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Abstract 

This paper deals with iterative algorithms for domain decomposition applied to the solution of a quasilinear elliptic 
problem. Two iterative algorithms are examined: the first one is the Schwarz alternating procedure and the second algorithm 
is suitable for parallel computing. Convergence results are established in the two-domain and multidomain decomposition 
cases. Some issues of parallel implementation of these algorithms are discussed. 
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1. Introduction 

We are interested in iterative algorithms for domain decomposition that reduce a given problem 
to sequences of problems on subdomains. 

The Schwarz alternating method [8] has attracted much attention as a convenient computational 
method for the solution of a large class of elliptic or parabolic problems. In recent years, various 
convergence results for the Schwarz method have been obtained by many authors. We note here the 
Lions’s series of the papers [6, 71, where it can be found a systematic investigation of convergence 
properties of the Schwarz method and the bibliography for this theme. 

This paper is devoted to the study of convergence properties of the Schwarz alternating method 
and the related computational method from [l]. The latter method is highly suitable for parallel 
computing. In [2-4] this method has been analyzed and illustrated by solving singularly perturbed 
boundary value problems. Here, we continue to study this method for the solution of a quasilinear 
elliptic problem and compare convergence properties of this method with the classical Schwarz 
alternating method. The iterative methods will be presented in the continuous form. 
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The main object of this paper is concerned with convergence results of the geometric aspects for 
domain decomposition of the original domain, such as dependence of the convergence rate on the 
amount of overlapping, a number of subdomains and their sizes. 

The structure of the paper is as follows. In Section 2, we present two iterative algorithms for 
domain decomposition in the case of decomposition of the original domain into two subdomains. 
The first one is the Schwarz method and the second one is the method from [l]. In Section 3, we 
generalize the two algorithms to more than two subdomains. We end the paper by discussing some 
issues of parallel implementation of these algorithms. 

2. Two-domain decomposition case 

In this section we introduce and analyze iterative algorithms for the case of two overlapping 
subdomains. 

Let a0 be the rectangular domain 

szo = {(x, v) : 0 <x <x*,0 < y < y*}. 

We consider the quasilinear elliptic equation 

NJ? = fP, 4n1, p = (x, v> 6 fro, (2.la) 

with the homogeneous Dirichlet boundary conditions 

u(P) = 0, P E dQo is the boundary of sZo, (2.lb) 

where d E ($/ax* + d*/dy*). Assume that f(P, u) is sufficiently smooth and satisfies 

_fu 3 P& (P,U)EQo x (--oo,~), PO = const. > 0, (fu = aJ-/au>. (2.lc) 

Under suitable continuity and compatibility conditions on the data at the corners of fro, a unique 
solution of (2.1) exists and u(P) E C”(f&) n C”+*(QO),m 2 0 (see [5] for details). 

We introduce the decomposition of the domain Q. into the two overlapping subdomains 52, and 
!ZJ2 (see Fig. 1): 

QfJ = sz, u 02, Q, n a22 # 0, 

Tp = dQ0 n dQi> Ti = i3Qj\rf, i = 1,2, 

r, = {P : x = xr, 0 < y < y*}, r* = {P : x = Xl, 0 < y d y*}, 

0 <x, <x, <x*. 

2.1. Iterative algorithms 

Consider the two sequences of functions {v”}, {w”}, iz > 1, satisfying the problems: 

dv” = f(P,v”), P E sz,, 

v”(P) = 0, P E l-f, u”(P) = V”(P), P E r,; 

(2.2a) 
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Fig. 1. 

Aw” = f(P, wn), P E s22, (2.2b) 

w”(P) = 0, PE l-i, w”(P) = W”(P), P E r2. 

We now consider two iterative algorithms. 
The first one, Al, is the Schwarz alternating procedure. Here the boundary conditions 17” and W” 

from (2.2a) and (2.2b) are defined by 

z+‘(P) = w”(P), P E r,, W”(P) = v”(P), P E rz, n > 1, 

where an initial guess V’ must be prescribed. 
The second algorithm, A2, is constructed using the following interfacial problem 

(2.3) 

AZ” = f (P,zn), P E o, z”(P) = 0, P E yo, (2.4a) 

z”(P) = v”(P), P E y1, z”(P) = w”(P), P E y*, 

where the subdomain w is defined by (see Fig. 1) 

OCQO, 52, n !a22 c Co, y. = di2o n &o, &fJ = Yo u YI u I+> 

y1= {P:x =x,, 0 d y < y*}, yr = {P:x = x,0 d y < y*>, 

0 <x, <Xl <x, <xr <x*. 

