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Linear space automaton is introduced as a generalization of probabilistic
automaton and its various properties are investigated.

Linear space automaton has the abilities equivalent to probabilistic automaton
but we can treat the former more easily than the latter because we can make use
of properties of the linear space, successfully.

First the solutions are given for the problems of connectivity, state equiv-
alence, reduction and identification of linear space automata. Second, the
matrix representation of linear space automaton is investigated and the relations
between linear space automaton and probabilistic automaton are shown. Third,
we discuss the closure properties of the family of all real functions on a free
semigroup X* which are defined by linear space automata and then give a
solution to the synthesis problem of linear space automata.

Finally, some considerations are given to the problems of sets of tapes
accepted by l.a.’s and also of operations under which the family of all the
output functions of l.a.’s is not closed.

1. INTRODUCTION

Since Rabin’s (1963) work concerning probabilistic automata (abbreviated
p.a.), many researchers such as Paz (1966), Salomaa (1967), Honda and
Nasu (1968), Sugino, Inagaki and Fukumura (1968), Turakainen (1968),
Carlyle (1968) have concerned with this subject. Despite the above extensive
works, there remain some difficulties in the theoretical treatment of p.a.
because the set of states of p.a. is a set of stochastic vectors.!

* Research supported in part by Matsunaga Science Foundation.
1 For many other works on this subject, see the exhaustive bibliography of A. Paz
(1971).
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Hence in this paper we will introduce a new system with a linear space,
which will be called linear space automaton (abbreviated la.), and discuss
its properties as well as its relation to p.a. to have a new view point of p.a.

It will be shown later that many properties of la. are easily known and
in particular the reduction problem is solved in straightforward way because
we can use many well-known properties of the linear space. In order to
lay stress on this point we will consider l.a. with linear state space over a
general field K in the Sections 2-7. '

It will be understood that l.a. is a very natural extension of p.a. and their
abilities are equivalent to each other. These facts may give us an idea that
lL.a. will become a useful tool to treat p.a.

2. PrRELIMINARY DEFINITIONS

Alphabet and Tape

Let 2 = {o; | ¢ = 1,..., I} be a nonempty finite set of symbols, which is
called an alphabet. A finite sequence consisting of elements of 2 is called
a tape, which is denoted by @, 2, etc. The length of a tape w, which is denoted
by (), is defined to be the number of symbols contained in =, The concatena-
tion of tapes w and z is denoted by = - 2 or simply by wz. The tape with
zero length is denoted by e. The set of all tapes generated over 2 is denoted
by Z*, which contains e.

Linear Space

A finite dimensional linear space over the field K will simply be called
“space” and dencted by V, W, etc. The dimension of the space ¥ is denoted
by dim V. A subset S of the space I being a space is called a subspace.

Linear Mapping

A linear mapping T from a space V; into V, is simply called “mapping”
and denoted by T: V; — V,. When the mapping T transforms x eV to
v e V,, we write this simply as y = x7T. For an arbitrary subset S, of V,,
we will call Sy = T(S;) = {y |y = «T, x € S;}, T-image of S; and for an
arbitrary subset Sy’ of V,, Sy = T4(S,y) == {x | #T € S,'}, T-inverse image
of Sy, if T, the inverse mapping of T, exists. If S; is a subspace of V7,
S, is a subspace of V, and if S’ is a subspace of V,, S’ is also a subspace
of V.

If T-image V,' of V, is identical to V,, T is called a mapping from V;
onto V, .
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Let V5, V,, V;, and ¥, be spaces. For mappings 73 : V; — V, and
Ty: Vy— V;y, the product 7T, : V; — V, is defined by 1,1, = (273) T,
for all xe V. If T; is a mapping from V; into V,, then (7\7,) T; =
Ty(T,T5) = T,T,T, holds, that is, the product of mappings is associative.

3. LINEAR SPACE AUTOMATON

In this section the definition of linear space automaton and the relating
concepts are introduced.

DerInITION 3.1. Linear space automaton L over a finite alphabet X is a
system

L={V,{4,|i=1,2..1}uv> (3.1)

where V is the space over the field K, which is called the state space of L
and of which elements are called the states of L. 4, is a mapping from I/
into V' caused by the input symbol o; € 2. u is an element of V' and called
the initial state of L. v is a linear function from V into K.

The linear space automaton is essentially the same as the generalized
automaton defined by Turakainen (1968). But the authors would like to
notice that the concept of la. is obtained independently of it by the authors
(1968).

DzriniTiON 3.2. For all we 2™, F(w): V —> 1 is recursively defined as
follows and called the response mapping of L.

