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Generation, transformation, and utilization of organic molecules in support of cellular differentia-
tion, growth, andmaintenance are basic tenets that define life. In eukaryotes, mitochondrial oxygen
consumption plays a central role in these processes. During the process of oxidative phosphoryla-
tion, mitochondria utilize oxygen to generate ATP from organic fuel molecules but in the process
also produce reactive oxygen species (ROS). While ROS have long been appreciated for their dam-
age-promoting, detrimental effects, there is now a greater understanding of their roles as signaling
molecules. Here, we review mitochondrial ROS-mediated signaling pathways with an emphasis on
how they are involved in various basal and adaptive physiological responses that control organ-
ismal homeostasis.
Mitochondria and Associated Homeostatic and Stress
Signaling Pathways
Mitochondria are essential organelles present in all but a few

mammalian cell types, where they perform multiple functions.

They are the sites of the tricarboxylic acid (TCA) cycle and

oxidative phosphorylation (OXPHOS), through which large

amounts of ATP are generated using the electrochemical

gradient generated across the inner of two membranes by the

electron transport chain (ETC). However, their critical roles in

metabolism go far beyond glucose oxidation via OXPHOS

and include fatty acid and amino acid metabolism and biosyn-

thesis of hormones, heme, and iron sulfur clusters. Further-

more, in addition to metabolism, mitochondria are involved in

apoptosis, ion homeostasis, and innate immunity, with new

roles in cell and organismal biology being discovered at an un-

precedented rate.

Mitochondria are complex in composition, form, and function.

Though often depicted as small round or oval structures, they are

instead usually dynamic, branched networks that constantly

fuse and divide under control of specific fission and fusion ma-

chineries (Mishra and Chan, 2014). Proteomic analyses indicate

that mammalian mitochondria contain �1,200 proteins, with the

precise composition varying significantly between cell and tissue

types (Calvo and Mootha, 2010). Thirteen of these proteins are

encoded by thematernally inheritedmitochondrial DNA (mtDNA)

located in the matrix, while the rest are encoded by nuclear

genes and targeted to the organelle by specific protein import

pathways (Shadel and Clayton, 1997). Thus, mitochondrial

biogenesis and homeostasis, including mtDNA expression and

maintenance, are under strict control of nuclear gene expression

programs (Scarpulla, 2008).
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The overall status of mitochondria is constantly monitored, al-

lowing their number, morphology, distribution, and activity to be

modulated by developmental, physiological, and environmental

cues. This requires bi-directional signaling pathways that medi-

tate crosstalk between mitochondria and the nucleus. Pion-

eering studies in budding yeast revealed that mitochondrial

dysfunction leads to so-called ‘‘retrograde signaling’’ events

that result in adaptive changes in nuclear gene expression and

metabolism mediated by specific transcription factors (Butow

and Avadhani, 2004). Mitochondrial retrograde signaling path-

ways also exist in mammals and are now receiving considerable

attention because they drive both beneficial and pathogenic

adaptive responses.

Given their complicated nature, mitochondrial stress canman-

ifest in many forms that elicit different stress signals. Reduced

ETC/OXPHOS capacity can result in cellular energy deprivation

(e.g., reduced ATP/energy charge), altered mitochondrial ROS

(mtROS) production, or loss of mitochondrial membrane poten-

tial, with the precise outcome dictating the specific mitochon-

drial stress-signaling response (Butow and Avadhani, 2004;

Sena and Chandel, 2012). Reduced mitochondrial protein

import, improper assembly of large enzymatic complexes (e.g.,

OXPHOS and ribosomes), and altered chaperone activity can

cause proteotoxic stress and mitochondrial unfolded protein re-

sponses (Haynes et al., 2013; Rugarli and Langer, 2012). As ma-

jor sites of ROS production, mitochondria are also prone to

oxidative damage and stress. Damage, mutation, or depletion

of mtDNA causes distinct forms of mitochondrial stress and

downstream signaling (Scheibye-Knudsen et al., 2015; West

et al., 2015). Finally, alteredmorphology, dynamics, and distribu-

tion can lead to distinct forms of stress and are linked to
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Figure 1. Mitochondrial ROS Signaling

Basics
Superoxide (,O2�) is generated on both sides of
the inner mitochondrial membrane and hence
arises in the matrix or the intermembrane space
(IMS). Superoxide can be converted to hydrogen
peroxide (H2O2) by superoxide dismutase en-
zymes (SOD1 in the IMS or SOD2 in the matrix).
The resulting hydrogen peroxide can cross mem-
branes and enter the cytoplasm to promote redox
signaling. Superoxide is not readily membrane
permeable butmay be released into the cytoplasm
through specific outer membrane channels, as
shown (see main text). In addition to signaling in
the cytoplasm directly, both superoxide and
hydrogen peroxide could, in principle, oxidize or
modify other molecules in mitochondria that
can be released/exposed to the cytoplasm to
signal (redox-sensitive second messenger; X).
These mitochondrial ROS (mtROS) can generate
signaling responses and changes in nuclear gene
expression in multiple ways (shown to the right).
There are other fates of mtROS that would prevent
signaling (or potentially enact other signaling and