The boundary conditions from (2.2a), (2.2b) are determined by 

z+‘(P) = z”(P), P E r,, wn+‘(P) = z”(P), P E r2, n 2 1, (2.4b) 

where the initial guesses W1 and 6’ are given. 
Algorithm Al is a serial procedure, since the solution v” of (2.2a) must be obtained in order to 

determine the boundary condition W”(P) = v”(P),P E r2 used in (2.2b). Thus, (2.2a) and (2.2b) 
are executed in lockstep fashion. Algorithm A2 can however be carried out by parallel processing, 
since on each iteration step problems (2.2a) and (2.2b) can be solved concurrently to give both U” 
and w”. 
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2.2. Convergence results 

We now establish convergence properties of algorithms (2.2), (2.3) - Al and (2.2), (2.4) - A2. 

2.2.1. Preliminaries 
In the following lemmas we obtain the required results necessary for the present discussion. 
Introduce the following one-dimensional linear two-point boundary value problems: 

U”(X) - b(x)u(x) = 0, x E s2” = (x1,x2), (2.5) 

4x1) = Ul, 4X2) = u2, 

where the coefficient b(x) is smooth with b(x) 2 ai; and 

(&I)” - &&‘) = 0, x E sz”, 

4&(x,) = &(X2) = 1, dp(X2) = g!4Xl) = 0, 

(the prime denotes differentiation). 

(2.6) 

Lemma 1. If u(x) and q&!‘(x) are the solutions to (2.5), (2.6), then the following estimates hold: 

I 4x> I d cp’,44 I Ul I +q;44 I u2 1, X E fix; (2.7a) 

0 < &Y(x) < 1, x E 0”; (2.7b) 

c’&(x) + c”~~,(x) ,< max(ci,cii), x E Sz”, (2.7~) 

where constants c1 I?’ > 0. 9 Nr 

cphdx> d W-P& - x1 )I, d4-4 G exp[-Po(X2 - 41, XEif. (2.7d) 

Proof. Can be found in [2]. Consider the two-dimensional linear problems: 

MP) - b(P)u = 0, p E Q = (X1,X2) x (Yl,Y2), (2.8) 

u(P) = V(P), P E dSZ is the boundary of 52, 

where V(P), b(P) are smooth, b(P) > fit; and 

LOU E d U(P) - fi; U(P) = 0, P E 52, U(P) = U,(P), P E do, (2.9a) 

the boundary condition U,(P) is determined by 

U,(P) jr,= {max 1 V(P) (: PE ri}, 1 < i < 4, ai- = UiTi2 (2.9b) 

where Ti is the ith side of the rectangular domain Sz. 
Note that the function Uo(P) is piecewise smooth and may have points of discontinuity at the 

corners of Sz. 
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Lemma 2. If u(P), U(P) are the solutions to (2.8) and (2.9), respectively, then we have the fol- 
lowing inequalities: 

1 u(P) 1 < U(P), P E fi\{ the corners of a}; (2.10a) 

Y$ U(P) < sup U(P). 
P&i 

(2.10b) 

Proof. Estimate (2.10a) follows immediately from the maximum principle. Estimate (2.10b) is well 
known as the strong maximum principle. 

2.2.2. Convergence of algorithms Al and A2 via the maximum principle 

Theorem 1. If 0, n Q2 # 0 (XI < x,), then the iterative algorithm (2.2), (2.3) (i.e. the Schwarz 
alternating procedure) converges to the solution of problem (2.1) with linear (geometrical) rate 
q = qlq2 E (0,l). The coejicients ql,q2 ??(0,l) depend only on (&,I,) and (sZ,,I,), respectively, 
and they are determined by 

4i =I/ U,Cp> IIT,_,, LOUi = 0, Ui Irp= 0, Ui lr,= 1, i = 1,2, (2.11) 

Lo = d - pi, II U,(p) Ilr,_,= max{ 1 Ui(P) 1: P E Ix-i}. 

Proof. Introduce the functions p(P) = v”(P) - v”-‘(P), tn(P) = w”(P) - w”-‘(P), n 3 2. From 
(2.2), (2.3) and the mean-value theorem, it follows that p(P) and r(P) satisfy the following 
problems: 

NV) - f$(P)r”(P) = 0, P E Ql, i” Iry= 0, i” lr,= c-’ lr,; 
WP) - f$(P)Y(P) = 0, PE 02, 5” Ir;= 0, 5” lr*= i” lr2, 

where f;&P) s 8f (P, o;(P))/&, OF(P) 1 ies between v”(P) and v”-‘(P). Analogously, f$(P) is 
determined by an intermediate value between w”(P) and w”-‘(P). Denote 

6” = max [II i”(P) llh II 5”(P) IL-J, 
II WJ> II+ max{l i”(P) I: P E h), 
II 5”(P) 111~ max{l 5”(P) I: P E r2). 

Using the boundary conditions for p(P) and tn(P) and Lemma 2, it follows that 

II i”(P) llr, = II 5”-‘(p) II r, G q2 II P(P) l/r*= cl2 II i”-‘(p) II& 
G q2q1 II r”-‘(p) llr,, 

II 5”(P) Ilr2 = II i”(P) II r2 G 41 II 5”(P) lb-,= 41 II 5”-‘(p) llr, 
d q192 II 5”-‘(p) llr, f 

From this we obtain 

6” < q6”-‘, n 2 2, 4 = qlq2, 
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where qi, i = 1,2 from (2.11). By Lemma 2 and (2.11), we conclude that ql,q2 E (0,l) and hence, 
q E (0,l). Now, from the maximum principle, we conclude 

sup I i”(P) I G II i”(P) llr, G 6”; sup I 5”(P) I G II 5”(P) III-2 G 6”. 
01 02 

This proves the convergence of algorithm (2.2), (2.3) with linear rate q. 