F(e) = E,
(3.2)
F(zo;) = F(2) 4; for VzelX* and VYo, € 2,
where E is the identity mapping from ¥V into V.
DeriniTioN 3.3, The function f(w): 2* — K is defined by
flw) = uF(w)v forall we 2'* (3.3)

and called the output function of V.
From Definition 3.2 and the associative law concerning the product of
mappings we have directly the following lemma.
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Lemma 3.1. For Vo = 0;,0;, " 0y, € ¥,
F(w) = 4y 4;, - 4, (3.4)
and for Yw, Yz € X*
F(wz) = F(w) F(=). (3.5)

4, CONNECTIVITY, DISTINGUISHABILITY AND STATE EQUIVALENCE OF la.

Drrmnation 4.1. A subset S of V is called an invariant subset of V with
respect to (w.r.t.) La. L if the following condition holds:

xS implies x4,eS  for Vo€l (4.1)

Moreover, if .S is a subspace, it is called an invariant subspace of V
w.r.t. L.

Lemwma 4.1. Let 'S be an invariant subspace of V. Then for Yw e Z*,

xeS implies xF(w)eS. 4.2)

DeriNiTION 4.2. For x € V, the minimal invariant subspace containing x
is called the connected part of x and denoted by V(x). If the connected part
V(u) of the initial staté u is identical to V, L is said to be comnnected. And
if for any nonzero x € V, its connected part V(x) is identical to V, then L
is said strongly connected.

We have the following lemma directly from the definition:

Lemma 4.2. L is not strongly connected if and only if there exists at least
one invariant subspace except {0} and V.

DeriniTiON 4.3. For #,, x, € V, if there exists w € &* such that
w ' (wu = x.F(w)u (4.3)

%, and x, are said distinguishable. If x, and x, are not distinguishable then
they are said to be equivalent.

If all x, and «, in V" such that x, 7 «x, are distinguishable, then L is said
to be distinguishable.

Now we consider the procedures to obtain V(x) for any given x and to
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decide whether x, and «, are distinguishable or not for given x, and x, in V.
These problems can be solved by using well-known techniques for proba-
bilistic automata.? Then we describe only the results,

We can assume that x 74 0 without loss of generality because x = 0
implies V(x) = {0}.

Define the sequence of subspaces V,* (& = 1,2,...) of V recursively as
follows:

Vi ={ax|acK), (4.4)
I

VEL < Yag b Y widy | 2, w6 Vibyi = 1, I 4.5)
i=1

Lemma 4.3. V" is the space spanned by {xF(w)|we X*, l(w) < k— 1}
which is the set of all states accessible from the state x with tapes of which length
are (k — 1) or less.

From the definition of V,* and Lemma 4.3 we can show that V,* is the
minimal invariant subspace containing . Thus we have the following lemma.

Levma 4.4. V" is a connected part V(x) of .
Thus V,* is an invariant subspace containing x. By Lemma 4.1, we have
xF(w)e V" for VweX*. (4.6)

Combining this (4.6) and Lemma 4.3, we obtain the following Theorem 4.1.

Turorem 4.1. If la. has n-dimensional state space, then any states
accessible from a given state x can be represented by a linear combination of
states accessible from x with tapes of which length is (n — 1) or less.

Moreover, we have the following theorem concerning the state equivalence.

Tueorem 4.2. For any %, , %, V, x; and x, ave equivalent if and only if
the equation

i F (W) = xF(w)v (4.13)

holds for all tapes with length (n — 1) or less.

2 See p. 19 of Paz (1971), for example.
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5. EQUIVALENCE BETWEEN la.’s

Given two la’s Ly = <V, ,{4;}, 4, v and L, =V, ,{B;}, s, 05,
we will denote their response mappings by F, and F, , their output functions
by fy and f, .

DrerFmNiTION 5.1, If the equation

(@) = f(w) CR))

holds for Yw e X*, the l.a.’s L, and L, are said to be equivalent (or strongly
equivalent) and this relation will be denoted by Ly =°L, .

The relation ==* is obviously an equivalence relation. Another relation,
homomorphism between lLa.’s, which is stronger than =S, is useful and
defined as follows.

DrriNiTioN 5.2. A mapping T V; — V, is said to be a homomorphism
from L, into L, if the following three conditions are satisfied.

() xA,T =«TB, for VxeV,andVo,eZ (5.2)
() w7 = (5.3)
(1i1) xv; = xTv, for VxeVl, (5.4

Tueorem S5.1. If there exists a homomorphism from L, into L, then L,
is equivalent to Ly , that is, L, =5 L, .