damage responses). For example, superoxide can react with nitric oxide (NO) to form peroxinitrite (ONOO�). This would prevent its conversion to hydrogen
peroxide, could cause damage by the highly reactive peroxynitrite, and could potentially limit NO availability for its own type of signaling. Hydrogen peroxide can
be eliminated enzymatically by glutathione peroxidase (Gpx) in thematrix or peroxiredoxins (Prdx) in thematrix and elsewhere in the cell. Peroxyredoxins can also
promote redox signaling by promoting disulfide bond formation in target proteins. Finally, in the presence of transition metals, hydrogen peroxide can generate
damaging hydroxyl radicals (,OH).
mitochondrial turnover by autophagy or mitophagy (Labbé et al.,

2014). Changes in these parameters and associated stress-

signaling responses can occur downstream of physiological

(e.g., nutrient limitations, substrate availability, exercise), envi-

ronmental (exposure to drugs or toxins), and genetic cues.

With regard to genetics, the importance of these pathways is un-

derscored by the fact that inherited mitochondrial diseases are

caused by mutations in genes encoding proteins involved in

each of these processes that can be inheritedmaternally (mtDNA

mutations) or in a Mendelian fashion (nuclear gene mutations)

(Nunnari and Suomalainen, 2012). However, much remains

to be learned about these stress pathways. For example, the

specific sensors of different forms of mitochondrial stress and

the cell and tissue specificity of the signaling responses remain

largely unknown. Furthermore, the degree of crosstalk between

different mitochondrial stress pathways and what determines

whether they elicit beneficial or maladaptive responses are not

clear.

Mitochondrial ROS Signaling
ROS are formed by one-electron transfers from a redox donor to

molecular oxygen (O2). This initially generates the anionic free-

radical superoxide that can be converted to hydrogen peroxide

by superoxide dismutase enzymes (Figure 1). Hydroxyl radical

is another ROS that can be formed (e.g., by metal-catalyzed

oxidation of hydrogen peroxide), but in this Review, ‘‘ROS’’ re-

fers to superoxide and hydrogen peroxide unless otherwise

noted. In mitochondria, the orderly flow of electrons down the

mitochondrial ETC to complex IV results in their final deposition

into molecular oxygen to form water. However, electrons can

also react prematurely with oxygen at sites in the ETC to form su-

peroxide/hydrogen peroxide (Murphy, 2009). Complexes I and III

are often regarded as the major sites of mtROS production, but

more recent studies indicate that at least ten other mitochondrial
enzymes also contribute, including complex II (Quinlan et al.,

2013). That different sites of mtROS production have distinct

signaling roles and the primary production sites likely change un-

der different physiological conditions is likely (Quinlan et al.,

2013; Sena and Chandel, 2012).

That hydrogen peroxide has robust signaling roles in cells was

elucidated through studies of receptor tyrosine kinase, growth-

factor signaling that showed bursts of ROS production by

NADPH oxidase (NOX) enzymes. A major mechanism at play in

this scenario is the inactivation of redox-sensitive protein tyro-

sine phosphatases that normally downregulate these receptors

(via dephosphorylation) by localized NOX-dependent production

of hydrogen peroxide. Several paradigms emerge from these

studies that are relevant to mitochondrial hydrogen peroxide

acting as a signal (Finkel, 2012). First, many NOX enzymes pro-

duce extracellular superoxide that dismutates to hydrogen

peroxide that is then is transported across the plasma mem-

brane, perhaps in a regulated manner through aquaporin chan-

nels, to effect localized redox signaling. In a similar manner, su-

peroxide produced in the mitochondrial inner-membrane space

or matrix can be converted to hydrogen peroxide by SOD1 or

SOD2, respectively, allowing it to diffuse into the cytoplasm to

signal (Figure 1). Whether this involves free diffusion or facilitated

diffusion through specific channels in mitochondrial membranes

remains unclear. Second, the inactivation of phosphatases by

hydrogen peroxide occurs through the modification of specific

reactive thiol side chains (e.g., cysteine). It is now recognized

that cysteine residues on many proteins can undergo a variety

of redox-dependent modifications, including sequential oxida-

tion (to sulfenic, sulfinic, and sulfonic acid), glutathiolation, and

S-nitrosation (Go et al., 2015). Like phosphorylation, ubiquitina-

tion, and other post-translational modifications, these redox

modifications can alter protein structure and function and be

regulatory. Therefore, selective oxidation or modification of
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redox-dependent thiols in regulatory proteins allows for intri-

cate cellular redox-switch control mechanisms (Finkel, 2012;

Go et al., 2015). Redox regulatory proteins that associate with

or are otherwise selectively tuned to readout mitochondrial

hydrogen peroxide production would provide a mechanism

for mtROS signaling (Figure 1). Perinuclear clustering of mito-

chondria has also been postulated to be a mechanism for direct

mitochondrial-nuclear signaling via mtROS (Al-Mehdi et al.,

2012).