Theorem 2. If i& n !C& # 0 and sZ1 n C& E co (Xl -c x1 < x, <X,), then the iterative algorithm (2.2), 
(2.4) converges to the solution of problem (2.1) with linear rate q E (0,l) 

4 = [max(C & )I [max(qi, 4; >I. (2.12a) 

The coeficients q\,qi E (0,l) depend only on (a,,~+) and (&y,), respectively; qy,q; E (0,l) de- 
pend on (co,T1) and (w,r2), respectively. They are determined by 

4: =lI Ul(P) IL L,U* = 0, Ul Irp= 0, Ul II-,= 1, 

4; =II u2m IL L,U2 = 0, u2 Ir;= 0, u2 lr*= 1, (2.12b) 

qlw =II U(P) Ilr,, LOU = 0, U lye= 0, U I?,= U lYr= 1, i = 1,2. 

Proof. Analogously to the proof of Theorem 1, we introduce the functions p(P) = v”(P) - v”-‘(P), 
F(P) = W”(P) - w”-1 (P) and x”(P) = z”(P)-z”-’ (P), n 3 2. From (2.2), (2.4) and the mean-value 
theorem, we conclude that p(P), tn(P) and x”(P) satisfy the problems: 

K(P) - f:#VV) = 0, IJ E a, 

i” Irp= 0, i” Ir,= x”-’ Ir,; 
d5”(P) - f:p)w> = 0, p E Q2, 

5” Ir;= 0, 5” lr2= x”-’ I&; 
ox” - fp%“(p> = 0, p E 0, 
xn ho= 09 x” I^/,= i” Iy,, x” L= 5” Ih . 

Denote 

6” = max [II 5”(P) llh, II 5”(P) Ild 

By using Lemma 2 and the boundary conditions for p(P), en(P), we conclude 

II 5”(P) lb = II x”-‘(p) II rl G 4VWl x”-‘(P) 117,, II P(P> IIJ 
= 4WMll i”-V> Ilr,, II 5”-‘(p) Ily,l 
G 4~maxi3 II i”-V> Ih; 4; II r”-‘V> Ild 

Thus, we have 

II i”(P) 1117 G qi?max(q~,q~)l~“-‘. 
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In the same way, we can obtain 

II i”“(p) 11~ G cC3m=4qhW-‘. 

Hence, 6” < q6”-‘, where q from (2.12a). Evaluating qy, i = 1,2, and qi, q; from (2.12b) with 
Lemma 2, it follows that q E (0,l). This proves the theorem. 

2.2.3. Estimates on the rates of convergence 
To illustrate convergence properties of algorithms (2.2), (2.3) for Al and (2.2), (2.4) for A2, we 

estimate the rates of convergence for the following case of problem (2.1): 

LOU = AU(P) - p;zQ> = f(P), P E s20 = (0,x*) x (0, y*), (2.13) 

u(P) = 0, P E dQ). 

Theorem 3. If L?, n ~2~ # 0 (x1 < x,), then the iterative algorithm (2.2), (2.3) converges to the 
solution of problem (2.13) with linear rate q E (0,l). The following estimate on q holds 

4 G cp~;(xl)cpT,;(x~)~ (2.14) 

where C&,(X), C&(X) are determined by (2.6) with the coeficient # = pi + (7~/y*)~ instead of j3: 
and a; = {x : 0 < x < x,}, Q; = {x:x, < x < x,}. 

Proof. Introduce the functions p(P) = v”(P) - v”-‘(P), en(P) = w”(P) - w”-‘(P), n 2 2. From 
(2.2), (2.3) and (2.13), we have 

Let 

IIll” = 0, P E sz,, r” Iry= 0, 5” lr,= gn-’ Ir,; 

&5”(P) = 0, P E Q2, i”” Ir;= 0, 5” lr2= i” IT> . 

{$k(y), k 2 1 } be the eigenfunctions of the eigenvalue problems 

iK(Y) = -&@, 0 < Y < y*, MO) = $jC(y*) = 0. 

Then, we obtain 

1+ = (rc/y,)k, tik(y) = (2/y,)li2 sin(&y), k = 1,2,. . . . 

Let {(p$$(x), k 2 l} be the solutions of problem (2.6) with coefficients fi: = /3: + A:, k = 1,2,. . ., 

instead of @. 
By the method of separation of variables the solutions c(P), y(P) can be expanded as follows: 

5”k Y > = c G%:);,k(X)tik~Y 1, 
k 
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where 8:” and ~5:~ are the coefficients of the expansions of Q’ on r, and 5” on r2, respectively, i.e. 