Proof. Let T: V, — V, be a homomorphism from L, into L, . Using the
definition of the response mapping and (5.2), we can prove by induction that
xFy(w) T = «TFy(w) for YxeV, and VweX*. Thus we have fi(w) =
uFy(w) v, = uFy(w) Tv, = u; TFy(w) vy, = u,Fo(w) vy = fo(w) for Ywe XZ*,

QE.D.

DeriniTioN 5.3. Let T: V, — V, be a homomorphism from L, énto L, .

(1) If T is a mapping from V; onto V, then T is called a homomor-
phism from L, onto L, .
(ii) If T is a one to one mapping from V, into V,, then T is called an
isomorphism from L, into L, .
(i) If 7 is a one to one mapping from V7 onto V, , then T is called an
isomorphism from L, onto L, .

The following lemmas are obtained directly from this definition.
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LemMa 5.1.  Consider three l.a.’s Ly, L, and Ly . If T is an isomorphism
(homomorphism) from L, into (onto) L, and T is an isomorphism (homomorphisi)
from L, into (onto) Ly , then the product TT' of mappings is an isomorphism
(homomorphism) from L, into (onto) L . .

Lemva 5.2. If Tis an isomorphism from L, onto L, then the inverse mapping
Tt of T is also an isomorphism from L, onto L, .

Here we would like to state another theorem concerning the equivalence
of l.a.’s. As this theorem is well known for probabilistic automata, then it
can be proved in a way similar to them.?

THEOREM 5.2. Assume that 1.a.’s L, and L, have n, and n, dimensional state
spaces, respectively. Then Ly =° L, if and only if u,Fy(w) v, = w,Fy(w) v, kolds
Jor all tapes w with length (n, + ny — 1) or less.

6. RepucrioN oF la.

DrriNiTioN 6.1. An la. L is said to be reducible if there exists any one
which is equivalent to L and of which state space has the smaller dimension
than that of L. Otherwise it is said érreducible.

We will call it reduction of L to obtain the irreducible lLa. equivalent
to L. In the following of this section, the reduction of la. L defined by
Definition 3.1 is considered.

Denote the connected part V() of u of the La. L by W. As Wis an invariant
subspace of V, we have a mapping

B W—>W (6.1)

by restricting the domain of 4;: V' — V to W. That is, for all x € W, we
can define ¥B; by

«B; = xd; e W. (6.2)

And, by »¢ we denote the function obtained by restricting the domain V'
of the linear function v to W. That is, v¢ is the function such that

x0¢ = xv (6.3)
holds for all x W.

3 See Theorem 2.7 on p. 25 of Paz (1971), for example.
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DerINITION 6.2. A new la. L¢ is defined by
Le = (W, {B}, u, v*» {6.4)

and L¢ is called the connected part of L.

Lemma 6.1, The La. L° is a connected l.a. which is equivalent to L.

Proof. 'The identity mapping Ey from W to W can be considered to be
a mapping from W into V. Using (6.2), (6.3) and the fact that the initial
states of L¢ and L are the same, we can easily show that the mapping Ey
is a2 homomorphism from L¢ into L. Thus, by Theorem 5.1, L¢ =3 L.

Next, the connectivity of L is easily shown from the fact that I¥ is the
connected part of u. Q.E.D.

ExampLE 6.1. Let the field K be the real field R and assume that
2 = {oy}. Then, we obtain the connected part L,%, of L; defined by
Ly =V, {44}, u, v,

where V is the three-dimensional linear space generated by the basis
{e, , e, , 5} over the real field R, that is, V' = R®. The mapping 4,: V — ¥V
is the one defined by

1 1 _ _1 1 —
e dy = e + %6y, ed; = —3e; + dey, ed; = e;.

The initial state # = ¢;, and the linear real function v: ¥V — R is the
one such that

ev =1, e = egv = 0.

Hence, it is easily known that the connected part W of u is the space
spanned by {¢; , &,}. Thus, the connected part L,° of L, is obtained as follows:
Ly* = (W, {By}, u, v%,

where T is the space spanned by {e, , &;}, B, is the mapping such that
e B, = %e, + %e,, e,B; = —de; +1te, and u=e¢;, ev° =1, ev°=0.
Now, assume that dim V' = 7 and denote tapes with length (# — 1) or

less by 2;, % ,..., 2, Where their order may be arbitrary except 2, = ¢
{null string) and the value of m is determined by

n—1

m = 7;0 IF = (1 — I —1I). (6.5)
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Here, for x € V, we define y € K™ as follows:
v = (&F(2))v, 2F(2,)0,..., 2F(2,)v). (6.6)

