.87,9.68,11.95) 
(.080,.093,. 118)(.077,.098,. 115) 

CL-D (.260,.388,.541)(.108,. 152,.241)(.075,. 134,.226)(.081 ,. 113,. 177) 0.940 (7.58,9.55,11.85) 
(.094,136,.199)(.046,.077,.145) 

CL-G (.318,.388,.436)(.132,.152,.194)(.092,.134,. 185)(.100,.! 13,.142) 0.482 (7.68,9.55,11.83) 
(.! 15,. 136,.162)(.057,.077,.116) 

for M = (Rij)N×N with Rij : (lij, mij,  Uij)L-R in the bounded form and i, j = 1 . . . . .  N.  This 
parameter ,  ¢, may  be called the mean relative fuzziness of the data. It  should be noted tha t  the 
value of  ¢ may  be different for M(10) and M(16), but  it is always same for M(6 ) and M(10). 

Another  problem concerns the negative lower in the lower triangle matrix.  W h e n  the fuzzy 
matr ix  was cons t ruc ted  according to  M(16), negative lower bound(s)  may  result on some of the 
fuzzy elements at  the lower triangle, Rji(= 1/Rij) .  This  is noted in Tables 1 and 2. 

Tables 3 and 4 listed the calculated fuzzy weights {Wi; i = 1 , . . . ,  4 (or 6)}, Wi = (wa, w~m, w ~ )  
in the  bounded  form for each of the fuzzy matr ix  examples by the use of the eight different 
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Table 4. (contd.) 

M Method WI, W2, W3, Wa, Wj, We ~ Fuzzy elgenvalue 

6-4 LP (.319,.476,.624)(.085,. 109,. 189)(.059,. 163,.326)(.055,.075,. 130) 1.048 (6.13,9.20,14.26) 
(.081,.107,.153)(.042,.069,.138) 

B (.399,.476,.499)(. 106,. 109,. 151)(.074,. 153,.261)(.069,.075,. 104) 0.547 (6.13,9.20,14.26) 
(. 101,. 107,. 123)(.053,.069,. 110) 

B-L (.212,.476,.958)(.057,. 109,.284)(.047,. 163,.422)(.038,.075,. ! 94) 2.015 (6.06,9.20,13.99) 
(.053,. 107.236)(.031,.069,194) 

Will (.363,.372,.386)(.048,.055,.083)(-. 174,.245,.310)2(.062,.101,. 123) 0.716 (5.07,10.89,14.33) 
(.063,114,.I 34)(.067,114, i 14) 

WH2 (.351,.351,.383)(.054,.062,. 119)(0,.298,.350)(.063,.084,.100) 0.633 --~ 
(.060,. 103,. 127)(.066,. 102,.107) 

WH3 (.350,.350,.472)(.066,.066,. 137)(.021,.291,.423)(.085,.085,. 1 i 1) 0.645 (1.11,10.37,13.74) 
(.090,. 104,. 142)(.097,. 105,. 124) 

CL-D (. 186,.388,.764)(.078,. 152,.368)(.043,.134,.336)(.060,. 113,.280) 1.980 (6.27,9.55,14.19) 
(.068,. 136, .273)(.032, .077, .250) 

CL-G (.267,.388,.500)(. 115,. 152,.238)(.066,. 134,.230)(.087,.113,. 181) 0.933 (6.25,9.55,14.13) 
(.097,. 136,.186)(.047,.077,. 160) 

6-5 LP (. 148,. 178,.222)(.221 ,.281,.347)(. 169,. 194,.221)(.095,. 124,.168) 0.390 (9.79,11.50,13.44) 
(. 158,. 190, .226)(.028, .032, .037) 

B (. 164,. 178,.201)(.244,.281,.314)(. 187,. 194,.200)(. 105,. 124,. 152) 0.188 (9.79,11.50,13.44) 
(. 174,. 190, .204)(.031, .032, .033) 

B-L (. 132,. 178,.250)(.198,.28 ! ,.389)(. 147,. 194,.255)(.087,. 124,.I 84) 0.643 (9.79,11.50,13.42) 
(. 139,. 190, .257)(.025, .032, .042) 

WHI,2 (.189,.221,.257)(.170,.196,.235)(.125,.150,. 176)(. 107,.141,.175) 0.281 (10.3,12.24,13.83) 
(.222, .258, .278)(.033, .033, .033) 

WH3 (. i 92,.221,.260)(. 173,. 196,.237)(. 127,. 150,. 178)(. 109,. 141 ,. 177) 0.279 (10.3,12.24,13.83) 
(.225, .258, .281)(.033, .033, .033) 

CI~D (. 163,.221,.299)(. 198,.261 ,.343)(. 170,.227,.299)(.077,. 112,. 166) 0.614 (10.1,11.98,14.00) 
(. ! 18,. 162, .223)(.014, .018, .023) 

CL,-G (.188,.221 ,.259)(.227,.261,.298)(.201,.227,.253)(.090,. 112,.142) 0.303 (10.2,11.98,14.00) 
(. 137,. 162,191)(.016, .018,.020) 

6-6 LP (.115,.178,.254)(.191,.281,.404)(.150,.194,.260)(.078,.124,.192) 0.735 (8.35,11.50,15.18) 
(. 132,. 190, .294)(.025, .032, .043) 