Superoxide is often summarily dismissed as a relevant

signaling molecule because of its chemical properties. For

example, unlike hydrogen peroxide, it is a negatively charged

molecule and hence not able to easily diffuse across cell mem-

branes, and it does not engage in protein cysteine oxidation

reactions conducive to known redox-switch mechanisms of

signaling (Winterbourn, 2008). However, as we will discuss,

physiologically relevant, superoxide-mediated signaling does

appear to exist that is distinct fromhydrogen-peroxide-mediated

signaling pathways. Although not ‘‘freely’’ diffusible, mitochon-

drial superoxide can be released from the intermembrane space

into the cytoplasm through the voltage-dependent anion channel

that spans the outer mitochondrial membrane (Han et al., 2003)

(Figure 1). This includes superoxide that is generated in the inter-

membrane space by complex III, as well as that generated in the

matrix by complex I (and potentially by other enzymes) (Lust-

garten et al., 2012). However, the latter may require superoxide

levels to cross a critical threshold (e.g., when antioxidant de-

fenses are limiting). In the budding yeast, S. cerevisiae, mito-

chondrial superoxide is released into the cytoplasm by a specific

isoform of the voltage-dependent anion channel (Por1p) or, in the

absence of Por1p, through the TOM protein import complex

(Budzi�nska et al., 2009). Thus, superoxide released from mito-

chondria can, in principle, participate directly in cytoplasmic

signaling processes (Figure 1). Finally, it is possible that

mitochondrial matrix superoxide signals to the cytoplasm via

redox-sensitive second-messenger systems that have yet to

be defined (Figure 1).

Mitochondrial ROS Signaling in Organismal Physiology:
Lessons from Model Systems
There is now extensive evidence from the study of model organ-

isms supporting an active role for mtROS signaling in organismal

physiology and adaptive responses (Hamanaka and Chandel,

2010; Ristow and Zarse, 2010; Yun and Finkel, 2014). The trac-

tability of these genetic model systems has led to elucidation

of new molecular details and signaling pathways underlying

these responses. In this regard, much has been learned in the

context of aging and longevity studies, which will be highlighted

here.

In the nematode worm, C. elegans, several pathways that

extend lifespan involve increased mtROS production and

signaling. These studies have called into question the ‘‘mito-

chondrial’’ and ‘‘free radical’’ theories of aging (at least as origi-

nally formulated) by implicating ROS as pro-longevity signals as

opposed to damaging, pro-aging agents, as they’ve long been

viewed. Ristow and colleagues broke new ground in this area

by showing that reduced glucose availability leads to increased

mitochondrial respiration and mtROS production that delays
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worm aging (Schulz et al., 2007). They and others have subse-

quently found that increased mtROS is a common downstream

event in many conserved longevity-promoting interventions,

which has led to the concept of ‘‘mitohormesis’’ (Ristow and

Zarse, 2010; Yun and Finkel, 2014). Recent work in this area in-

cludesmtROS signaling in the anti-aging effects of reduced insu-

lin/IGF signaling and D-glucosamine supplementation (Weimer

et al., 2014; Zarse et al., 2012). Inhibition of the mitochondrial

ETC by certain mutations or inactivation of mitochondrial

SOD2 increases worm lifespan and has been causally linked to

increased mtROS production (Dancy et al., 2014). Hekimi and

colleagues have recently shown that this involves a unique

form of activation of apoptotic signaling cascades to promote

protective stress responses rather than apoptosis (Yee et al.,

2014). Longevity-extending effects of mtROS in worms are

also mediated by HIF1 and AMP kinase signaling and are linked

to some degree to enhanced immunity (Hwang et al., 2014; Lee

et al., 2010). Like in worms, mtROS signaling extends chronolog-

ical lifespan in S. cerevisiae, which, in part, is how reduced

TORC1 signaling mediates longevity in this organism (Bonawitz

et al., 2007; Pan et al., 2011; Schroeder et al., 2013). Here, the

mtROS signal activates the DNA-damage-sensing kinases,

Tel1p and Rad35p (yeast orthologs of ATM and Chk2), leading

to enhanced subtelomeric silencing via inactivation of Rph1p,

a histone H3K36 demethylase of the jumonji family of enzymes

(Schroeder et al., 2013). This response, vis-à-vis the mtROS-

mediated, apoptotic-signaling response in worms discussed

above (Yee et al., 2014), suggests that a new paradigm is

emerging whereby canonical stress-response pathways (e.g.,

DNA repair and apoptosis) are utilized differentially to sense

mtROS to elicit adaptive, homeostatic responses in addition to

the emergency and cell death responses for which they were

defined originally.