That is, ¥ is the m-dimensional row vector obtained by arranging one after
another the outputs of L in the state x, to which 2, , 2, ..., &, are applied.
Obviously, the correspondence from x to y is a linear mapping and written by

y = «T. 6.7)
Thus, T is a mapping from V into K™,

Lemma 6.2. ForVx,,Vx,€V,

(1) %y, and x, are equivalent if and only if

0, T = 2,T (6.8)
holds.
(1)) If (6.8) kolds, then for Yo, X
2 ;T = %, 4,T. (6.9)

Proof. (1) By the definition of T, the statement (i) is not more than
an alternative expression of Theorem 4.2.
(2) From (i), if (6.8) holds then »; and x, are equivalent and thus,
xF(wyy = %, (w)o holds for Vw e X*. In particular, by putting w = ¢,2;
(1 <1 < m) we have

2 A F (2o = x4 (2 )0 (I =1,.,m). (6.10)

Thus (6.10) means (6.9). Q.E.D.
Now, let Z be the image of W by T and define y € Z by

y =xT (6.11)

for x € W. For this y we define yC; by
_’yCi = xAzT. (6-12)

This C; is a mapping from Z into Z. In fact, by (ii) of Lemma 6.2, the right
hand side of (6.11) is uniquely determined for y; in other words, it is deter-
mined independently of the selection of x which satisfies (6.11). Thus,
C; is known to be a unique correspondence from Z into K™. Obviously,
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this correspondence is linear. Therefore, C; is a linear mapping from Z
into K. Finally, W is the invariant subspace of L, and so, if x € W then
xA; e W. Thus, yC; = x4, T e Z.

Next, for the vector

y = «T = (xF(21)v, xF(25)0;..., *F(2,,)0) (6.13)
a linear function #” from Z into K is defined by
yo" = aF(2)v = xF(e)v = xv. (6.14)
That is, yo' is the first component of y. Finally, the u* € Z is defined by
u = ul. (6.15)
Using the Z, {C;}, v, v" defined above, we may construct a new lLa. L*
as is given in the following definition:
DrrintTiOoN 6.3, For a given lLa. L we define lLa. L™ by
Lr = {Z{C}, u", v (6.16)
Lemma 6.3, The mapping T, obtained by restricting the domain V of

T:V — K™ to W is a mapping from W onto Z and also a homomorphism
from L¢ onto L,

Proof. As Z is the image of W by T, it is evident that T} is a mapping
from W onto Z.
Next, putting ¥ = 7T for x € W, from (6.11) and (6.12), we have

xA,T = yC; = xTC; . (6.17)

Thus, for B, and T obtained from A4, and T by restricting their domain V'
to W, the following equation holds:

B, T = xT,C; for VxeW. (6.18)
From (6.15), we have
wr = uTy (6.19)
and from (6.13) and (6.14) we have
x0° = xv = yv' = xTo" = xTyw"  for VxeW, (6.20)

where y = x7; . Thus, 7} is 2 homomorphism from L¢ onto L". Q.ED.
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TueoreM 6.1. The la. L7 is the irreducible l.a. equivalent to L.

Proof. By Lemma 6.1, L and L® are equivalent and by Lemma 6.3 and
Theorem 5.1 L¢ and L7 are equivalent. Thus, L* is equivalent to L.

Next, we show the irreducibility of L”. Assume that L" = V', {4}, o/, v')
is equivalent to L™ and is also equivalent to L. Let the response mapping
of L' be F' and define T7: V' — K™ by the following equation:

2T = (WF' (20, F'(3)0',..., ¥ F'(2,)0)  for x'eV’. (6.21)
From the above assumption that L’ and L are equivalent, we have
uF(w)F(z)0 = w'F'(w)F(z)0  for Ywel*and!l=1,2,..,m (6.22)
Therefore, by the definition of T and T’ the equation
uF ()T = w'F'(w)T’ (6.23)

holds.
On the other hand, combining Lemmas 4.3 and 4.4, we know that W
is the space spanned by

{uF(2,), uF(25)se., uF(2)} (6.24)
and Z is the image of W by T. Thus, Z is the space spanned by
{uF ()T, uF(2,)T,..., uF(2,,)T}. {6.25)

Here, let Z' be the image of V' by 7" and since the right hand side of
(6.23) is an element of Z’ for Vw € X*, any element of (6.25) is contained
in Z'. Therefore, the space Z is a subspace of Z’, that is, ZC Z".

Hence, recalling that we have denoted the image of V' by Z’, we obtain

dim Z < dim Z' < dim V", (6.26)

Thus, we have known that L" is irreducible. Q.E.D.