@ = 
s 

‘* i”(x,, y)My) dy, S:,” = 
0 s 

‘* 5”(x,, y)Ic/k(y) dy. 
0 

Using the boundary conditions for 5” on rr and 5” on r2 and the orthonormality of {tik(y), k 2 1 }, 
we conclude that 

c$‘-~ = 6~“-1(p;;,,(x,), k = 1,2 ,... 

and 

62” = &,-‘, qk = ~&,#~fi;,~(~,)r k = 192,. . . 

Thus, qk is the reduction factor of the kth frequency of the error at the boundaries rr and r2. From 
this and using the estimates (2.7b) from Lemma 1, it follows the convergence of algorithm (2.2), 
(2.3) with linear rate q, where 

4 < y?rqk = 41. 
/ 

This concludes the proof. 

Corollary 1. For algorithm (2.2), (2.3) the following bound on q holds: 

4 d exp[-2jl(xr - x1)1, If = Pi + (4~~)~. 

Proof. Follows from (2.7d) and (2.14). 

Theorem 4. Ij” 01 n ~‘22 # 0 and s21 n 02 c w (XI < xl -C x, < X,), then the iterative algorithm (2.2), 
(2.4) converges to the solution of problem (2.13) with linear rate q E (0,l). The following estimate 
on q holds 

4 G [max(q~,q~>l[max(4:,4;)1, (2.15) 

4Y = cp’,(&) + 4&W, 4; = cpZT(Xl) + cp~~(~l), 

4: = ~:;M), 4; = (P&(x,)> 

where &;(x), C&;(X) and cp~,(x),~p~~(x) are determined by (2.6) with the coefJicient $ = /$ + 
(7~/y*)~ instead of pi and 

sz; = {x: 0 < x < x,}, a; = {x : Xl < x < x,}, ox = {x:X, < x < Xr}. 

Proof. Analogously to the proof of Theorem 2, we introduce the functions p(P) = v”(P) - v”-‘(P), 
Y(P) = W”(P) - w”-‘(P), x”(P) = z”(P) - z”-‘(P), IZ > 2. From (2.2), (2.4) and (2.13), we have 

Lol”(P) = 0, P E s2,, 

i” Ir:= 0, i” II-,= xn-l Ir,; 
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&5”(P) = 0, P E c&, 

5” II-;= 0, 5” lr2= xn-’ (r*; 

Lf)f(P) = 0, P E co, 

x” I’io= 0, x” l’i,= 5” I;‘,, x” I;(= 5” lyr . 

Using the same notations as in Theorem 3, by the method of separation of variables, we can 
write the solutions p(P), t”(P), f(P) in the following forms: 

t”cx, Y> = c s$d2;,k(X)$k(Y>? 
k 

f(X, y) = ~[~,+&~,k(l) + A:‘“(P:~,k(x)lhdY>, 
k 

where Skn, 6:” and a;“, A;” are the coefficients of the expansions of r on r,, 5” on r2, x” on yI 
and on yr, respectively, i.e. 

82” = J’ ‘* i"(xnYhh/k(Y)dY, @” zz s ‘* t%,,Y)'hk(Y)dY> 
0 0 

s y* gy = X”(& Y)h(Y > dy, A:” = 
0 s Y* 

X”(x,> Y)tik(Y) d.v 
0 

Using the boundary conditions for x “-l(P) and the orthonormality of {t/$(y), k > l}, it follows that 

and analogously, 

‘k 
Ln-’ = $-lq& k(&), 

k k = 1,2,.... ?’ 

From this and the boundary conditions for p(P) and in(P), we conclude that 

= 6i’“-1rp~;,,(~)cp~,,,(x,) k 

k 

+s~“-‘~~;,k(x,)~~~,k(x~)] tik(Y), 
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+6:."-1cp:II,k(X,)cp~r,k(x,)] tik'k(Y). 

Thus, we obtain 

s:n = s~“-lV)~;,k(~)SDt,~;k(xr) + s~~-‘(p:);,k(X’)(PJij~,k(x~), 

6”” = so”-‘(p~;;k(x,)~~‘,,(x,) + 6:.“-‘cp:,;,,(x,)cp~,,,(x,). k 

Denoting 6; = max( 1 Sin (, ) S$n I) and applying estimate (2.7c), we get 

& d si?b~‘,k(Xr) + dT,k(xr>l max[d&k@d~ d;,k(~)l, 

si < si-‘[d’,k(Xd + vil,&I)l max[q&,kt&)T (P&,k(z)l. 

Hence, we obtain (compare with (2.12)) 

6; < qk&-‘, qk = [max(q?k, q~k)I[max(qi,ky d,k)l, 

q:k = d,‘,k(Xr) + dil,k(Xd> @k = d~,k(xl) + (P:‘,k(Xd? 

d,k = d&k(&)? q;,k = d,,k(x,). 

where qk is the reduction factor of the kth frequency of the error at the boundaries r, and &. Since 

y;p qk = 41, 
/ 

then estimate (2.15) follows. This proves the theorem. 