While the above discussion was limited largely to examples

from worms and yeast, it is important to note that similar mtROS

longevity pathways have been shown to operate in other inverte-

brates and in mice (Hekimi et al., 2011; Ristow and Schmeisser,

2011). Furthermore, these pathways are not limited to anti-aging

responses. For example, mtROS signaling has also been impli-

cated in other homeostatic pathways and processes, including

wound healing (Xu and Chisholm, 2014), survival under hypoxia

(Schieber and Chandel, 2014), intracellular pH homeostasis

(Johnson et al., 2012), cell differentiation (Hamanaka and Chan-

del, 2010; Hamanaka et al., 2013; Tormos et al., 2011), and

innate immunity (West et al., 2011). Accordingly, the remainder

of this Review will be devoted to the role of mtROS in whole-

body physiology, with the main focus on neuroendocrine control

of systemic metabolism in mammals.

ROS Generation and Central Control of Whole-Body
Metabolism
The amount of mtROS generated in metabolic processes de-

pends on the fuel load and type (lipid, carbohydrate, protein),

as well as the amount, composition, activity, and dynamics of

mitochondria in the cell or tissue involved. Because ROS are

de facto by-products of mitochondrial oxidative metabolism, it

may not be surprising that studies have connected mtROS

to neuroendocrine control of metabolism, including feeding



Figure 2. Schematic Illustration of Hypothalamic Control of Negative Energy Metabolism with Low ROS
(A) In the brain, the hypothalamus contains neuronal populations that control hunger (negative energy balance) and satiety (positive energy balance). Hunger state
is promoted by neurons (purple) that produce Agouti-related peptide (AgRP) and neuropeptide Y (NPY), as well as GABA.When these neurons are active (hunger,
calorie restriction, starvation), systemic metabolism is shifting to lipid metabolism with an overall lower level of mtROS production in all tissues.
(B) The activation of AgRP neurons during negative energy balance is promoted by pathways enabling long-chain fatty acid oxidation in themitochondria, which is
enabled by maintenance of low mtROS generation by engagement of UCP2 and mechanisms that propagate fission and/or proliferation of mitochondria (NRF1,
Sirt1, and PGC1a).
behavior, energy expenditure, and glucose homeostasis (An-

drews et al., 2008; Benani et al., 2007; Diano et al., 2011; Horvath

et al., 2009; Leloup et al., 2006; Long et al., 2014).

Modulation of mtROS Production by Uncoupling Protein
2 in the Brain
The discovery of new members of the uncoupling protein (UCP)

family in 1997 (Fleury et al., 1997) and the localization of UCP2 to

specific brain areas (Horvath et al., 1999; Richard et al., 1998)

initiated studies by several groups to unmask what these pro-

teins might do in neurons and in other brain cells. Regardless

of the wealth of information gained in these studies, there re-

mains a great ambiguity about the precise role of these UCPs

in cellular functions (Brand and Esteves, 2005).

There is little debate regarding the functional relevance of

UCP1 in brown adipose tissue, where it promotes mitochondrial

fatty acid oxidation by uncoupling mitochondrial electron trans-

port from ATP generation under adrenergic and thyroid control

(Ricquier, 1998). Under this scenario, the gained energy is dissi-

pated in the form of heat, which is the hallmark of non-shivering

thermogenesis (Ricquier, 1998). UCP2 is clearly not a classical

uncoupler like UCP1, and its precise mode of action remains un-

clear. Furthermore, none of the cells in the brain that express

UCP2 displays the aforementioned features of brown adipo-

cytes. At baseline, UCP2 in rodents and primates is expressed

predominantly in neurons of basal structures of the brain (Diano

et al., 2000; Horvath et al., 1999; Richard et al., 1998). However,

UCP2 is induced in many brain sites in response to cellular injury

inflicted by physical insults (Bechmann et al., 2002), epileptic sei-
zures (Diano et al., 2003), or ischemia (Deierborg et al., 2008).

These seminal observations, together with studies unmasking

the bidirectional regulatory relationship between UCP2 and

ROS (Arsenijevic et al., 2000; Echtay et al., 2002; Negre-Salvayre

et al., 1997), underscore the potential importance of this mito-

chondrial protein in mtROS control during cellular stress. Pursuit

of the physiological functions of UCP2 in normal brain gave

further support for this notion.

Initial studies in normal brain implicated UCP2 protein expres-

sion in specific subpopulations of neurons that control hunger,

energy expenditure, glucose metabolism, and circadian rhythms

(Horvath et al., 1999). Simultaneously, but independently, the

sites of action of the hunger-promoting peripheral hormone,

ghrelin (Cowley et al., 2003), revealed virtually complete overlap

of ghrelin action in the brain and UCP2 expression. Eventually it

became clear that most cells in the brain that express ghrelin re-

ceptors also express UCP2 (Andrews et al., 2008). These obser-

vations spurred the interrogation of whether the influence of

ghrelin on appetite and food intake is mediated by UCP2 and,

if so, via what cellular and intercellular mechanisms (Andrews

et al., 2008; Diano and Horvath, 2012; Horvath et al., 2009).