B (. 139,. 178,.211)(.229,.281,.336)(. 180,. 194,.216)(.094,.124,. 160) 0.351 (8.35,11.50,15.18) 
(. 159,. 190, .244)(.031, .032, .036) 

B-L (.093,. 178,.316)(. 153,.281,.506)(. 116,. 194,.336)(.064,. 124,.235) 1 .251  (8.34,11.50,15.15) 
(. 106,. 190, .365)(.020, .032, .056) 

WHI,2 (.165,.214,.269)(. 148,.209,.286)(.091 ,. i 36,.206)(.075,. 141 ,.194) 0.540 (8.74,12.35,14.92) 
(. 199, .266, .307)(.034, .034, .034) 

WH3 (. 175,.215,.275)(. 157,.209,.292)(.097,. i 35,.209)(.082,.140,.198) 0.528 (8.70,12.39,14.94) 
(.211, .268, .315)(.034, .034, .034) 

CL-D (.119,.221,.392)(.154,.261,.458)(. 132,.227,.376)(.057,.112,.213) 1.219 (8.58,11.98,15.85) 
(.090,.I 62,.311)(.012,.018,.031) 

CL-G (.157,.221,.298)(.205,.261,.344)(.179,.227,.278)(.076,.I12,.160) 0.582 (8.59,11.98,15.85) 
(.1 i 9,.162,.232)(.015,.018, .023) 

2Negative lower-bound. 3Due to zero lower-bound, mode, or upper-bound, the fuzzy eigenvalue cannot be computed. 

approaches. In order to obtain some idea of the relative fuzziness, the following parameter 

N 
1 ~ Wiu -- Wil (60) 

~ - ~  g i~l  wire 

was computed and listed in the tables. ~ may be called the mean relative fuzziness of the 
fuzzy weights. In addition, the approximate fuzzy eigenvalues were calculated according to the 
procedure introduced in Section 4.4.A and are also listed in the tables. 
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Figure  1. Mean  relative fuzziness of fuzzy weights  vs. data .  

The following discussions are based on the observations and comparisons of these numerical 
results. 

First, from the examinations of the fuzzy weights, we notice the following. The first two 
variations of Wagenknecht-Hartmann (WH1,2) frequently provide results with some of the spreads 
equal to zero. From Tables 3 and 4, it can be seen that with WH1,2, there are some fuzzy weights 
which have the lower bound and/or upper bound equal to the mode. The problem with the 
Buckley and Lootsma approach (B-L) is that some of the normalized fuzzy weights may have its 
upper bound larger than one; for example, w l u  = 1.05 of W1 for M-4-2 in Table 3. This appears 
to be somewhat of a disturbing result. The approach of Boender e t  al. was shown again that an 
incorrect fuzzy weight, w2l = 0.113 > W 2 m  = 0.112 for M-4-4, can result. 

Next, the results of the fuzzy eigenvalues are examined. The same approximate fuzzy eigenval- 
ues were obtained from the approach of Laarhoven-Pedrycz FLLSM (LP) with FNFD and from 
the approach of Boender e t  al. FLLSM (B) with GFN. In addition, both of these results satisfy 
at least the relaxed concept of fuzzy normalization. 

A similar phenomenon discussed above also occurs in the two variations of FRMNC with 
FNFD (CL-D) and with GFN (CL-G). The fuzzy eigenvalues derived with these two methods are 
very close, even though they may not be exactly the same. This same phenomenon also appears 
with the three variations of Wagenknecht-Hartmann FLSM (WH1,2,3); fairly close approximate 
fuzzy eigenvalues were obtained by the use of these three methods. 

In general, the approximate fuzzy eigenvalues derived with the results of these eight approaches 
appear to be approximately consistent. There are some exceptions. These exceptions are the 
relatively low values in the lower bounds of the fuzzy eigenvalue for M-4-6 and M-6-4 with 
the approach of Wagenknecht-Hartmann FLSM (WH1,3). These drastic decreases in the lower 
bounds in the WH1 case are caused by the negative lower bounds of the fuzzy weights. 

Third, the fuzziness of the resulting weights by the use of the eight approaches is compared 
with the fuzziness of the original data. Figure 1 shows this comparison by plotting the ratio of 
mean relative fuzziness of fuzzy weight versus the mean relative fuzziness of the data, ~b/~. The 
approaches of CL-D (FRMNC with FNFD) and B-L (Buckley and Lootsma) always give fuzzy 
weights that were fuzzier than the fuzziness of the original data. The method of Boender e t  al. 

FLLSM (B) gave fuzzy weights that are less fuzzier than the data's filzziness. The ratios ¢ / ¢  
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for the three variations of Wagenknecht-Hartmann FLSM (WH1,2,3) fluctuated quite a lot; some 
indicate good representations of the data's fuzziness, while some others not. The method of 
Laarhoven-Pedrycz FLLSM (LP) appears somewhat good in grasping the data's fuzziness; but 
still with some over estimations. The method of FRMNC with GFN (CL-G) appeared to be 
fairly good in matching the fuzziness of fuzzy weights with the data's fuzziness. 
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