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INTRODUCTION 

This paper is concerned with singular integro-differential equations of 
a form including time-dependent transport equations with spherical sym- 
metry. Weak solutions that have arbitrary initial values and satisfy suitable 
homogeneous boundary conditions are studied with the following principal 
results: 

1. The weak solutions depend on their initial data continuously (and, 
therefore, uniquely). 

2. The first derivatives of a weak solution, under certain conditions, can 
be estimated a priori from the first derivatives of the initial data. Such a 
weak solution actually is a solution of the problem almost everywhere. 

3. When the quantities that enter the integro-differential equation 
satisfy certain conditions of positivity, the weak solutions of the equation 
are ordered like their initial data. 

The existence of weak solutions will be discussed in a subsequent paper, 
now being prepared, dealing principally with finite difference schemes for 
calculation. 

The author gratefully thanks the referee for his generous, painstaking 
criticism. 

1. STATEMENT OF PROBLEM. NOTATION AND DEFINITIONS 

Let X0 denote a fixed positive constant. For 0 < x < X,, , 1 y 1 < 1, 
and t 2 0, we shall be concerned with the solutions 11(x, y, t) of mixed 
initial- and boundary-value problems for integro-differential equations of 
the form 

ut + Y”s + 
1 -y2 
~ u, + 4% y, t) tJ = g(x9 y, q + su, 

X (l-1) 
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where 

The initial conditions considered are of the form 

4% y, 0) = 5&% Y)> 

while the boundary condition is 

(1.2) 

w&J ,y, t) = 0 when -l<y<O. (1.3) 

Such problems occur, for instance in the theory of neutron transport with 

spherical symmetry. Equation (1 .l) usually appears in this context in the 
notation 

where t denotes time, r radius, TV the cosine of the angle between the radius 
vector and the velocity vector, w the particle speed, #(t, Y, II) the particle 
density, (T a total cross section for particle loss, and g + S$ sources. The 
boundary condition (1.3) here requires that +(t, R, p) = 0 for TV < 0 and 
means physically that no particle enters the sphere 0 < r Q R from outside 

(7 > R). 
The remainder of the paper is written in the notation introduced first. 
We shall restrict our considerations to a fixed parallelepiped 

S,: O<xbX,, IYl<L O<t<T, 

with arbitrary positive T, on which c and g are assumed to be defined and u 

will be studied, K is assumed to be given on a corresponding four-dimensional 
parallelepiped 

z:,: 0 < x < x, , IYI Gl, OQt<T, IY’I < 1, 

and C$ on the two dimensional base, 

so: 0 < x d x, ) IYIGL 

of S,. The point set N, consisting of the planes y  = 1 and y  = - 1 and 
of the line segment 

x=x0, Y =o, O<t<T, 

will turn out to be singular. Hence, we frequently shall restrict u to the domain 

S,,,=S,-No. 
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Our minimal assumptions, except in Section 5, are as follows: 

(i) c is bounded and measurable in S, . 

(ii) g is bounded and measurable in S, . 

(iii) (a) K(x, y, t, y’) is integrable over .Z:, . 
(b) For each X, y, t K(x, y, t, y’) is integrable with respect toy’, and 

! -I I W,Y, 4Y’) I dy’ G 4 7 
-1 

where k, is a constant independent of x, y, t. 

(iv) 4 is bounded and measurable over S’s . 

When a function f(x, y, t), say continuous in a domain S, is absolutely 
continuous with respect to x when y  and t are fixed, absolutely continuous 
with respect to y  when x and t are fixed, and absolutely continuous with 
respect to t when x and y  are held fixed, we shall say more briefly that 

f(x, y, t) is absolutely continuous in S with respect to x, y, and t. For such a 
function, the first partial derivatives with respect to x, y, and t exist at almost 

all points of S and, moreover, are measurable (in the three-dimensional 
sense) on S. 

DEFINITION 1. A bounded function u(x, y, t), absolutely continuous with 
respect to x,y, t in S,, , is a “solution almost everywhere” of (l.l)- (1.3) ;f 
(1.2) and (1.3) hold strictly and (1.1) holds at almost all points of S, . 

Let W denote the class of continuous, piecewise differentiable functions 
w(x, y, t) with support, for some positive 6, in the region 

O<t<T--8, 

s<x<x,--6 when y  20, 

s<x<x, when y  <o, 

IYlGl- 

DEFINITION 2. A bounded, measurable function u(x, y, t) is a “weak solu- 
tion” of (l.l)- (1.3) if, for any function w belonging to W, 

j”,, iu (wt + yws + (y ZL’) Y j + w(- cu + g + Su)! dxdydt 

+ s 4x, Y, 0) 4(x, Y> dxdy = 0. (1.4) 

The function u is called a weak solution of (I .I) if (I .4) holds at least fm such w 
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in Wasalsovanishfor IyI>l--8,0<t<8,X,--8<x<X0with 
positive 6. (In this case, the two-dimensional integral in (1.4) drops out.) 

Weak solutions will be alternatively characterized (Section 2) in terms 
of integrals over characteristic curves. A weak solution, if absolutely con- 
tinuous in S,,, , will be seen to be a solution almost everywhere, and con- 
versely. 

2. CHARACTERISTIC CURVES 

A characteristic curve is a curve V: x = x(t), y = y(t) such that 

dx/dt = y, dy/dt = (1 - y2)/x; (2.1) 

differentiation in the direction of the tangent to V thus is given by the operator 

(2.2) 

One and but one characteristic, %zl,y,,l, or eP, , passes through each point 
P1 = (x1 , yr , tl) for which x, > 0, 1 yr 1 < 1. This characteristic can be 
represented as 

x = X(t; P1) = [(t - t,)2 + 2XIyl(t - t1) + xJ”2, 

y = Y(t; PI) = (t - t, + x1n)/X(t; PA* 

The directed segment of ‘ip,, from P1 to another of its points, say 
p2 = (X2,Y2,f2), wi 11 be denoted by U(P, , P2). On %?(P, , P2), clearly, 

w; Pl) = w; P2), Y(t; PI) = Y(t; P2). 

For x1 > 0, 1 y1 1 < 1, the projection of ‘%‘r, on the q-plane is a U-shaped 
curve, the branch of 

vQ, : 
X12U - Y12) 

X2 
+ya=1 

contained in the strip x > 0, 1 y 1 < 1 and opening towards large values of x; 
here, Qr = (xr , yr). The latter strip, x > 0, 1 y ) < 1, is simply covered by 
the gQ,, which, as x1 + 0, as yr + 1, or as yr + - 1, approach the strip’s 
boundary, the “curve” made up of the three segments, y = - 1, x = 0, and 
y = 1. 