Through these investigations, the following chain of events was

uncovered regarding UCP2, mtROS, and neuronal activity

(Figure 2): (1) ghrelin induces NPY/AgRP neuronal firing via

activation of its receptor, GHSR (growth hormone secretogouge

receptor), which in turn activates AMP kinase (AMPK); (2) AMPK

activation suppresses acetyl CoA carboxylase (ACC) activity,

eliminating the inhibitory effect of malonyl-CoA on carnitine

palmitoyl transferase 1 (CPT1) activity; (3) CPT1 activation
Cell 163, October 22, 2015 ª2015 Elsevier Inc. 563



Figure 3. Schematic Illustration of Hypothalamic Control of Positive Energy Metabolism with Elevated ROS
(A) Satiety (feeling full) is promoted by hypothalamic neurons (beige) that produce pro-opiomelanocortin (POMC)-derived peptides, such as a-MSH, which, in
turn, act on melanocortin-4-receptor-containing neurons. When these neurons are active, systemic metabolism is shifting toward glucose utilization, with
enhanced mtROS production contributing to increased cellular ROS in various tissues.
(B) The activation of POMC neurons after a meal is accomplished by ROS, in part driven by increased mtROS production, and is supported by intracellular leptin
(Jak/Stat) and insulin (PI-3K/PTEN) signaling, involving altered K-ATP channel activity.
(C) Recent studies indicate that, under unique circumstances (e.g., activation of cannabinoid receptors; mCB1R), POMC neurons, while still driven by ROS, will
become promoters of hunger rather than satiety because they shift to releasing appetite-stimulating opiates (b-endorphin) though UCP2-dependent mito-
chondrial adaptations.
enhances long-chain fatty acid oxidation by mitochondria and

the generation of mtROS; (4) ROS, together with fatty acids,

promotes UCP2 gene transcription and activity; (5) UCP2, via

enhancing proton leak, tempers mtROS production, allowing

continuous fatty acid oxidation without oxidative stress burden

and transcription of genes that promote mitochondrial biogen-

esis and activity (e.g., NRF1), enabling continuous support of

the bioenergetic needs of sustained firing of NPY/AgRP cells;

and (6) activity of NPY/AgRP neurons results in activity-depen-

dent synaptic plasticity and inhibition of POMC neurons. The

intracellular signaling of AgRP neurons is supportive of neuronal

activation and decreases vulnerability of these neurons to

cellular stress. It was also suggested that the long-chain fatty

acyl CoAs utilized under these conditions arise from the periph-

ery under the control of the hypothalamic NPY/AgRP neurons

(Andrews et al., 2008). Knocking out UCP2 diminished the ability

of AgRP neurons to inhibit mtROS production and maintain low

levels of cellular ROS, which, in turn, impairs their neuronal func-

tions (Andrews et al., 2008). Consistent with this model, cellular

and electric activity of AgRP neurons is restored, together with

reversal of impaired feeding behavior, when a ROS-scavenging

cocktail containing L-cysteine is infused into the parenchyma

of the hypothalamus (Andrews et al., 2008). These results

strongly indicate that behaviors associated with low-energy

availability hinge significantly on mtROS signaling associated

with lipid metabolism in key neurons that drive these organismal

adaptations. However, we recognize that UCP2 likely controls
564 Cell 163, October 22, 2015 ª2015 Elsevier Inc.
mtROS indirectly, via alteration of mitochondrial fuel utilization,

and that other consequences of UCP2 activity in regulating

metabolism may also be important (Andrews et al., 2008; Diano

and Horvath, 2012; Horvath et al., 2009; Pecqueur et al., 2009;

Vozza et al., 2014).

The studies outlined above also suggested the exact opposite

scenario for those neurons that support cessation of eating once

enough food is consumed (satiety). The hypothalamic neurons

that produce pro-opiomelanocortin (POMC) and related pep-

tides are located in the same area as the hunger-promoting

AgRP neurons that, when active, suppress POMC neuronal ac-

tivity. POMC neurons appear to have elevated ROS, as indicated

by intracellular dihydroethidium (DHE) staining (Andrews et al.,

2008; Diano et al., 2011), when they are active to promote satiety

and increased energy expenditure after food consumption

(Figure 3). Elevated mtROS production is a logical POMC

neuronal activator, since it would likely correlate with mitochon-

drial activation during full oxidation of glucose, the main fuel of

these neurons (Parton et al., 2007). When ROS levels are sup-

pressed chemically, POMCneurons are hyperpolarized and their

firing rate declines (Diano et al., 2011). Conversely, when in-slice

preparations of POMC neurons are exposed to hydrogen

peroxide, they become depolarized and their firing rate is

elevated (Diano et al., 2011). These results indicate that it is actu-

ally mtROS, rather than glucose itself, that instigate POMC

neuronal firing (Diano et al., 2011; Long et al., 2014). Because hy-

pothalamic POMC neurons are involved in both behavioral and



autonomic control of energy and glucose metabolism, it is not

surprising that hypothalamic ROS control has been tied to all

of these processes (Figure 3).