Corollary 2. For algorithm (2.2), (2.4) the following bound on q holds 

4 < max{exp[-i&(X, - 411, exp[-B,(x, -&>I), /?: = Bi + WY*)*. 

Proof. Follows from (2.15) and Lemma 1. 

3. Multidomain decomposition 

In this section we generalize algorithms Al and A2 from Section 2.1 to more than two subdomains. 
Introduce the multidomain overlap decomposition of the domain &, = [0,x,] x [0, y*] into the 

subdomains Szj, j = 1,2,. . . , M: 

aj r(X~_l~~~>x (O,.,Y*), Qj nQj+l # 09 

Q; = (x;_,,x;), O<x+x,‘<l, x:=0, xL=l, j=1,2 ,..., M-l. 
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Fig. 2. 

1’7 = dOo n f3Qj, r, = afqr; = r; u r;., r;. = {P :x=~;_,, 0 <y < ye>, 
r; = {P zx =x;, 0 < y < y*>. 

Fig. 2 illustrates the x-section of the multidomain decomposition. 

3.1. Iterative algorithms jbr multidomain decomposition 

On each subdomain Qj, j = 1,2,. . . , A4 define the sequence {v:(P)}, n > 1 satisfying the follow- 
ing problems: 

AV,” = f(P,Vy), P E !2j;2i, (3.1) 

V;(P) = 0, P E rg, Vi(P) = C;(P), P E rj, j = 1,2,. . . ,M. 

We next introduce a (parallel) extension of the Schwarz alternating procedure. The boundary con- 
ditions $ are defined by 

P E r; 
PErr, j=2i+l, i=O, l,..., I-1; 

J 

q+’ = ~;-,vv, P E rl. 

vj”,,(P)7 
pEr{, J = 2i, i=O, 1 ,.a.> I; 

J 

(3.2) 

where initial guesses vl., j = 2i + 1, i = 0, 1,. . . , I - 1 must be prescribed. We assume here that 
M=2xI. 

To generalize algorithm A2 to a multidomain decomposition, we introduce the (M - 1) interfacial 
problems: 

dZy = f(P,Zy), P E Oj, z,“(P) = 0, P E y;, (3.3a) 

zj”(P) = 2$(P), P E y;, z,“(P) = Vl,l(P), p E Y;, 

where the subdomain uj is defined by (see Fig. 2) 

mj = (xj9xJ’) x (O,_Y*), Szj n Qj+l C Oj, aj n Oj+l = 0, doj = # U yi. U y;, 

$ = iX& n ihj, y;. = {P:x =x;,o d y < y*}, 

y; = {P : x = Xj’, 0 ,< y d y*}, 

0 <x; <xj <x; <Xi’ <x*, j= 1,2 )...) M- 1. 
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The boundary conditions in (3.1) are given by 

z?;+‘(P) = zj”_r(P), P E r;, j = 2,. . . ,M; 

fi;+l(P)=z;(P), PEIy, j= 1,2 )...) M- 1. 

(3.3b) 

The initial guesses v:(P), P E rj, j = 1,2,. . . ,M, should be prescribed. 
Algorithm (3.1), (3.2) is a parallel version of the Schwarz alternating procedure for a multidomain 

decomposition. On each iteration step of this algorithm, problems (3.1) with j = 2i, i = 1,2,. . . ,I, 
are solved concurrently; the same is true for the problems with j = 2i + 1, i = 0, 1, . . . ,I - 1. 

Algorithm (3.1), (3.3) can be carried out by parallel processing because the A4 problems for (3.1) 
can be solved concurrently; the same is true for the (M - 1) interfacial problems from (3.3). 

3.2. Convergence results 

Here we give convergence results for algorithms (3.1), (3.2) and (3.1), (3.3). 
We denote 

4: =II uj l/T~+,~ LOUj = 0, Uj Irp= 0, Uj IQ= 1, 

4; =I1 uj Ilr;_,, LOUj = 0, Uj Ir,“= 0, Uj IT,= 1, 

and suppose that qb = 0, qh+, = 0. 

Theorem5. IfQjnQj+,#fl, j=1,2 ,..., M-l andQj2iQj+2=0, j=1,2 ,..., M-2, then the 
multidomain version (3.1), (3.2) of the Schwarz alternating procedure converges to the solution 
of problem (2.1) with linear rate q E (0,l). The following estimate on q holds: 

4 G max(ql , q2 >, (3.4) 

41 G 2yf$q~-, max(qJ, 4~.-2)1y . . q2 G 1 qjy_, kJ+, max(q~, qJ+2 >I. . . 

Proof. This result is established using a procedure similar the one used for Theorem 1. Introduce 
the functions c;(P) = vi”(P) - II;-l(P), j = 1,2,. . . , M, n 2 2. From (3.1), (3.2), by the mean-value 
theorem, it is easy to verify that c;(P), j = 1,2,. . . ,A4 satisfy 

Al;(P) - fc[[i(P) = 0, P E Szj, c;(P) = 0, P E r;; 

1 &(P>, P E r;., 
VP)= c;+,(P), PET,, j=2i+l, i=O,l,..., z-1; 

5;+‘(P) = 
1 

&(P), P E r;., 
[~+~(p), pcrj, j = 2i, i = O,l,..., I. 