9 
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We note that 

a-v; Pl) Xl + Yl(t - h) ____ 
ax, 

=--, 
X(C PI) 

axtt; Pl) = Xl@ - 5) 

aY1 X(t; Pl) ’ 

aqt; p,) x1(1 - Y12) (5 - t) 
ax1 = __ X(t; PI)3 ’ 

aw pd = X12(X1 + Y& - t1N 
aY1 X(t; PI)” * 

Thus, we have, in particular, 

aw; Pl) < 1 
ax, ’ - 

Furthermore, for 0 < t < t, and 1 y i 1 < 1, we have 

o < aw pl) 
’ ax1 

< x(t; P&l. 

(2.3) 

(2.4) 

(2.5) 

Indeed, 

x ay i 1 
(t - t1) x1(1 - Yl”) 

~ = - (t - t,y + 2x& - tl) + Xl2 ’ ax1 

an expression that, after the substitution yr = 1 - a, 0 < z < 2, becomes 

(t1 - t) x,.%(2 - z) 
(tl - t - Xl)” + 2(t, - t) x1x ’ 

which, under the stipulated conditions, certainly is less than 1. In addition, 
for any a, b, 

this is because 

qt; Pl) = a2w; Pl) 
8x1 at axI 

by (2.1) and because of (2.4). 
As above, let P = (x, y, t) denote a variable point along the characteristic 

VP1 passing through an arbitrary point PI = (x1 , y1 , tl) of S, . The last 
such P belonging to S, as t decreases from the value t, will be 
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called the “foot” of the characteristic and will be denoted by the symbol 
P* = (x* ,y* , t*). Either 0 < x* < X,, and 

t* = 0, 

in which case 

x* = (t,2 - 2x,y,t, + x,2y2, 

y* = (XIYI - tdlx*, 

or 0 < t* < t, and 

x* =x OF y* -=c 0, 

so that, from the equation X0 = X(t*; PI), 

where 

t* = t**(P,), 

y* = Y**P,), 

t**(P1) z t, - xlyl - dxo2 - (1 - yr2) 52, 

and 

y**(P,) = - 1/x02 - (1 - yr2) xl”/x, . 

Regarded as functions of PI, x* , y* , and t* thus are continuous with 
piecewise continuous derivatives such that, in the domain in which t* = 0, 

at* o ax* * aY* 1 -y*a -=, 
at, 

at,=-Y 3 q-=-x*’ 

at* -0, ?L, 
ax,- aY1 

and, in the domain in which t* > 0, 

at* 1 ax* -o ay* -o -= , 
atI at,-’ at,-’ 

at* (1 - Y12) Xl at* 2 

ax,=+- xoy** ’ 
Fl- 

- - Xl + ;I;;* * 

Hence, x* and t* are Lipschitz continuous with respect to t, with Lipschitz 
constants equal to 1. Likewise, y* is Lipschitz-continuous with respect to 
t, , but nonuniformly. Since 

qt; PI) = - Yt(t; PI), 
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we have from (2.1) that 

ytp; Pl) = - 
1 - Y(0; PI)” 

x(o;-; 

hence, for A < B 

I Y(O; xl , ~1, B) - Y(O; X19Y13A)’ =s, X(O;xl,yl,s) 
B1-y(O;xl,yl,s)2ds 

Consequently, on any segment consisting of points P, = (x1 , yr , tr) such 
that x1 = constant, yr = constant, and A < t, < B, we see that y*(PJ is 
Lipschitz-continuous with respect to t, with Lipschitz constant 

l/,y$B X(0; Xl , y1 > s). . . 

We also note that, for h > 0, 

O~~*(~l,Yl,~,+~)--*(~l,Yl,~l)~~. 
When 

0 < x1 < x2 < x0, x,-x,+ IYZI >a 

we have from the expressions for &*/ax, and y** that 

(2.7) 

I t*(x, 9 Y, t) - t*(x, > y, t) I -=c , y$t(xL--;‘,, , . (2.8) 

3. REDUCTION OF PROBLEM TO AN INTEGRAL EQUATION 
ALTERNATIVE DEFINITION OF WEAK SOLUTION 

Under hypotheses (i)-(iv) of Section 1, our problem is reduced to an 
integral equation by the traditional means of integrating 1 .l along %‘((P* , PI). 
To this end, for any function f(x, y, t) define the line integral 

I o(p *. pl, fdt = Q(X(t; P*), qt; p*j, t> cft- 

Evidently, for any sufficiently smooth, say continuously differentiable, 
function 0, 

Jw(p*mpl) (vt + Y”r + q 0.) dt = v(Pd - VP*). 
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Hence, if u in particular were sufficiently smooth, then for almost every P* 
we would have by the integration of (1 .I) over V(P*, PI) the integral relation 

(3.1) 

Below, every weak solution of (l.l)-(1.3) will be seen, for almost every P*, 
to satisfy (3.1) on VP, with 

u(P*) 3 u(x*, y*, t*) = +*, y*> when t* =o 

=o when t* > 0. (3.2) 

Conversely, a function satisfying these conditions will be seen to be a weak 
solution of (l.l)-(1.3). 

A function u satisfying (3.1) on a particular characteristic Q = gP. 
obviously is absolutely continuous along V and, at almost all points of %‘, 
satisfies the differential condition 

du ( 1 z-yp 
=-cu+g+su, 

the left member of the last equation denoting the limit of the quotient 
Mp’) - .(P))/(t’ - q as P’ = (x’, y’, t’) tends to P = (x, y, t) along V. 
Multiplying this differential condition by any continuously differentiable 
function a! and integrating the two members over an arbitrary segment of Q, 
we obtain a family of equivalent integral relations of the form 

ql) @I) = 4Pz) NP2) + J 
~cp*,p,, l~(~)r-~l”+~~+aSuldt~ 

(3.3) 

We shall now prove that a weak solution of (l.l)-(1.3), if absolutely con- 
tinuous with respect to x, y, t in S,,, , is a solution almost everywhere in S, , 
and conversely. Then we shall show that, as previously remarked, a function 
ir is a weak solution of (1 .l)-(1.3) if and only if U, for almost all P*, satis- 
fies (3.1) on V,, with u(P*) interpreted as in (3.2). Four theorems are for- 
mulated. 

THEOREM 3.1. If u is bounded and absolutely continuous with respect to 
x, y, t in ST@, and is a solution of (l.l)- (1.3) almost everywhere, then u is a 
weak solution of (IA)- (1.3) in S, . 

Proof. Multiply Eq. (1.1) by an arbitrary element w of W, integrate 
with respect to x, y, t over S, , and integrate by parts to remove the differen- 
tiations of u. The result is relation (1.4). 
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THEOREM 3.2. A weak solution of (l.l)-(1.3), if bounded and absolutely 
continuous with respect to x, y, t in S,,, , is a solution of (l.l)-(1.3) almost 
everywhere in S, . 

Proof. Integration by parts in (1.4) shows that 

i i 
1 -ya - w ut+y%!+ - u, + cu - g - Su 

t>o 
x 1 dxdydt 

+ j 4x, Y, 0) (4(x, Y) - 4x, Y, 0)) dxdr 

+ j-<o~f'dx, > Y, t) 4% , y, t) dydt = 0. 