ROS are Satiety Signals
From a behavioral and systemic perspective, under normal

conditions, elevated hypothalamic ROS levels are permissive

for suppression of eating, increased energy expenditure, and

glucose utilization by peripheral tissues (Andrews et al.,

2008; Benani et al., 2007; Diano et al., 2011; Leloup et al.,

2006; Long et al., 2014). In fact, it is reasonable to conclude

that ROS signaling in the brain, as well as in the periphery, is

fundamental for appropriate behavioral and autonomic adapta-

tions to energy surplus (e.g., after consumption of a meal). If

one interferes with ROS in these physiological processes,

both behavioral and autonomic correlates of proper fuel man-

agement of the body will be impaired (Andrews et al., 2008;

Diano et al., 2011; Horvath et al., 2009; Long et al., 2014).

Since mitochondrial perturbations via UCP2 modulate these

responses, we conclude that mtROS signaling plays a funda-

mental and crucial role in physiological regulation of systemic

metabolism.

The relentless pursuit of available energy sources in the envi-

ronment is mandatory for organismal survival, and hence, hun-

ger and hunger-controlled circuits motivate this critical behavior.

However, advanced animal species, including humans, also

developed the capacity to maintain energy reserves, for

example, in the form of fat or glycogen, so they do not have to

continuously feed to survive. This evolutionary advantage, by

default, demands that ‘‘gauges’’ and ‘‘switches’’ are in place to

shut off feeding when storage capacity is sufficient. The role of

the hypothalamic melanocortin system appears to represent

both the gauge and the switch, with ROS, likely driven bymtROS

production, being the sensor. When cellular ROS reach a

threshold, they activate POMC neurons, enabling the cessation

of feeding and initiation of storage and utilization of fuels via pro-

cesses controlled by insulin and leptin (Varela and Horvath,

2012). The control of insulin release itself is regulated by redox

events (Bashan et al., 2009). At the same time, elevating ROS

in the hypothalamus reduces activity of AgRP neurons that prop-

agate hunger (Andrews et al., 2008) (Figure 2). While it remains

unknown what underlies the differential effect of ROS on

POMC and AgRP neurons, cell-specific expression of plasma

membrane channels could be involved. For example, superoxide

can directly alter the activity of potassium channels (Avshalumov

and Rice, 2003), which play important roles in glucose sensing

by hypothalamic neurons and under regulatory control by

UCP2 (Parton et al., 2007). Likewise, it remains unclear how

mtROS signals reach neuronal perikarya. In this regard, it is note-

worthy that mitochondria in both AgRP and POMC neurons

dynamically change their morphology and localization within a

short period of time (Andrews et al., 2008; Coppola et al.,

2007; Dietrich et al., 2013; Schneeberger et al., 2013). Mitochon-

drial fission and fusion capacity and the physical interaction

between mitochondria and the endoplasmic reticulum may be

involved in mtROS production or associated signaling events

(Dietrich et al., 2013; Nasrallah and Horvath, 2014; Schnee-

berger et al., 2013).
It is important to note that ROS are likely not the satiety signal

in the hypothalamus under all circumstances. For example, the

known effect of cannabinoids on promoting ferocious appetite,

regardless of metabolic satiety, is actually mediated by

mtROS-driven POMC neurons (Koch et al., 2015). However, un-

der cannabinoid influence, POMC neurons reverse their function

and promote appetite because they switch from the release of its

satiety-promoting neuropeptide, a-melanocyte-stimulating hor-

mone (a-MSH), to b-endorphin (Koch et al., 2015). This switch

is enabled by a mitochondrial adaptive response controlled by

UCP2 (Koch et al., 2015) (Figure 3C). Whether this response is

specific for this pharmacological situation or relevant to regula-

tion of metabolism under certain physiological circumstances

is unknown.

Mitochondrial ROS and Exercise
A key feature of animal species is their need to physically relo-

cate in a rapid and predictable fashion to find food, reproduce,

or escape danger. This is accomplished, in grosso modo,

through behavioral adaptations, which are the sum of coordi-

nating sensory and effector functions via the communication be-

tween the nervous system (the sensory component) and the

musculoskeletal system (the effector component). Movement

and exercise, in general, have long been recognized as key to

supporting not only the aforementioned fundamental biological

needs, but also tissue health and longevity. Ristow and col-

leagues showed that suppressing ROS generation during aero-

bic exercise (likely, in large part, mtROS) diminishes beneficial

outcomes on many exercise-related parameters (Ristow et al.,

2009). They also argue for the critical relevance of mtROS

signaling transients as important contributors to longevity, as

well as mediators of other signaling responses that promote

healthspan and longevity (Schmeisser et al., 2013; Zarse et al.,

2012). In support of the notion that mtROS transients (and not

sustained elevated ROS levels) mediate the benefits of exercise

on integrative physiology, UCP2 was found crucial to support

exercise-induced synaptogenesis in the dentate gyrus of the hip-

pocampal formation, a key site of spatial learning (Dietrich et al.,

2008). This same mechanism is also relevant to hippocampal

development (Simon-Areces et al., 2012) and lifespan determi-

nation (Andrews and Horvath, 2009).