Denote 

6” = myGIl C:(P) ll~$ ll i;(P) lb,- max{l am I: P E rj). 
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Using Lemma 2 and the boundary conditions for l;(P), it follows that for j = 2i 

II iii(‘) Ilr;, = II Gi7:,(‘) Ilri, 
d d.i+* max[ll iZi,~(p> IIr:x+,’ II GG:(p> Ilr;,+,l 
= &,I max[ll KV> llr:,+,‘II i;,:v> lb;,+,1 

G &+I max 4Limax[ll C’(P) Ilr;,, II Gi’(P) Ilr;,l ; 1 

&+2 max[ll iLb(p> IlT~r+2~ II i&i(P) Ilr;,+,)l} 

G &+I mW\,, 45i+2)‘“-‘* 

Analogously, it can be proved 

II 5’;i(p) Ilr;, < qii- 1 mx(q:i_2, q5i)~“-‘. 

Hence, we have 

II i$Cp) Ilrzs d max[L, max(d,-2T 4Lh &+I max& q;i+2)16n-1* 

It is easy to see that this estimate holds for j = 2i + 1. Thus, we obtain 6” < qP_‘, n 3 2, where 
q is determined by (3.4). We suppose that 

4: =I1 u, IIrj+,= 0, j = 1; 4; =I1 Uj Ilr;_,= 0, j = M. 

From Lemma 2, we conclude that q$ q/r E (0,l) and hence, q E (0,l). This completes the proof of 
the theorem. 

We now introduce the following notations: 

Cl?’ =I1 UjCp> llr:+,~ LOUj = 0, Uj 1~1~ 0, Uj I?,= 1; 

qr =(I q(p) III-;, LfJUj = 0, Uj 1~~~ 0, I Uj Iy,= 1; 

4: =I1 UjCp> Ily:> LoUj = 0, Uj Ir;= 0, Uj IT,= 1; 

Si =ll uj(p) llv;_,, L()Uj = 0, Uj lro= 0, i Uj lr,= 1. 

Theorem 6. IfQjnQj+l # 8, QjnQj+l E mj, j = 1,2,. . . ,M-1, and ajnmj+l = 0, j = I,&. . . ,M-2, 
then algorithm (3.1), (3.3) converges to the solution of problem (2.1) with linear rate q E (0,l). 
The following estimate on q holds: 

4 G max(ql,42), (3.5) 
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Proof. Introducing the functions [y(P) = v,“(P) - UT-l(P), j = 1,2,. . . ,A4 and x;(P) = z,“(P) - 
z;-‘(P), j = 1,2,... ,M - 1, n > 2, and using the mean-value theorem, from (3.1), (3.3) we 
conclude that [j”(P), j = 1,2,. . . ,A4 satisfy 

Al,“(P) - fzcc,“(P) = 0, P E Oj2i, <j”(P) = 0, P E rg, 

[i”(P) = x;:;(P), PEI’;., j = 2,3 ,..., M, C;(P) = 0, P E r:, 

[i”(P) = xi”-‘(P), P E r;, j = 1,2,. . . ,A4 - 1, [k(P) = 0, P E rh; 

and x;(P), j = 1,2,. . . ,A4 - 1, satisfy 

Ax;(P) - f&$(P) = 0, P E Oj, xi”(P) = 0, P E yy, 

x;(P) = i;(P), P E $7 x,“(P) = 5;+,, P E Y;. 

Denote 

6” = mja” II ii(P) Ilr,, II 5;(P) Ilr,F max {I 5;(P) I: PC rj>. 

From Lemma 1 and the boundary conditions for [y(P) and x;(P), we conclude 

II C;(p) Ilr; = II x;-‘(p) Ilr; G 4y’ max[ll if”-V> II+ II x;-‘(p> IIy;l 
= qjo” maxIll i,“-‘V> Ily;; II f$;/<P> l17;l 

d qyrmax q:max[ll C;pl(P> IL-;; II i,“-‘(P) Ilr;l; { 
4J+1 max[ll i:;XP) Ilr;,,; II C,“;:(P) II~+,l} 

< qFr max(qi, q5+1 )F-l. 

Analogously, the following can be obtained: 

II i;(P) Ilr; d qy?‘, max(q:_,,qj))6”-‘. 

Hence, we have 

11 i;(P) Ilr, d max[q~!, max(q~_,,qf);q~‘max(qj,q~+,)16”-’. 

Thus, we obtain 6” < q6”-‘ , n 2 2, where q is determined by (3.5). This proves the theorem. 