Because of the arbitrariness of w, Eq. (1.1) holds almost everywhere, 
u(x, y, 0) = 4(x, y), and u(X, , y, t) = 0 for y < 0. All the conditions thus 
are satisfied that u be a solution of (1. I)-( 1.3) almost everywhere, as asserted. 

THEOREM 3.3. Suppose u, for almost all P*, satisjies (3.1) on %‘p. , u(P*) 
being defined as in (3.2). Then u is a weak solution of (1 .I)- (1.3). 

Proof. The functions 

+xlf- (3.4a) 

and 

‘I=xy-t (3.4b) 

are integrals of the differential equations (2.1): hence, the characteristic 
curves are described by simultaneous conditions of the form 6 = constant, 
q = constant. For this reason, we here consider new coordinates ([, 7, T), 
where 

7 = t. (3.4c) 

The inverse of the transformation (3.4a, b, c) being given by 

t = 7, 

we easily verify that 

(3.5) 

(3.6) 
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ah Y, t) a(x,y) m 
Jz a([,T,T) =-= a(f, 7) x * 

With H = Jw, we now multiply (3.1) by HT1(P,) and integrate with respect 
to f1 , Q , rr to obtain 

Here, H(P,) is regarded as a function of fr, r], , 71 , the 5, q, 7 that corres- 
pond to x, , y1 , t, . Since P* is constant for constant [r , Q , 

f fC,(Pd UP’*) df,hk = - 1 Wf, , r)l,O> 4P*) df&,~ 

= - I w(x, y, 0) 4(x, y) dxdy. 

The line integral in (3.7) is transformed by integration by parts with respect 
to rr . We thereby obtain 

1 F&p + H(- cu + g + WI d5,4&, + j 4x, Y, 0) 4(x, Y) hdy = 0, 
(3.8) 

or, after a coordinate change, 

SI [ uJ---’ (Jwh + ~(14, + v  (Jww).] + w(- cu + g + WI dx,dWt, 

+ St, 
w+fxdy = 0. 

This, as a little further computation shows, is equivalent to (1.4). Hence, 
u is indeed a weak solution of the problem, as contended. 

THEOREM 3.4. I f  u is a weak solution of (l.l)-(1.3), then, for almost all 
P*, u satzkjes (3.1) on Wp* with u(P*) defined as in (3.2). 

Proof. In (1.4), make the substitution w = H/J and change variables 
as in (3.4) thereby reducing (1.4) to the form (3.8). Integration by parts 
transforms (3.8) to 

j H,,(Pd [+‘I, - ~v~,~.,,, (- a + g + W dt] df&h 

+ j- 4x, Y, 0) 4(x, Y) dxdr = 0, 

the line integral being defined for almost all P*. 
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This we rewrite as 

s f&(P,) WI , p*) eYrl&, = 0, (3.9) 

where 

and 

w*) = 4(x”, Y*) when t* = 0, 

= 0 when t* > 0. 

From (3.9) it is easily seen, because of the arbitrariness of H, that, for almost 
all points P*, I(Pl , P*) is independent of or . For almost all P*, therefore, 
u is continuous on qP* , and the value of l(Pl , P*) in (3.9) is u(P*) - $(P*), 
the symbol u(P*) here indicating the (as yet unknown) limiting value of 
u(Pl) as PI tends to P* along VP* . If, in (3.9), we integrate with respect to 
or , we have, because H is zero for t > T - 8, 

I H(P*) (u(P*) - $(P*)) df*dq* = 0, 

a relation that proves 

u(P*) = $(P*) for almost all p*. (3.10) 

For any P* such that I(P, , P*) is independent of or , u then being continuous 
on V,, and satisfying (3.9), we now see that I(Pl , P*) = I(P*, P*) = 0. 
Hence, (3.1) holds, as contended. 

4. UNIQUE, CONTINUOUS DEPENDENCE OF WEAK SOLUTIONS 

UPON INITIAL DATA 

Under hypotheses (i)-(iv) of Section 1, weak solutions will be seen to 
depend boundedly and, hence, continuously upon their initial data. This is 
implied by the theorem below, devoted to an estimate in which, for conve- 
nience, c has been assumed to be nonnegative. (This nonnegativity is merely 
a normalization arising, for instance, as a result of a substitution u = e% 
with sufficiently large A.) 

THEOREM 4.1 (Boundedness). Let hypotheses (i), (ii), (iii), (iv) hold 
with 

0 < c < co, lgl <go, I$IG40 
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in S, or S, , the indexed symbols being constants. Then a weak solution of 
(l.l)-(1.3), h h w ic is assumed to be bounded, satisfies the particular condition 

1 24(x, y, t) 1 < &e’co+ko)t + c* (e(cO+ko’t - 1) 
0 

(4.1) 

at almost every point of S, . 

COROLLARY (Uniqueness). Under hypotheses (i) and (iii), a bounded weak 
solution of (l.l)- (1.3) in S,,, is uniquely determined by the choices of 4 andg: 
i.e., the solution is zero almost everywhere if+ = 0 and g = 0. 

We call attention to an additional result concerning uniqueness given in 
Theorem 5.2 below. 

Proof of Theorem 4.1. For fixed t, 0 < t < T, let n, denote the set of 
points P = (x, y, t) such that u satisfies 3.1 on gP . Then define 

W) = 2: I w I - 
This function is continuous. In fact, by (3.1) a uniform constant C exists such 
that, for any point P’ = (x’, y’, t') belonging to VP, 

Hence, 

1 u(P’) - u(P) 1 < c 1 t’ - t 1 . 

I u(p’) I G I u(P) I + c I t’ - t 1 < U(t) + c 1 t' - t 1 , 

and thus 

u(t') < U(t) + c 1 t' - t 1 . 

Since, in the last inequality, t and t' may be interchanged, it is clear that 
U(t) is continuous, as asserted. 

Because the WP for P E lir, simply cover S, except for a subset of measure 
zero, we have 

I 4% y, t) I < w 
for almost all x, y in So . 

Now consider any characteristic %r, along which (3.1) is valid. From the 
foregoing, 

II 
t1 

wP*&) 
cudt <co 

I I 
U(t) dt 

0 

and 

ll wP*Jy 
gdt 1 G got1 - 
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Furthermore, 

Sudt = 
wP*.PI) I lj yP(P*.PI) 

dt j;, K(x, y, t, Y’) U(X, Y’, t, dy’ / 

< I , Q,p* pl, U(t) dt I1 I K(x, Y, t, Y’) i dY’ 
-1 

< ko s 5 
U(t) dt. 