THEOREM 6.2. If we know all values of output function f(w) of L for all
tapes w such that 0 < l(w) << 2n — 1, then we can construct L, where n is
the dimension of the state space of L.

Proof. As described in the proof of Theorem 6.1, the state space Z of
L is the space spanned by (6.25). Therefore, these row vectors can be
determined by the values of output function f(w) of L for all tapes = with
length (21 — 2) or less.
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In order to determine C; : Z — Z, it is sufficient to know

uF(z;) TC; = uF(2;) A;T = uF(2,0)T foralle;eXandi=1,2,.,m.
(6.27)

These can be obtained from values of f(w) of L for tapes w such that
0 < /(w) < 2n — 1. Determination of »” and o” is easy. Q.E.D.

ExampLE 6.2. Let us reduce La. of Example 6.1. This lLa. has I = 1,
dimV =3 and so m = 3. Hence putting 2, = ¢, 8 = 07, 25 = 0407,
the space Z spanned by uF(2))T, uF(2,)T and ul(2,)T is obtained as follows:

uF(2))T = (uF(21) F(21)v, uF (2,) F(2,)v, uF(2,) F(5)v)
= (g9, e, 4,9, e,4,4,0)
=(1,%,0),

uF(z,)T = (%, 0, —}),

uF(zS)T = (0: '_71“ ’ —%Z .

The vectors wF(2,)T and uF(z,)T are linearly independent and wF(z5)T
can be represented by a linear combination of the other two, i.e.,

ulF(2)T = —3uF(2)T -+ uF(2,)T.
Hence, we choose the basis {y, , ¥,} of Z so that
¥ = uF(z)T, Yo = uF(z)T.
The mapping C, : Z — Z is determined as follows:
NG =uF(z) TC, = uF(z,) 4,T = uF(2,)T = 3,
22C1 = uF(2y) TC; = uF(2;) ;T = uF(23)T = —431 + Ya -
Finally, the linear real function " over Z is determined as
»nv" =1 Yo' =%

and the initial state #' is also determined as #" = y;. Here, la. L' =
{Z,{C}, w, v"> obtained in the above discussion is the irreducible La.
equivalent to L.

CoroLLARY 6.1. The la. L is irreducible if and only if L is connected
and distinguishable.
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Proof. From Theorem 6.1, L is irreducible if and only if
dim V = dim Z. (6.28)

Since Z is the image of the subspace W of V" by T, (6.28) holds if and only

if W coincides with V and T is one to one mapping. Therefore, combining

Definition 4.2 of connectivity and (i) of Lemma 6.2 this corollary results.
Q.E.D.

CoroLLary 6.2. If two la’s Ly and L, are equivalent and both are
trreducible, there exists an isomorphism from L, onto L, .

Proof. The assumption of the corollary implies that output functions
of L, and L, are the same and the dimensions of their state space are equal.
Therefore, it follows from Theorem 6.2 that L,” of L, and L,” of L, are the
same one.

From Corollary 6.1, L, is known to be connected and distinguishable.
Therefore, T is a one-to-one mapping from I onto Z. It is easily shown
that this 7" is an isomorphism from L; onto L,". Similarly, it is known that
there exists an isomorphism 7" from L, onto L,".

Hence, if we denote the inverse mapping of 77 by 7'-! then T7'! is
obviously an isomorphism from L, onto L, . Q.E.D.

Cororrary 6.3. If la’s Ly and L, are equivalent and L, is irreducible
then there exists a homomorphism from the connected part L¢ of L, onto L.
Particularly, if Ly is connected then a homomorphism exists from L, onto L, .

Proof. From Lemma 6.3 there exists a homomorphism 73 from L,° onto
L,". Since L," is irreducible, it follows from Corollary 6.2 that there exists
an isomorphism 7, from L,” onto L,. Hence, 71T, is a homomorphism
from L; onto L, . Q.E.D.

7. l.a.’s REPRESENTED BY MATRICES

7.1. Notations Relating to Vector and Matrix

In the following sections we consider mainly row vector spaces and
matrices; here we refer to some notations relating to them.
A mapping 7: K™ — K is the matrix with # rows and » columns. These

643/20/5-4
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row vectors will be denoted by a;, g, ,..., @, . That is, the mapping T is
represented by

T = " a, , Qg 5eeey Ay € K™,
am
Hence, the number of linearly independent vectors in a, , a5 ,..., a,, is called
the rank of T and denoted by rank T.
Let us denote the transposes of vector x and matrix 4 by xf and 47,

respectively.
The direct sum of vectors

x=1(4,&,., K™ and ¥y = (91,95 ) K"
is denoted by x @ v and defined by
DY = (€1, & reees Em s M » M2 5erey ) € KM, (7.1)