3.2.1. Estimates on the rates of convergence in the multidomain decomposition case 
As in Section 2.2.3, we estimate the rates of convergence for algorithms (3.1), (3.2) and (3.1), 

(3.3), considering the linear problem (2.13). 

Theorem 7. In the case of problem (2.13), under the assumptions of Theorem 5, the rate of 
convergence q for the Schwarz alternating procedure (3.1), (3.2) has estimate (3.4) with 

4; = cp’,;(.u:) + &?;(x:), q; = cp’,;(x:_,) + cp&(x:_l)> 
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where q&$x), q:;(x) are determined by (2.6) with the coejicient fi: = j?i + (n/y*)* instead of /?J; 

and 0; = {x : xi.-, < x < xf}. 

Proof. This theorem can be proved by the same approach as in Theorem 3, using the method of 
separation of variables. 

Theorem 8. In the case of problem (2.13), under the assumptions of Theorem 6, the rate of 
convergence q for algorithm (3.1), (3.3) has estimate (3.5) with 

9; = cp+Y;> + &;(X;), 9; = &;(x:_,) + ul;,(x:_,), 

q,w” = C&(x;) + C&(x;), qyr = q@x;, + fJ$+x;,, 

where &$xX cpE;(x) and cp$(x), $4 x are determined by (2.6) with the coeficient fit = bi + ) 
(IC/~*)~ instead of pi and 

L?J = {x: xl_, < x < xj}, 0; = {x:X; < x < Xj’}. 

Proof. Analogous to the proof of Theorem 4. 

3.3. A simplified analysis of parallel performance for algorithms (3.1), (3.2) and (3.1), (3.3) 

Here we present a simplified parallel analysis for algorithms (3.1), (3.2) - Al and (3.1), (3.3) 
- A2, focusing only on computer architecture-independent factors. For simplicity, we consider the 
linear problem (2.13), where sZO = (0,l) x (0,l). 

We assume that the communication, synchronization and load-balancing costs can be ignored and 
that each subdomain is undivided when mapped onto processors. 

Introduce the uniform decomposition of the original domain sZO into the subdomains Qj, j = 
1,2,..., M and the interfacial subdomains aj, j = 1,2,. . . ,A4 - 1: 

G?j=((j-l)D,jD)x(O,l), D=(l-d)/M+d, j=1,2,...,M, 

d=x;-x;, j=1,2 ,..., M-l; 

o,=(jD-d-H,jD+H)x(O,l), 

dinf=XJ_Xj=d+2H, j=1,2, ...) M-1, 

where d,dinf are the sizes of the uniform overlapping subdomains and of the interfacial subdomains 
in x-direction, respectively. 

We also suppose that the elliptic operator from (2.13) is discretized by the usual five-point 
difference scheme and that the mesh on &, is a square of side h. Let No, N,, denote a number of 
gridpoints in Szj, j = 1,2,. . . ,A4 and in Oj, j = 1,2,. . . ,M - 1, respectively. 

KA1, KA2 are the minimum number of iterations for Al, A2 to achieve an error of E, i.e. 

e K = max (1 ej” Ilr, < a, eJ! = V]!(P) - P’J-‘(P), P E {gridpoints}, 
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where V,?(P) is the solution of the difference scheme on the subdomain Qj, j = 1,2,. . . ,M. We 
assume here that the subdomain interfaces rj, j = 1,2,. . . ,A4 - 1 belong to the mesh-lines in 
y-direction. 

The execution times TA1, TA2 for algorithms Al, A2 can be defined by 

TAI = KAltAI, I = 1,2, 

where tAl, tA2 are unit time (or a number of arithmetic operations) on each iteration step for Al and 
A2, respectively. t Al, tA2 depend not only on how many unknowns No (and on N, in the case of 
A2) each subdomain has but also on the method used to solve the discretization problem. 

Let us suppose that the number of processors equals to the numbers of subdomains. 
In the case of algorithm Al, we assume that each problem from (3.1) is solved by one processor 

(in other wo d r s, each subdomain is mapped onto one processor). The unit time tAl is determined 

by 

t:y = max {tzj}, 

I Gj<[M/21 

odd 
tAl = 

where tj is the unit time on Qj. Since the decomposition of the original domain Q0 is uniform, then 
it follows that 

tAl = 2t1, tj=t,, j=1,2 ,..., M. 

In the case of algorithm A2, we assume that each processor is loaded by one problem from (3.1) 
and by one interfacial problem from (3.3) (one of them is loaded only by one problem from (3.1)). 
This assumption will be realistic, if the cost of the interfacial problem from (3.3) come to a small 
part of the cost of the problem from (3.1). Analogously, tA2 is determined by 

a 
tA2 = tA2 + $2, t” A2 = max {tj}, 

lGjG.44 

where t; is the unit time on Wj and hence, 

tA2 = tI + 71, t,Y=zI, j= 1,2 ,..., M- 1. 

