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Abstract 

There is a solution of the problem of the stability of a compressed rod with a variable cross-section. A rectangular cross-section 
with a variable width is selected as the section. The result is that the problem leads to a differential equation of the fourth order 
with variable coefficients. From the solution of this equation, a critical force for several particular cases. These cases reflect some 
different conditions fixing rod and function changes of the width of the cross-section. 
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Nomenclature 

E      elastic modulus 
J   axial moment of inertia 
b  section width 
h  depth of section 
l  rod length 
q  transverse load P  axial force 

 dimensionless parameter of transverse load 
 dimensionless parameter of axial force 
 dimensionless coordinate 
 dimensionless function of the deflection of the rod 
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1. Introduction. 

The rods with a variable cross section are often used as framings of unique buildings. 
Let us consider a rectangular cross section with the constant modulus of elasticity. In this case, the second moment 

J  of the cross section takes the form 

3

,
12

b hJ
 (1) 

where b  – section width, h  – section depth. 
We assume that the width of the cross section varies as [1] 

0 1 1 ,
mxb b x b k

l
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where 0b  – a section width  at 0x , 0 .k b l b   
 

 

Fig. 1. The model. 

2. Statement of the problem 

The differential equilibrium equation of the compressed and bent rod in the case of a constant axial force P  and 
the transverse load q  takes the form [2] 

2 2

2 2 2 0,d dy dyE J P q
dx dx dx

 (3) 

where E  – modulus of elasticity, J  – axial moment of inertia. 
Let us express the transverse force q  with the dimensionless parameter  and characteristics of the rod 
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where l  – the length of the rod. 
Similarly, we express the axial force P  

3
0

2 .
12

E b h
P

l
 (5) 

Substituting (2), (4) and (5) into (3) and dividing by 3
0 12E b h , after some simplifications we obtain 

4 3

4 3

2

2 2 2 3

21 1 1

11 1 0.

m m

m

x d y x d yk m k
l x ldx dx

m x d yk m
lx l dx l

 (6) 

Next, we introduce a new dimensionless variable x l  and a function y l . As result, the equation (6) takes 
the next form 

4 3
1

4 3
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1 1 0.

m m

m

d dk m k
d d

dm k m
d

 (7) 

3. Solution of the problem 

The equation (7) is an equation with variable coefficients. It has a well-known analytical solutions only for some 
particular cases of parameters m  and k .  

Next, we write down the equations for cases 0, 1, 2m  without any transverse load ( 0 ).  
At 0m  

4 2

4 2 0.d dk
d d

 (8) 

The critical force in this case is given by 

2

,0 2 ,cr
E JP k k
l

 (9) 

where  – coefficient of a free length, which depends on the fixing conditions (Fig. 2). It respectively equals 
0.5, 0.7, 1, 2 .  

Substituting(1), (2) and (5) into this expression we obtain 



45 Vladimir I. Andreev and Nikita Y. Tsybin  /  Procedia Engineering   111  ( 2015 )  42 – 48 

2

,0 2 ,cr k k  (10) 

where cr  – the critical value of  when the buckling takes place. We calculate these values at 1k

,0 1 39.48, 20.14, 9.87, 2.47 .cr   
At 1m  

4 3 2

4 3 21 1 2 1 0.d d dk k
d d d

 (11) 

At 2m  

4 3 2
2

4 3 21 1 4 1 2 1 0.d d dk k k
d d d

 (12) 

For this expressions we also need to write the boundary conditions. 
Let us consider fixing variants (Fig. 2) 

. 

 
Fig. 2. Fixing variants. 

There are boundary conditions for each of fixing variants below. 

Table 1. Boundary conditions. 
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Solutions of the equations (11) and (12) are cumbersome expressions. Let us write them in the general form. 

1 2 3 1 4 2, , , , .C C C f k C f k  (13) 

Searching for a critical parameter  we used a non-triviality condition of the general solution. In this regard the 
constants 1C  and 2C  were defined from the boundary conditions. Next, using the rest of the boundary conditions we 
constituted the coefficient matrix at 3C  and 4C . Equating to zero the determinant of this matrix, we obtain an 
expression about cr  and k .  

3 11 4 12

3 21 4 22

, , 0;
, , 0;

cr cr

cr cr

C k C k
C k C k

 (14) 

11 12

21 22

, ,
;

, ,
cr cr

cr cr

k k
A

k k
 (15) 

det det , 0.crA k  

Getting an explicit dependence cr k  is not possible. For plotting this function were used the mathematical 
package "Maple". Below are the plots (Fig. 3, Fig. 4). 

For the boundary conditions 1 and 2. 
 

 

Fig. 3. Dependence cr k . a) boundary conditions 1. b) boundary conditions 2. 

For the boundary conditions 3 and 4. 
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Fig. 4. Dependence cr k . a) boundary conditions 3. b) boundary conditions 4. 

Cases in which 0.2k  are rare. The graphs are given for reference. 
Solving such problems is often regarded with a rod of constant cross-section width minb b . In this case, a 

significant amount of a load capacity is not considered, This load capacity is determined by the expression 

,0

,0

100, 1;

1
100, 1.

cr cr

cr

cr cr

cr

k
k

k
 (16) 

Below there is a graph of the dependence for case 1b . The plots for other case are similar. 
 

 

Fig. 5. Dependence k  for case 1b . 
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4. Conclusions 

The Fig. 3 and Fig. 4  show that in the case 1k is more reasonable to use the relationship (2) with the parameter 
2.m  In the case 1k  is more advantageous to use the value 1m .  

Analyzing the Fig. 5 we come to the conclusion that the inclusion inhomogeneity section is necessary because the 
result is up to 60%  extra load-carrying capacity. 
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