0 

Using these estimates in (3.1) gives 

I u(~I) I < 40 + got, + (co + ko) f’ W dt. 
0 

The left member, because PI is arbitrary, can be replaced by U(tl), and the 
resuhing relation implies 

i-J(t) ,< +o~(co+*O’t + $I& (po+*o’t - 1); 
0 

this in turn implies (4.1) 

5. POSITIVITY. MONOTONIC DEPENDENCE OF SOLUTION UPON DATA, 
COEFFICIENT, KERNEL, AND INHOMOGENEOUS PART OF EQUATION 

When the data, the coefficient, the kernel, and the inhomogeneous part 
of the equation are non-negative, a weak solution too will be non-negative. 
This is true within a broader framework of assumptions than that heretofore 
considered, assumptions (i), (ii), and (iv), in particular, here being replaceable 
by the following three hypotheses: 

G>0 c is integrable in S, , 

(ii)o g is integrable in S, , 

(iv), 4 is integrable in So . 

THEOREM 5.1. Assume hypotheses (i). , (ii), , (iii), (iv)o , und &so ussume 

4 20, c 2 0, K 2 0, g 20. 

lfu is a weak solution of (i.I)-(1.3), tken 

U(%Y, t) 2 0 
at almost all points of S, . 
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The remark preceding Theorem 4.1 shows that this result is true if c is 
merely bounded below. 

This result enables us to assert the uniqueness of the solutions of some 
equations with unbounded c or K: 

THEOREM 5.2. If Hypotheses (i)a and (iii) and the conditions 

c 20, K&O 

are satisfied, a bounded weak solution of (l.l)-(1.3) in S,,, is uniqilely deter- 
mined by the choices of 4 and g: i.e., the solution is zero almost evetywhere if 
rp=Oandg=O. 

Another signiticant consequence of Theorem 5.1 on positivity is that, 
under suitable conditions, u depends monotonically in the same sense on 
- c, g, K, and 4: 

THEOREM 5.3. Consider two problems of the form specijied in (1.1)-(1.3), 
each satisfying hypotheses (i),, , (ii),, , (iii), (iv)a . Distinguishing corresponding 
quantities in the two problems by the subscript I or 2, assume 

c2 > Cl > 0, Kl> K, 2 0 
and 

gl,g,s > $1 242 > g1 20, 41 > 0; 

denote by u1 and u, weak solutions of the respective problems. At almost all 
points of s, , it is then true that 

Ul 2 u2 * 

Theorem 5.3 is proved by applying Theorem 5.1 to an equation for 
ill - u2 (see[l], pp. 15-16). 

Proof of Theorem 5.1. Let us apply (3.3) with 

a(P) = a(x, y, t) = exp (- 2k&), 

where 6 is an arbitrary number > 1. With this choice of (Y and the substitution 
u = exp (2k,,St) w, relation (3.3) becomes 

I = @‘d + lvtp2 pl, [- (24,~ + 4 v + e-“&*tg + SW] dt; (5.1) 

it is valid (Theorem 3.4) for almost any characteristic VP1 and for such 
segments %(P2, PI) as are contained in S, . 
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Let I7 denote the set of points PI = (x r , y r , tr) of Srsuch that (5.1) holds. 
This set I7 is a union of characteristic segments differing from S, by a set of 
measure zero. To prove Theorem 5.1, it suffices to prove that v  > 0 in 17. 

Suppose that, to the contrary, 

m=Einv(P) <O. (5.2) 

Then there is a point P’ = (x’, y’, t’) of 17 with 

O<x’<X,, IY’I < 1, O<t’<T 

such that 

m’ = v(P) < ma-l. (5.3) 

Let %” denote the characteristic curve passing through P’. From (5.1), v  

is continuous along v’. For the moment, also let P,, = (x,, , y,, , t,,) denote 
the point with least ordinate t,, on V such that v(Po) = m’. We see to > 0 
because C# > 0. We see 0 < x,, < X,, by considering that, if x,, = X,, , as t 
decreased a variable point (x, y, t) of V would cross the plane x = X,, at 
the point P,, in the direction of increasing x: hence, (dx/dt),o = y0 < 0, and 
by 1.3 u(PJ = 0, a contradiction. Thus, x,, < X,, . On the other hand, 
x,, > 0, since, in fact, x > 0 at all points of V’, and we conclude that 
0 < x0 < X,, , as asserted. 

Now we identify P’ with P, . Then t’ > 0, 0 < x’ < X,, , and for any 
point P = (x, y, t) on V, 

v(P) > m’ if t* < t < t’, (5.4) 

where t* is the first value of t less than t’ at which v’ intersects either the 
initial plane t = 0 or the boundary x = X0 . 

Since K > 0, by (5.3) we see 

Sv = 
I 

K(x, y, t, y’) v(x, y’, t) dy’ > k,m 2 k$m’. (5.5) 

Let P” = (x”,y”, P’) be a point of v’ such that t* < t” < t’ and 

20(P) - m’ < 0 (5.6) 

for any point P = (x, y, t) between P’ and F”’ on V’. Thus, in particular, 
v  < 0 on %‘(P”, P’), and since c > 0 and g > 0 as well, from (5.1) and (5.5) 
we have 

VP’) > VP”> + /v,,,,,,,, WW - W dt. 
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This and (5.6) imply n(P) > v(P”), a statement that contradicts (5.3) and 
(5.4) and thus contradicts (5.2). We conclude that m = 0, this being the 
contention of the theorem. 

6. A PRIORI ESTIMATES FOR THE FIRST DERIVATIWS OF 
WEAK SOLUTIONS 

This section is devoted to the a priori estimation, under specified 
hypotheses, of Lipschitz constants with respect to t, x, and y for a 
weak solution u of (l.l)-(1.3). The bounds obtained are not all uniform in 
S, , but suffice to show u to be absolutely continuous with respect to x, y, t in 
Sr,a and thus to be a solution of (1 .l)-(1.3) almost everywhere (Theorem 6.1). 

We have already obtained (Theorem 4.1) an a priori bound for 1 u 1 valid 
under Hypotheses (i) to (iv). Our estimates of Lipschitz constants for u 
require appropriate additional assumptions concerning difference quotients of 
c, g, K, and 4. We indicate these additional assumptions below, prefixing 
those pertaining to t-differences by the label (t), those pertaining to x-dif- 
ferences by the label (x), etc. The symbols c, , g, , k, , $r denote constants 
dependent only on T. 

(i)l(t) (or (x)) c is Lips&&z continuous with respect to t (or x) with 
Lipschitz constant c, , 

(y) x-k is Lipschitz continuous with respect to y with 
Lipschitz constant cr , 

(ii)r(t) (x) (y) same assumptions as (i)l concerning g, with Lipschitz 
constant g, , 

WMt) f, I W, Y, t + 4 Y’> - K(x, y, t, y’) I dy’ $ kl I h 0 

(4 s_, I K(x, , Y, t> r’) - K(x, , y, t, y’) I 4~’ < h I xl- xz I, 

(Y) f, I K(x,Y, > 4~‘) - K&Y, > ts y’) I dy’ < k,x irl - yz I 

(‘) Constants k’ and 6, 0 < 6 < 1, exist such that 

I K(x, Y, t, Y’) I G k’ 
for 1 y’ 1 < 6. (This requirement might be replaced by 
such an integral condition as 

(S 
6 I K(x,Y~ t>y’) I 
-8 1/x,2 - (1 - y’“) x2 

dy’ < constant. 
) 
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(iv)r (x) (y) same assumptions as (i)r(x) (y) concerning +, with Lip- 
schitz constant +i , 

(iv)r, +(x0 ,y) = 0 for - 1 <y < 0. 