The times tI and rI depend on No and N,, respectively, and on the kind of solver being used, 
i.e. tr = F(NQ), zI = F(N,). Consequently, we have 

TAI = ~KA,F(No), TAG = KA~[F(NQ) + fWL)l, 

Nn = D/h2 = [( 1 - d)/M + d]/h2, NW = di,f/h2 = [(d + 2H)/M]/h2. 

If we use the solvers ADI, SOR, SLOR, SSOR for problems like (2.13), then the computational 
work is approximately equal F(N) = 0(N3’2), where N is a number of interior nodes. 

If the stepsize h is sufficiently small, then the sequences of the solutions {v(P)}, j = 1,2,. . . , A4 
for algorithms Al and A2 have the same rate of convergence q as in the continuous case. Conse- 
quently, we can evaluate K Ai, KA2 using the following relationship: 

eK < (Q)“e’ d E, en = max (( eJ ((r,, 
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Table 1 
Execution times TAG, TAf, TA2 for fro = 1 

d\M 3 4 5 6 7 8 9 10 

6.295 5.399 
2 x 1o-2 4.329 3.789 

3.326 2.959 
3.391 2.990 

4 x 1o-2 2.466 2.276 
1.974 1.883 
2.434 2.201 

6 x 1O-2 1.884 1.825” 
1.577 1.596 
1.963 1.817 

8 x lo-* 1.624 1.639 
1.419 

4.877 
3.494 
2.772 
2.769 
2.204 
1.878* 
2.085 
1.842 
1.669 
1.757 
1.710 

4.529 4.282 4.096 3.953 3.839 
3.315 3.201 3.129 3.084 3.059 
2.671 2.618 2.596 2.595* 2.608 
2.634 2.547 2.489 2.45 1 2.427 
2.188” 2.203 2.238 2.285 2.342 
1.913 1.971 2.044 
2.024 1.994 
1.894 1.964 
- 

Table 2 
Execution times (x 10-‘)Z’Alr T,;, ~1~ for fiO = 100 

d\M 3 4 5 6 7 8 9 10 

1.020 
2 x 1o-2 0.5448 

0.3722 
0.5397 

4 x 1o-2 0.2988 
0.2149 
0.3800 

6 x 1O-2 0.2246 
0.1691 
0.3004 

8 x 1O-2 0.1902 
0.1491 

0.6819 0.5017 
0.3709 0.2784 
0.2571 0.1958 
0.3702 0.2792 
0.2139 0.1683 
0.1583 0.1279 
0.2669 0.2057 
0.1681 0.1375 
0.1314 0.1133 
0.2156 0.1695 
0.1478 0.1254 
- 

0.3923 
0.2217 
0.1585 
0.2235 
0.1403 
0.1095 
0.1680 
0.1189 
- 

0.3198 0.2688 0.2312 0.2026 
0.1849 0.1587 0.1394 0.1248 
0.1339 0.1165 0.1039 0.0943 
0.1863 0.1599 0.1404 0.1254 
0.1217 0.1087 0.0995 0.0932 
0.0982 0.0935 
0.1427 - 
0.1079 - 

where the coefficient Q is determined by Theorem 7 for Al and by Theorem 8 for A2. Hence, we 
have 

K = lnt~le’ ) + 1 [I II ln<Q> ’ 

Tables 1, 2 present the results for f10 = 1 and lo’, respectively, where j0 is from (2.13). In the 
tables, we give the execution times for the case s/e’ = lo-’ and F(N)=const.xN3’2, const.=l, for 
various values of d and M. The tables contain the values of TAI and TA2 (Tif, TA,) for the cases 
H = 0.5d and H = d, (di”f = d + 2H). Absolute values of the execution times are not important 
themselves. In the tables, the sign - denotes that one of the relationships wi n mjoj+l = 0, j = 
1,2,..., M - 2 is not fulfilled. 

It should be noted that these results indicate that for PO = 1 (Table 1) and for small values d, the 
execution time TA2 has the minimum value (* indicates this value). However, in the case of large 
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values d, TA2 = TA2(M) is a monotonically increasing function. T*,(M) decreases monotonically 
for all values d and H. 

If the coefficient PO from (2.13) is sufficiently large (see Table 2), then TAI(M) and TA2(M) 
decrease monotonically for all values d and H. Indeed, for d and H fixed, the coefficients QA,, QA2 
(consequently, the numbers of iterations K Al, KA2) are independent of the number of processors M 
and approximately equal 

QAI g exp(-&d), QAZ ” exp[-&(d + 2~)]. 

These relationships follow from Theorems 7, 8 and from the uniform decomposition of the original 
domain !&. Thus, for d and H fixed, KAl,KA2 are independent of M, but F(Ne) decreases with M. 
Hence, T*,(M) and TA2(M) decrease monotonically with M. 

It is worthy to note here that convergence properties of algorithms Al and A2 applied to the 
singularly perturbed problem 

~2LlU(P) = f[P, U(P)], P E Q); u(P) = 0, P E al&, 

where p is a small parameter, are analogous to the results mentioned in the case of a large value 
of the coefficient PO from problem (2.13). 
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