The direct sum of m X m matrix 4 and # X n matrix B is denoted by
A @ B and defined by

A Om,n)’

A@B:(O J4 (7.2)

where O, , and O, , are m X n and n X m zero matrices, respectively.
Next, the direct product ¥ & v of x and ¥ is defined by

@y = (&M Ema s EMm v St s EmMa veees Emln)- (7.3)
And the direct product of 4 = (x;) and B is

agB  apB 0B
AR®B = ( anB  apeB o, B ) (7.4)
B omeB B

7.2. Matrix Representation of l.a. and Invariant Subspace

Let us consider la. of Definition 3.1. Let us denote a finite subset of
the state space I of L by

S ={a,, ay,..., a,}. (7.5)

Here we assume that the space spanned by S contains the initial state u
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of L and it is an invariant subspace of V. That is, # can be represented by
u=y Oa; 0K, aeS (7.6)
k=1

and for any a; € S, a,4; can be represented by
r
ad, =3 oia; e K, a;elsS. 7.7
g=1
And we also assume that the linear function v is a mapping from V into K,
i.e., can be represented by
aqv =n,eK  forala,esS. (7.8)
Here we define l.a. L’ of which state space is K" as follows.

L' = <KT7 {Ai,}: w, 7]l>y (79)
where A4, = (a{¥

)) is the 7 X r square matrix whose (k,j) entry is o
determined by (7.7) and %" and ¢’ are defined as follows:

i}

W= (0,,0;,0,0,), U =(ny,02 )t
Moreover, we define a mapping 7: K™ — V by

-yT = z ‘fﬂ'af for Yy = (51 yeeey f,-) eKr (710)

LemMva 7.1. (i) The mapping T: K™ — V is a homomorphism from L’
tntoL.

(i) If the space spanned by S coincides with V, then T is a homomorphism
Jrom L’ onto L.

(iti) If the elements of S are lincarly independent, then T is an isomorphism
Jfrom L' into L.

(iv)y If Sis a basis of V, then T is an isomorphism from L’ onto L.
Proof. First, from the definitions we can prove that for Yy e K" and
Vo, € 2,
yA;T = yT4,; (7.11)
holds. From the definitions of #’, »° and T, we alsoc know that &'T = u

and yv’ = yTv. Thus we know that T is a homomorphism from L’ into L
and have verified (i) of this lemma.
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It is obvious that if the space spanned by S coincides with V| then T
is a mapping from K onto V and that if elements of S are linearly inde-
pendent, 7" is a one-to-one mapping. With these discussions and (i) of this
lemma, we may obtain (ii)-(iv). Q.E.D.

As known from the above discussions, for any l.a. we can construct the
one with the row vector space as its state space, which is equivalent to it.
Such lLa’s will be called la. represented by matrices to distinguish them
from the others. If we take the set S of (7.5) as the basis of I/, the space
spanned by S'is ¥ and obviously the invariant subspace containing the initial
state u.

Here we notice that if the elements of S are not linearly independent,
the expressions of (7.6) and (7.7) are not unique and so %’ and 4, are not
uniquely determined.

Now, we proceed to consider the invariant subspace of l.a. represented
by matrices. We consider la. L = (K", {4}, u, v), where 4,s are n X n
square matrices, # € K* and ot € K",

Let V be the invariant subspace of K” of L, its dimension be #,, and
its basis be S; = {¢; , 5 ..., enl}. Hence, as is well known, we can select
Sy = {en1+l s €nytg yees €n) SO that S =8, U S, = {¢, ¢€,..., e,} becomes
the basis of K*. Thus, for Vo, € 2 and Ve, € S, ¢,4; can be uniquely repre-
sented by

n
ed, =Y Bie; k=12,.,n (7.12)
i=1
On the other hand, since S; have been assumed to be the basis of the
invariant subspace, for ¢, (& == 1, 2,..., ny), ¢;4; can be represented by a
linear combination of elements of S; . Then, because 8.7’s are the uniquely
determined values, we have
D —0, k=1,2uyn, j=n+1.,mn (7.13)

4

Here, denoting (k,j) clement of the matrix 4; by «f and putting
e, = (E1as Exaveees Eem)s B =1, 2,0, 1, €,4; can be represented by

ekAi - (Cl ’ Cz yrony gn): (7'14)

where

=Y &yl (7.15)
j=1
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Concerning {, , we also have from (7.12)
kid .
L=y B¢, . (7.16)
=1
Comparing (7.15) and (7.16), we have
Y b =Y B¢, . (7.17)
=1 =1