The estimates obtainable under these hypotheses (Theorems 6,2, 6.3, 6.4), in 

the light of Theorem 3.2, justify the following result: 

THEOREM 6.1. Under all the hypotheses (i) to (iv) (Section 1) and (i)r 
to (iv)r above, a bounded weak solution of (l.l)-(1.3) in S, is absolutely con- 
tinuous with respect to x, y, t in S,,, and, moreover, is a solution of (1 .I) -(I .3) 
almost everywhere in S, . 

We now turn to the first estimate, which is concerned with a Lipschitx 

constant for u with respect to t. 

THEOREM 6.2. Under conditions (i) to (iv) (Section 1) and (i)i(t), (ii)r(t), 

(Wt), (W1 , a bounded weak solution of (I .I) - (1.3) in S, satisfie a unifmm 
Lipschitz condition with respect to t. 

Proof. We must study the behavior of the component terms of the right 
side of (3.1), and we begin with the first, u(P*). 

As seen in Section 2, x* and t* satisfy Lipschitz conditions with respect to 
t, with Lips&& constant 1, while y*, regarded as a function of t, alone on 
any interval A < t, < B, satisfies a condition of the form 

where 

I Y *PI - Y *(A) I < (B - 4% 

2 = A4<y@B X(0; Xl 9 y1 , s). 
\. 

These and similar considerations, together with Hypothesis (iv)r , enable us 
to prove that 4(P*) is Lipschitz-continuous with respect to t, . Regarding x*, 
as well as y*, as a function of t, in the interval A < t, < B, x1 and yr being 
held fixed, we have, in fact, 

I 4(x*(B), Y*(B)) - +*(A)> Y*(A)) I 

G I 4(x”, Y*(B)) - +(x”, y*(A)) I 

+ I 4(x*(B), Y *@I) - $6 Y*(B)) I 

+ I W> Y *(A)) - $(x*(A), Y *(A)) I 
<+,(B-A++)-x*(A)1 +IP--*(B)I). 

From the definition of Z and the Lipschitz continuity of x*, we have, how- 
ever, that Ix” - x*(A) I <B -A and also 1 f-x*(B) I < B -A. It 
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follows that $(P*) is Lipschitz-continuous with respect to t, , as contended, 
and with Lipschitz constant 34, . Since u(P*) is continuous, coincides with 
C(P*) in one part of its domain, and vanishes in the other, u(P*) is Lipschitz 
continuous with respect to t, . 

Let us now consider the integral 

W’d = j- 
oplP:.P3 

gdt, 

here denoting the foot of VP, by PI* = (x1*, yr*, t,*). In the notation 

Q@; Pd = W; PI), Ytt; f’dh (6.1) 

we write this integral more explicitly as 

With h > 0, consider the point P, = (x1 , y1 , t, + h), and denote the foot of 
Sfp, by Pz* = (x2*, ya*, t,*). We have 

G(Pz) - G(PJ = flihg(Q(t; Pz), t) dt - 
t; 

Since 

Q(t + k Pz) = Q(t; PA, 

G(Pz) - G(P,) = f’+“g(Q(t; PJ, t) dt 
ta* 

.tl+h 

I 
t1 
t; g(Q(c PI), t) dt. 

+I t;+h MQk PA, 9 - g(Q(t; Pzb t 

Hence, and because t,* < t,* < t,* + h by (2.7), we have 

I W’s) - W’J I G (8, + g,T) h 

h)] dt. 

(6.2) 

g, here again denoting a bound for (g 1 . Thus, G is Lipschitz continuous 
with respect to t, . 

For the integral 

Wl) = J- cudt, 
Q(P;,Pl) 
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analogous reasoning shows that 

I CP2) - Wl) I < uo(co + Cl0 h 

+ co 1:; I u(Q(t; I-;), t + h) - u(Q(t; Pl), t) I dt, 

where co is an upper bound for 1 c ( and u0 an upper bound for 1 u 1 in S, . 
Hence, if 

l4%Y, t + 4 - 4GY, t) I w,(t) = sup ___-- 3 
o<rgx, h 
IVIS 1 

where 0 < t < t + h < T, we have 

I W,> - W’,) I < do + c,T) h + 4 f’ v&) dt. 
0 

(6.3) 

Lastly, consider 

W’d = s,,,;,, ) Su dt 
1 

s s 1 
= dt 

yP(P;.P,) 
@, y, t, y’) u(x, y’, t) dy'. 

-1 

By means similar to those above, we readily deduce 

I TV’,) - T(P,) I < (A, + k,T) 4 + koh 1” v,(t) dt. (6.4) 
0 

In view of the foregoing considerations, from (3.1) we immediately have 

I ‘(“) ; ‘(“) ’ < Cl + C, j-I’ a,(t) dt, 
0 

where C, and C, are constants depending on T, and it is easily seen that the 
left member can be replaced by q,(t). A bound for v*(t) follows as from 
Gronwall’s inequality and this bound is a Lipschitz constant for u with 
respect to t, as demanded. 

Our next, and principal, aim is to establish the following result concerning 
the Lipschitz continuity of u with respect to X: 

THEOREM 6.3. Under hypotheses (i) to (iv) and (i)r(x) (y), (ii)&)(y), 

Wd4 (Y> 0 (iv&) WY a constant C exists with the fohwing property: 
fol any points PI = (xl , y1 , tl) and P2 = (x, , y1 , tJ of S, with x2 -=z xl , 

dxo2 - X12(l - Y12) I U(Pl) - 4P2) I 4 C(Xl - 32). 
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Let f be a function on S, v u, where u is the set of points P = (x, y, t) 
such that x > X0, - 1 Q y -=c 0,O < t < T. Assume that on S, , f satisfies 
Lipschitz conditions of the following type: 

(4 If(x~,Y,t)-f(xz,Y,t)I ~~I~l--x,I~ 

@I If(x,Yl,t)-f(x,,Y,,t)I dLXlY,-YY,I* 

Furthermore, let f be defined on u by 

f(X,Y, 4 =f(Kl ,Y? t). 

Then f satisfies the conditions (a) and (b) on its entire domain of definition. 
In the course of the proof of Theorem 6.3, it will be necessary to compare 
the values of such f at corresponding points of neighboring characteristics. 
The characteristic curves, VP, and ‘ip,, , on which the values off will be 
compared, are those issuing from 

Pl = (Xl 9 Yl 9 h), 

and 

pz = (Xl - 4 Yl > t1h 

where 

0 < h, 0 -==l t, , IYl I < 1. 

An arbitrary point of FPi will be denoted by 

P(t; Pi) = (X(t; Pi), Y(t; P,), t) (i = 1, 2). 