Short- and Long-Term Effects of ROS
The distinction between physiologically beneficial short ROS

bursts and pathological, sustained high ROS levels on cellular

and circuit integrity is best illustrated in the response of the hypo-

thalamus to exposure to calorie-dense diets containing high

levels of fats and carbohydrates (Diano et al., 2011; Parton

et al., 2007). On regular chow diet, which contains <20% fat,

ROS levels fluctuate between hunger and satiety states and

mice maintain a positive correlation between hypothalamic

ROS levels, circulating leptin levels (the adipose hormone that

signals to the hypothalamus when sufficient amount of food is

consumed), and activity of POMC neurons (Diano et al., 2011).

However, when animals are placed on calorie-dense diets

(>40% fat), homeostatic control of energy metabolism is gradu-

ally deregulated. When this occurs, animals steadily increase

their fat stores, which results in steady elevation of circulating
Cell 163, October 22, 2015 ª2015 Elsevier Inc. 565



leptin. Under homeostatic conditions, this elevated leptin would

decrease feeding and enable maintenance of fat stores. This

inability of elevated leptin levels to avoid or reverse weight gain

is called leptin resistance, for which many cellular and tissue

mechanisms have been proposed to explain. One of these

mechanisms relates to the aforementioned mtROS control in

POMC and AgRP neurons. On a high-fat diet, the positive corre-

lation between hypothalamic ROS, circulating leptin levels, and

POMC neuronal activity in mice deteriorates (Diano et al.,

2011). Under these conditions, hypothalamic ROS levels plateau

and do not follow the robust and steady elevation in circulating

leptin concentrations. At the same time, POMC neuronal activity

is diminished (Diano et al., 2011). The underlying cause for this

dysregulation is tied to PPARg-related proliferation of peroxi-

somes and increased ROS elimination by catalase (Diano

et al., 2011; Long et al., 2014). We suggest that leptin affects

this process by enabling increased glucose uptake in POMC

and AgRP neurons, which is accompanied by increased lipid

load. Initially, this will lead to increased mtROS production and

crossing cellular ROS thresholds that promote satiety by acti-

vating POMC neurons. However, rising leptin levels on high-fat

diet will continue to promote glucose uptake by these neurons,

which, together with increasing lipid load, will overburden these

postmitotic cells. The scenario in which lipid and carbohydrate

load is increasing in cells provides a perfect energetic basis for

growth. Carbohydrate oxidation will dominate mitochondrial

OXPHOS and ATP generation, while long-chain fatty acids are

diverted from mitochondria via the malonyl-CoA shuttle for

biogenesis of membranes and cell growth. However, in cells

whose growth is strictly limited, such as neurons of the adult cen-

tral nervous system, lipids cannot be continuously utilized for

membrane biogenesis and they will accumulate in various intra-

cellular compartments, including the endoplasmic reticulum.

The activation of peroxisome proliferation under these circum-

stances provides an alternative mechanism through which

excess fat within cells can be eliminated via mitochondrial b

oxidation that is less coupled to ATP generation. While this is a

beneficial process to prevent lipotoxicity, peroxisomal catalase

activity will limit ROS generation needed for proper signaling

from the hypothalamus to diminish feeding and increase energy

expenditure (Diano et al., 2011). These alterationsmay havemul-

tiple negative effects on cellular signaling mechanisms and

organelle integrity and function.

A ‘‘Fuel Hypothesis’’ of Cellular Function
While the above details on mtROS-related mechanisms were

described in relation to a hypothalamic circuit that controls

feeding behavior and peripheral fuel partitioning and utilization,

these processes are likely relevant to the functionality and

impairment of neurons in various parts of the brain. For example,

UCP2-dependent control of mtROS was also found in dopamine

neurons in the midbrain substantia nigra, where both normal

functioning of these cells and their protection under cellular

stress were attributed to this mechanism (Andrews et al., 2005,

2006; Conti et al., 2005). Dopamine cells in this area of the brain

are connected to control of fine motor functions and complex

motivated behaviors. A role for the peripheral metabolic hor-

mone, ghrelin, was identified to modulate the activity of these
566 Cell 163, October 22, 2015 ª2015 Elsevier Inc.
neurons and to prevent their impairment and death in models