Thus, if we denote n X n square matrix having B{ as its (k,J) entry by
B, and # X n square matrix having £, as its (&, j) entry by Q, (7.17) means
0A; = B,0. Since S is the basis of K” and £,; has been defined as the
j-th component of ¢, € S, O is nonsingular and so there exists its inverse Q.
Thus, we have

Q4,0 = B,. (7.18)
Here, we notice that from (7.13) B, has the form of

ny n—1m
PPNy

B,=1] - ..... , (7.19)

where B, is the n; X n; square matrix. Thus, if La. L has an #,~dimensional
invariant subspace, then there exists a nonsingular square matrix Q such
that (7.18) holds.

Conversely, assume that there exists a2 nonsingular # X # square matrix
O such that Q4,07 is in the form of the right hand side of (7.19). Hence
if we denote (%, ) entry of Q by &, and (%, ) entry of Q4,07 by B{”, then
we know that (7.17) holds. Here, if we put e, = (£11, Ers seees Ean)s
k=1, 2,..., n, it follows from the nonsingularity of Q that the set {e, , €, ,..., €,}
is the basis of K*. Since we have assumed that Q4,0 is in the form of
the right hand side of (7.19), (7.13) holds. Thus, from (7.17), we know that
epd; can be represented by a linear combination of {e,¢;,..., ¢, } for
k=1,2,.,n . That is, the n,-dimensional subspace spanned by S is
an invariant subspace of K* of L.

From these discussions, we have the following theorem:
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TueoreM 7.1. la. L = (K" {4,}, u, v> has an ny-dimensional invariant
subspace if and only if there exists a nonsingular matrix Q such that, for all
o, € X, Q4,07 is in the form of the right hand side of (7.19).

Here, if we have Q such that Q4,0 is in the form of the right hand
side of (7.19) for Vo; €2, from la. L we can construct a new lLa. L' =
(K* {B},u,v>, where B; =040 u =uQ1 o =Quv. Hence,
Q-1 K™ —» K™ is an isomorphism from L onto L. In a sense, the construction
of such La. L' may be considered as the reduction of La. But, it is a rather
difficult problem left open for decision whether or not there exists any
invariant subspace except {0} and K*, that is, whether La. L is strongly
connected or not.

7.3. Dual l.a. and Properties of Connectivity and Disiinguishability

For la. L = (K, {4}, u, v)> we define L = (K", {4}, v}, u*). This L*
will be called the transpose of L or dual l.a. It is clear from the definition
that (L*)t = L.

Lemma 7.2. Denoting the response mappings of L and L* by F and G,
respectively, and their output functions by f and g, respectively, for Yw € X*

we have
Gw) = (P, (7.20)

g(w) = f(@%) (7:21)
where wR denotes the reverse of a tape w, which is recursively defined by e® = ¢
and (wo)R = owk.

Next, the dual properties of connectivity and distinguishability are sum-
marized in the form of a theorem.

TueoreM 7.2. (i) L is connected if and only if L' is distinguishable.
(if) L 75 distinguishable if and only if L? is connected.
(iii) L s drreducible if and only if L is irreducible.
(iv) L is strongly connected if and only iof L* is strongly connected.

Proof. (i) Assume that L is connected. Hence, for arbitrary elements
%; and x, such that x; 5= x,, we put ¥ = x;, — x, . From the assumption
of connectivity of L, x can be represented by

x = oquF(2)) + wuF(2,) + - + uF(z,); o = 1,...,m)eK, (7.22)

where 2y, 2 ,..., 2, are the tapes with length (2 — 1) or less, which have
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been defined in Section 6. Since we have assumed that ¥, # x, and so
x % 0, we have
xxt £ 0, (7.23)

Substituting (7.22) to (7.23), we have ayx{ul'(2))}’ + *** + o 2{uF(z,,)} 7= 0.
Thus, there exists at least an integer (1 << £ <C m) such that x{uF(z, )} =
xG(,R) ut £ 0 and therefore x,G(z,®) u? 7% %,G(2,F) u?. Thus, L* is dis-
tinguishable.

Next assume that L is not connected. Then, if W denotes the connected
part of the initial state  of L, then W ¢ K™ Hence, there exists a nonzero
element @ in K™ which is orthogonal to all elements in . For such an element
ac K? and all w e X*, we have aG(w) u° = a{uF(w®)}* = uF(w®) a’. Since
W is the connected part of # and so uF(w®) e W and since the element a is
orthogonal to any x in W, i.e., xa® = 0 for all x € W, we have uF(wR) & = 0.
Thus, aG(w) u? = 0 holds for all w e X*. Therefore, a and 0 can not be
distinguished by L¢.