The comparison referred to is stated in the following lemma. 

LEMMA 6.1. Under assumptions (a) and (b) aboere, 

IfW; J-‘J) -f(P(c Pz>) I < 2,s. 

proof. For 0 < 13 < 1, the characteristic curve with initial point 

(Xl - Oh, yl , tl) does not meet the plane x = 0. Hence, if 

4 SE z?(t) = ,,F&, W; xl - % ~1, tl), 

x1 , yr , t, , t, and h being regarded in the minimizing process as fixed, we see 

2 > 0. 

Since 

df =fP(c 5)) -fW Pd 

=f(% Y(c PI), t) -f(% Y(c Pz), 4 

+f(W; PI), w; PI), 4 -f(% Y(C PI)> t) 

+f(% w; PJ, 0 -f(x(t; P*), w P*), t), 

IO 
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we have by our assumptions 

1 Af ( < L4 1 Y(t; PI) - Y(t; Pz) I + L(X(t; PI) - j;;) + L(X(t; Ps) - 2). 

For some value fl between 0 and 1 we have, however, 

f = X(t; x1 - dh, y, , t1), 

from which relation, and from (2.4), 

X(t;P1) -ngOh, X(t; PJ - 5 < (1 - 6) h. 

Furthermore, by (2.5) 

Hence, 1 Af 1 < 2Lh, as asserted. 
This lemma is easily applied to the following line integral off defined for 

any point P, of SrO , with To > 0, as 

W’o) = j- fdt, 
WR(&) 

where R,, = P(0; PO). 

COROLLARY TO LEMMA 6.1. With PI and Pa as a’e$ned above, let 
R* = P(0; PJ, i = 1,2. Under Hypotheses (a) and (b), 

I WV; PA) - VV; Pd) I < 2m. 

Proof. If P’ is any point of %r, , 

Hence, 

F(P,) = /‘f(P(t ; P’)) dt. 
0 

WV; PA) = j;f(P(r; PI)) A, 

and 

WV; Pd) - WV; Pa)) = j’ (f(P(s; PI)) - f(P(s; PJ)) A. 
0 

The desired inequality now follows immediately from Lemma 6.1. 
Our proof of Theorem 6.3 is based on the particular integral relation to 
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which (3.3) reduces when we substitute PI* for Pz and select for a(Pl) the 
function 

where R, = P(0; PI) denotes as above the point of wP, for which t = 0. 
(Here we assume that the function c has been extended to S, u u by the 
definition 

4x9 y, t) = c&J , y, t) 

for P = (x, y, t) in CT. Then, on its new domain of definition, c still satisfies 
the conditions (i)i(x) and (i)r(y) an d we may ‘apply to it our earlier results 
concerning f with c, replacing L.) Since (dE/dt)wpl = c(PJ E(P,), the 

resulting integral relation may be written as 

u(P~) = (E(P,))-~ w’,*) G’l*) + W’W ~vtp;,p ) Ek + W dt. (6.5) 
1 

Its advantage over alternative forms is that difference quotients of its right 
member with respect to x can be estimated from a presumed bound for the 
difference quotients of u with respect to x, no similar bound for difference 
quotients of u with respect toy being involved. 

The corollary to Lemma 6.1 shows that, for 0 < t < T, 

I W(c PA> - W(t; PJ) I G Mh, 

where M is a constant. 

66) 

Proof of Theorem 6.3. We begin by proving that the first term in the 
right member of (6.5) is Lipschitz continuous. Let S* denote the subset of 
S, such that PI* E S, for PI E S*. By (iv)r, , the term indicated is zero 
unless PI E S*; hence, Lipschitz-continuity need be proved just for S*. 
We shall establish that each of the three factors of this term is Lipschitz- 
continuous with respect to x, in S *. The first two factors are Lipschitz- 
continuous because, in the notation of Lemma 6.1, 

and 

Wl) - Jv,) = Jwv,; Pl>) - w(tl; Pa)) 

WI*) - -V’,*) = EV-YO; PI)) - W’P; Pa)) 

when PI , P, E S*, inequality (6.6) therefore applying in both instances. The 
third factor, u(Pl*), is Lipschitz continuous in S* because of (2.4), (2.5), 
and Hypothesis (iv)r . To see this, again assume PI* and PI* to lie on the 
initial plane, in which case u(Pl*) = 4(Pl*) and u(P2*) = #(P2*). That 

10* 
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u(Pr*) is Lipschitz continuous then follows from the following estima- 
tions in which PI’ and P,’ are relabelings of PI and Pz such that 
X(0; Pz’) < X(0; P,‘): 

1 +(P,*) - +(Pl*) I = / 4(X(0; PI’), Y(0; PI’)) - W(O; Pz’), Y(O; Pz’)) 

< 1 4(X(0; Pi), Y(0; PI’)) - &qo; Pi), Y(0; PI’)) I 

+ / $(X(0; Pi), Y(0; Pi)) - 4(X(0; Pz’), Y(0; P,‘)) I 

< 41 I X(0; Pl’> - X(0; Pz’> I 

+ wqo; Pz’> I Y(O; PO - w-h Pz’> I 

$ Xh. 

We conclude that the first term in the right member of (6.5) is Lipdb 
continuous with respect to x1 , as asserted. 

We shall next show for the integral 

Wl) = j 
v(P;.P,, 

Egdt 

that 

dXo2 - (1 - ~2) x; I H(P,) - H(P,) I < Ch, (6-7) 

where C is a suitable constant. To this end, for brevity set Et = E(P(t; Pi)), 
i = 1,2, and define gi analogously. If ti* denotes the value of t at the foot of 
QZp, , i = 1,2, we then have 

H(Pi) = 11: E&&t, i= 1,2, 
1 

and, if 

tj* = max (tl*, t,*), t,* = mm (t,*, t,*), 

W'd - W's) = j: E&t - j; -Q&t 

= j;; [Elk, - gzJ + g,(E, - Ed dt + j$ -%a&. 
i 

For 0 < t < T, El , E, , g, , g, are bounded, g, - g, is estimated by Lemma 
6.1, and El - E, is estimated by the corollary to this lemma. Hence, 
constants C, and C, , which may depend upon T, exist such that 

I f-V’,) - HP’,) I < W + G I t,* - tz* I . 
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Inequality (6.7) results from this when we now estimate 1 t,* - t,* 1 from 
(2.8). 

Our discussion up to this point shows the integral relation (6.5) to be of 
the form 

where 

Wl , p, Y’) = wvJw1)) WV Y’h P = P(t; PJ 

and where Z(P,) satisfies a Lipschitz condition of the type (6.7): 

dXo2 - (1 - yr2) xi2 1 Z(P,) - Z(P,) 1 < const. * h. 