of Parkinson’s disease (Abizaid et al., 2006; Andrews et al.,

2009). The intracellular signaling pathway that enabled these

beneficial effects of ghrelin was related to ROS control by the

same machinery as described above in relation to the control

of feeding (Andrews et al., 2008). Similar ghrelin action was

also found in the hippocampus to promote learning and memory

and to ameliorate deficits of animals in a model of Alzheimer’s

disease (Diano et al., 2006). Because the changing metabolic

state (hunger 4 satiety) is closely tied to predictable changes

in complex behaviors, it is reasonable to suggest that fluctuating

ROS levels (mediated by alterations in mtROS output) in all or

part of the brain play a critical regulatory role in the synchroni-

zation of neuronal circuit activity in support of continuous

and appropriate behavioral adaptations. Furthermore, mtROS-

controlled neuronal activity in the hypothalamus is sufficient to

affect complex behaviors beyond feeding. For example, actute

activation of hypothalamic AgRP neurons rapidly alters stereo-

typic behaviors, locomotion, and anxiety (Dietrich et al., 2015).

Finally, we speculate that purposeful alterations in mtROS pro-

duction to effect cellular redox signaling pathways (Figure 1)

will regulate homeostasis in other tissues. In simple terms, it is

reasonable to assume that cellular functions in any tissue are

determined by fuel availability, uptake, and utilization and that

these ‘‘fuel’’ principles drive and orchestrate signaling modal-

ities, including mtROS signaling, to control homeostatic and

adaptive responses. For example, intracellular metabolic path-

ways have distinct and dominant impacts on various immune

cell types (Caro-Maldonado et al., 2012; Procaccini et al.,

2010), and UCP2-dependent mtROS regulation is connected

to both adaptive and innate immune cell functions (Arsenijevic

et al., 2000; Horvath et al., 2003; Krauss et al., 2002). How other

cells and tissues respond to such signals and the intersection

between cell-intrinsic signaling and control by the CNS is an

exciting area of future research. In this regard, determining

whether the aforementioned CNS processes are mediated by

cell-non-autonomous mtROS-mediated signals similar to those

documented in C. elegans downstream of ETC disruption and

mtROS (Durieux et al., 2011; Schieber and Chandel, 2014) will

be important to consider.

Challenges in ROS Research and Ramifications of ROS
as Central Controllers of Organismal Homeostasis
In this Review, we have summarized how changes in mtROS

production can impact cellular ROS thresholds and redox

signaling events that control basal physiological functions and

adaptive responses. As such, we argue that these pathways

are critical for organismal homeostasis, stress responsiveness,

health, and longevity. However, these pathways are far from un-

derstood and are in need of more intensive study. Some current

impediments and other relevant considerations as the field

moves forward in this area are covered below.

At present, it remains very difficult to effectively measure ROS

in cells and in vivo. The use of commercially fluorescent ROS

probes is widespread but oftenwithout the knowledge that these

do not always readout specific ROS species faithfully and are

prone to other confounding artifacts (Kalyanaraman et al.,

2012). That is not to say that these are not useful to a degree,



but they should not be used as the only line of evidence to impli-

cate ROS in a response. Development of better ROS assays and

probes is ongoing (Ezerin‚a et al., 2014; Logan et al., 2014; Wool-

ley et al., 2013), yet there remains a great need for additional for-

ward progress in this important area.

There are important implications for ROS as physiological

signaling molecules that impact therapeutic strategies. Two

that immediately come to mind are the use of antioxidants and

anti-obesity strategies that target the CNS. Antioxidants have

long been considered potential therapeutics for a number of con-

ditions involving oxidative stress. In general, trials using these

have failed, likely, in part, because of unintentional inhibition of

important basal and adaptive ROS signaling pathways. It has

even been argued that taking antioxidants as daily dietary sup-

plements might also perturb these ROS pathways in ways that

are not beneficial or even harmful (Ristow, 2014). Similarly, stra-

tegies that target activation of POMC neurons (to promote

satiety) as an anti-obesity/anti-diabetic strategy might also be

confounded due to perturbation of ROS signaling circuits that

we have described herein (Dietrich and Horvath, 2012). That is,

we assert that many compounds that activate POMC neurons

will, by default, upregulate ROS production and signaling that

governs their activity (Diano et al., 2011). If this scenario is main-

tained for a prolonged period of time (hours, days, months),

weight loss may be accomplished, but sustained ROS levels

could have amultitude of unintended detrimental consequences.

As these examples point out, previously held viewsof ROSas just

damaging agents that need to be eliminated are out of date, and a

new appreciation of their signaling roles is important to consider

going forward. The fact that mitochondria aremajor producers of

ROS also highlights the importance of better understandingwhat

controls their activity and rateofmtROSproduction, both in terms

of redox signaling and oxidative stress. In this regard, the greater

recent appreciation of mitochondria as important signaling hubs

(Chandel, 2014; West et al., 2011) has begun to transcend older,

over-simplified views of these organelles as just sites of interme-

diary metabolism and ATP production.
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