Our aim is to prove that u(PJ satisfies a Lipschitz condition of the type 
(6.7). To this end, again we consider the variable points 

Pl = 61 3% 9 h), p* = (Xl - h, Yl , h), 

now with 0 < h < xi - min (xi , X,/3). Also, we consider 

Pz’ = (x1 - h’, Yl , h) 

for 0 < h’ < h, defining 

and 

wit) = p”tg 1/xo2 - X12(l - Y12) I NPl) - 4Pz’) I 
O<k4 

N*(t) = ,,“‘I’,p, t Wm. 
. . 

Eventually, we shall obtain from (6.5’) an estimate for &(t). 
Again let 

p = by, t) = P(t; Pl), 

Q = K 7, f) = fv; P2) 

denote variable points of VP, and VP* , respectively. The values at PI and P2 
of the line integral in (6.5’) are 

l(pl) = Jgyp: p ) & Cl H(Pl , p, Y’) 4% Y’, 4 gY’ - 1 t1 = I s at l t: fqp1 , p, Y’) 4% Y’, 4 4’ 
-1 
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and 

W', , Q,Y’) 4&y’, t) 4' 

=I s “I dt 
1 

t; 
HP,, Spy’) Q,Y’, t) W. 

-1 

Subtracting these values, and again defining j and k such that 

tj* = max (t,*, t,*), 

we readily obtain 

t,* = min (t,*, t,*), 

WI) - W,) = j" df j1 t; VW', , P,Y’) - fW2 ,Q,y’)) H&Y', t) 4' 
-1 

+ j:; dt s' W', , P, Y') (4x, Y’, t) - 48, Y’, 4) dy’ 
-1 

+ jt’ dt j’ 
t: 

H(P, , P, y’) U(R, y’, t) dy’ = 1, + I2 + I3 , 
-1 

where P = (a, 9, t) = P(t; Pk). 
Hypothesis (iii), , Theorem 4.1, and the estimate (2.8) prove that 

dXo2 - xi2(1 - yrs) 1 Is 1 < const. . h. 

Inequality (6.6) and Hypotheses (iii&) (y) added to the previous reasons 
show that 

1 I1 1 < const. . h. 

To estimate Is , note that, because of (2.4), ( x - f 1 < h. Hence, with 

4 = max (x, t), 

for x # 5 we have 

z/x02 - a”( 1 - y’2) ) U(X, y’, t> - u(& y’, t) I/h < N*(t). (6.8) 

Next we shall require an additional result on the geometry of characteristic 
curves. Assuming X,, - x, + 1 - yrs > 0, denote by (X0, ye, t,,) and 
(X0 , --y,, , to) (y. < 0) the two points of intersection of Wp, with the 
plane x = X0 . (Possibly to < 0.) If E is an arbitrary constant such that 
0 < z < X0/2, the plane x = X0 - E intersects Wp, in two points, in 
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one point, or in none. If in two points, we denote these points by 
(X0 - E, ye, tJ and (X0 - E, -ye , tf) with ys < yE < 0 and t, < tc. Let 
P = (x, y, t) be a point of VP, . The number t, then is the greatest value 
such that 

x0-c<x<x, for to d t < 6 , 

and t* the least value such that 

X0--•<x<X, for te < t < to. 

If VP, intersects the plane x = X0 - e in one point only, at this pointy = 0 
and, hence, t = t, - xiyl . When the intersection consists of one point, we 
therefore define 

t, = i!’ = t, - Xiyl . 

When the intersection is empty, we as10 define 

In all cases, y. < Y(tE; PI) < 0. The required result we now state in the 
following lemma: 

LEMMA 6.2. The quantities defined above satisfy the inequalities 

:; 1 f 1 < 2x,/l/x,z - x12(1 - yl”). 

Proof. The functions t - xy and x2(1 - y2) have been observed (proof 
of Theorem 2.3) to be constant along any characteristic. Hence, in particular, 

where 

t, - to = x,y, - x&l , (6.9) 

x, = X(t,; PI) = x0 - B and yc = Y(G PI). 

Similarly, 

and, therefore, 

x,2(1 -yes) = X02(1 1 yea) 

- (&Ye + XOYO) (x,y, - XOYO) = Xo2 - x,2 
= 2EXo - 3. 

Since ye < 0 and y. < 0, it follows that 

XYE - XOYO = 
42x0 - 6) 

- (&YE + XOYO) G (4;,, * 
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Hence, by 6.9, 

t, - to < 24-Y& 

Furthermore, X,,2(1 - y,,02) = xi2(1 - yi2), which implies 

- yo = dxo2 - x12( 1 - yi”)/x, , 

this and the previous result proving the first inequality in the lemma. The 
second inequality is similarly obtained. 

We now return to discussing I, . Requiring 0 < E < X,//3, define t, and tf 
for VP, as was done for the lemma. Then set 

TE=tj* if t, < tj* 

= 4 if tj* < t< < tl 
zzz h if t, < 4 (6.10) 

and 

T* = t, if t, < tc < to 
= l? if tj*<F<t, 

= tj* if r < t,*. (6.11) 

The main outcome of these definitions is that [Tc , Tf] is the largest sub- 
interval of [tj*, tJ on which X(t; Pr) < X0 - E, unless this subinterval is 
empty or degenerate, in which case [T, , T*] too is degenerate. Furthermore, 

T, - tj* <t, - to, t, - T’ < to - t’ . (6.12) 

With the 6 afforded by Hypothesis (iii)i(‘), now decompose la as follows: 

With 4 = max (x, I), as before, we have, in the domain of integration of P, 

z/x02 - P(l - y’2) > X08 

and, in the domain of integration of I”, 

1/x02 - $71 - 30) 2 z/X02 - (X0 - E)” 2 IGq 
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In view of (6.8), these integrals therefore can be estimated by inequalities of 
the form 

1 Ii” 1 < ; 1” Nh(t) dt, 
0 

where C is a constant independent of 6 and E. 
We must yet estimate I’ and I”‘. The process is the same for both integrals, 

and we shall consider in detail only the first. Assumption (iii)J’) and inequal- 
ity (6.8) show, respecting the inner integral in I’, that a constant R” exists for 
which 

I I j$ I, I-W, , P, y’) (u(x, Y’, t> - 45 Y’, t>) dy’ j 

I 

8 
< k” I 4x, Y’, t) - 44, Y’, 4 I 4’ -~ 

< k’%,(t) ,“, dy’/t’x,z - 42(1 - y’2) 

= k”iV,(t) flog 
(d/x02 - (1 - 62) 42 + &3)2 

xo2 - R2 

< 3k”X,-‘N,(t) log (1 + q2 xo2 
x02 - 22 ’ 

the last inequality following because 4 > X0/3 (x > X0 - E > 2X0/3 and 
5 > x - h > x - X,/3) in the domain of integration for I’. Hence, 

I I’ I < 6k”-G1 I log (1 + 6) Xo) I ,; Ndt) dt 

+ 3k”X;;l J‘; &(t) 1 log (l/(X,2 - a”)) 1 dt. 

Since N&(t) is a nondecreasing function, 

I I’ I < 6k”-JG?N@,) [(T, - ti*) I log ((1 + 8) Xo) I 

+ 1; I log (Xo2 - a2) I dt] . 

Since 9 = max (x, f), the integral on the right above is not greater than 

j-21 log (X0’ - x2) I dt + ,; I log (Xo2 - 5”) I dt. 
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We estimate these integrals, noting that 

x,2 - x2 = x,2 - X(t; P,)2 

= x,2 - X12( 1 - y12) - (t - t, + x&s, 

from the fact that the indefinite integral of log (a2 - s2) with respect to s is 
(u + S) log (u + s) - (a - S) log (u - S) - 2s + constant. It follows that 
the integral of ) log (Xo2 - 9) 1 with respect to t over an arbitrary interval 
of length 7 tends to zero, as 7 -+ 0, uniformly with respect to t, x1 , yr , t, , 
the same obviously also being true of the integral of 1 log (Xaz - f2) 1 with 
respect to t. Hence, to any positive 5 corresponds a positive 7, independent 
of xi , yi , t, , h, such that 

s 
;I 1 log (X,2 - $2) 1 dt < 5 (6.13) 
J 

if T, - tj* < 7 and, hence, by (6.12), if t, - t, < 7. It follows that, if 
t, - to < 77, then 

/ I’ I < 6WX377 I log (1 + 8) Xc, I + t> W,(h). 

The condition t, - t, < 7 (Lemma 6.2) is satisfied, however, when 

and, hence, in particular, when 

E = d-G2 - %Yl - Y12) 
2x3 

rl* 

Let us now impose this restriction upon E. Then select 5 and, depending 
on 5,~ in order to have 

I I’ I G (&-) N&1); 

neither 5 nor q depends on Pl . We similarly assure 1 I”’ 1 < (1/8X,,) ZVh(tl), 
these inequalities and the bounds obtained for I” and Ii” implying that 

1 
’ I2 I G (&j Ndt1) + c ii.+- 1/;;[&2 _ xl2(1 _ y12)]1/4 II 

$1 
Nj&(t) a. 

o 
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in view of our estimates above of II and Is , we thus arrive at 

I WI> - I(P2) I < (G(Xo2 - X12U - Y12F2 + C4) h 

1 

+ c [+ + dy[X,2 - X2(1 - yr2)]1/4 
] 1”’ No) dt + (&-) Nhkh 

0 
(6.14) 

the inequality needed to estimate h-lNh(t) from (6.5’). Here and in the sequel, 
C, always denotes a constant independent of Pl . 

Differencing (6.5’), using (6.14), and multiplying both sides by 

1/X,Z - x12(1 - y12) gives 

4x02 - x12( 1 - y12) I u(PJ - u(P2) 1 < C& + c, f’ WI(f) & + (-a NM. 
0 

We apply this to two points P3 = (x, , y3, ta) and Pi = (x3 - h’, y3, t3) SO 

selected, in place of Pl and P2 , that 0 < t, < t, , X, > 0, 0 < h’ < h, and 

dxo2 - xs2(1 - Y22) I 4P2) - @2’> I 2 (8) NM’ 

Since h’ < h and Nh, Q Nh , we thereby obtain 

(8) N&J < W + C, s ‘* NM dt + ($, N&t) 
0 

and, therefore, 

< Ck + C, f’ N,(t) dt + (+I N,(h) 
0 

<a, N&J < Cob + C, 
I 

tlN,(t) dt, 
0 

an integral inequality that immediately implies the existence of a uniform 
bound for Nh(t) in the band 0 < t < T. Theorem 6.3 with this is completey 
proved. 

Our last task of a priori estimation has to do with the Lipschitx continuity 
of u with respect to y. The relevant estimate is formulated for convenience 
for the partial derivative U, , which exists because of the Lipschitz continuity 

of 21 at almost every point. 

THEOREM 6.4. If hypotheses (i) to (iv) (Section I) and (i)r to (iv)r are 
satisfied, then for each x, t in the region 

o<x<x,, 

O<t<T, 
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uy exists at almost all values of y and satisfies 

(1 - y”) 2/X,Z - x2( 1 -y2) 1 uY(x, y, t) / < const. * x. (6.15) 

Proof. With arbitrarily small, positive 6 and S’, we first consider the 
subset of S,,, 

0 < x < x, - S’, 

u T.&d: 
\ O<t<T-S’, 

lYI<l-8, x,--x+lyl >a. 

Let PI = (xi ,yr , tl) be a point of UT,O,B, and P, = (x1 ,ya , tl) a point of 
ST,, with the same first and third coordinates. It suffices to prove that, for a 
sufficiently small, positive P (depending on 6, S’), 

(1 - ma (y12, ~~~1) d-G2 - x12(1 - y12) 
I @2) - 4p1’1) I < const* . x 

Y2 -Y1 ’ 
1 

forO<y,-yr<E. 
(6.16) 

We fix E so small that, for 0 < ys - yi < B, a positive value t, exists such 
that Ps = (x1, y2, ts) is in ST,, with t, < t, Q T and 

Yl = Jv,; p3>* (6.17) 

By P4 = (x4 , yi , tr) we denote the intersection of ‘ZPs with the plane t = t,; 
the abscissa of this point is 

x, = X(t,; Pa). (6.18) 

The points PI , P2 , P3 , P4 are indicated in Fig 1. 

x/ 
FIG. 1 Four points in the proof of Theorem 6.4 
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We now estimate 1 u(P,) - 24(Pr) 1 as 

I uP2) - U(Pl> I G I fez) - UP*) I + I es) - @4) I 
+ I @4) - Ql) I = u23 + 1134 + 1141 (6.19) 

and shall find suitable bounds for the z+, in terms of Lipschits constants for u 
with respect to x and t. These Lipschitz constants, here denoted by L, and 
Lt , respectively, are known from Theorems 6.2 and 6.3. 

Condition (6.17) determining t, is 

Yl = 
t1 - t3 + XlY2 

d(t1 - Q2 + 2%Y&l - Q + Xl2 - 

Since we wish t, and t, to be equal when y2 = yr , we thus have 

from which, by simple calculations, results the inequality 

t3 - t1 o<-- < 
Xl 

Y2 - Yl 1 - ma (y12, ra2) 
(6.20) 

and, in consequence, the estimate 

11% GWY~ - YM - ma (r12, Yap))- (6.21) 

Inequality (6.20) also implies 

++4 G 4(y2 - n)/U - m= (r12, y2% (6.22) 

where A is a bound for the integrand in relation (3.1). 
In view of our determination above of t, - t, , from Eq. (6.18) defining 

x4 we have 

Hence, 

I x4 - Xl I < Xl 

Y2 - Yl 1 - mm (y12, h2, 

and, therefore, 

u < -LdY2-YY,) 

41 ’ 1 - n-lax (yr2, y?) . 
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This and the inequalities (6.21) and (6.22), taken in conjunction with Theo- 
rems 6.2 and 6.3 in which L, and L, are estimated, suffice to prove (6.16). 
Thus, the proof of Theorem 6.4 is complete. 
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