(ii) Obvious from (i) since L = (L)%
(iii) Obvious from (i), (ii) and Corollary 6.1.

(iv) Let ¥ denote a subspace of K* and define the annihilator V*
of V by V* = {y|yxt = 0, for Vx € V}. Here, if V is an invariant subspace
of L, then V*+ is also an invariant subspace of L*. Because, for Vye V%,
yA xt = y(xA;)t. Therefore, noticing x4; € V for Vx € V, we have y4'x* =
y(xA,)* = 0. This means that y4,* € '+ and so V* is an invariant subspace
of Lt

Since dim V' - dim V* = n, if V is neither {0} nor K* then so 7'*.

Accordingly, it follows from Lemma 4.2 that if L is not strongly connected
then so L*.

The inverse of this also holds since L = (Lf)%, Q.E.D.

One more property is described concerning the duality between L and L,

TueoreM 7.3. Consider two la.s, L, = (K™, {4}, u;,v;> and L, =
(K", {B}, 4y , 050. Let T be a mapping from K™ into K", Then,
(1) T is a homomorphism from Ly into L, if and only if T is a homo-
morphism from L,* into L®.
(i) T is a homomorphism from L, onto L, if and only if T* is an iso-
morphism from Lyt into L%,
(i) T is an isomorphism from L, onto L, if and only if T is an iso-
morphism from Lyt onto L.
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Proof. 'The necessary and sufficient condition that T is a homomorphism
from L, into L, is that

AT = TB;, wl =u, and o = T, (7.24)
hold. Applying the transpose operation to the both sides of these equations,
we have

BTt = T4}  otTt =190 and ! =T’  (7.25)
Conversely, if (7.25) holds, then (7.24) holds. Thus, we have confirmed

the validity of (i) of this theorem.
The statements (ii) and (iii) are obvious from (i). Q.E.D.

7.4. Eigenvalues of Response Mapping

In this section we will make some consideration on eigenvalues of response
mappings of La. L.

Lemma 7.3. Let A be an m X m square matrix and B be an n X n square
thalrix. Assume that an m X n matrix T satisfies

AT = TB. (7.26)
Then, if rank T = r (< m, n), A and B hold at least r eigenvalues in common,
Since this lemma can easily be proved by using well-known properties

of linear space, the proof is omitted.

LemmMa 74. For la’s L, and L, of Theorem 1.3, if there exists a homo-
morphism T with rank v, then for Yw € Z* the response mappings Fi(w) and
Fy(w) of Ly and L, hold at least r eigenvalues in common.

Proof. If T is a homomorphism from L, into L, , for Yo € 2¥,

yF ()T = yTF,(w) for yeK™. (7.27)

Thus,
Fy ()T = TFyw). (7.28)
1f we combine (7.28) and Lemma 7.3, this lemma results. Q.E.D.

Lemma 7.5. Let Ly, L, and T be the same as Lemma 7.4. Then,

(1) If T is a homomorphism from L, onto L, , then the eigenvalues of
Fy(w) are contained in those of Fyw).
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(i) If T is an isomorphism from L, into Ly, then the eigenvalues of
Fi(w) are contained in those of Fy(w).

(i) If T ss an isomorphism from L, onto L, , then the eigenvalues of
Fy(w) are identical to those of Fy(w).

Proof. (i) Since rank 7' =r = n, , Fy(w) and Fy(w) hold #, eigenvalues
in common. On the other hand, Fy(w) has just n, eigenvalues. Therefore,
the eigenvalues of Fy(w) are contained in those of Fy(w). The (ii) and (iii)
are justified in a similar way. Q.E.D.

TueoreMm 7.4. Let Ly and L, be equivalent and L, be irveducible. Then, for
Vo e X%, the eigenvalues of the response mapping Fo(w) of Ly are contained in
those of Fy(w) of L, .

Proof. Let V(u,) denote the connected part of the initial state %, of L, .
Assume that dim V() =r and S = {a/',..., a,'} is the basis of V(). Here
we construct L," = <K, {4}, u,’, v,"> by the same way as in the case of the
La. of (7.9). Hence, the mapping T, : K — K™, which is defined similarly
to (7.10), is an isomorphism from L," into L,. This results from (iii) of
Lemma 7.1, since the elements of S; are linearly independent. Thus, by
(ii) of Lemma 7.5, the eigenvalues of the response mapping Fy'(w) of L, are
contained in those of Fy(w) for all w € Z*. It is obvious from the construction
procedure of L," that L, is the connected part of L, . Therefore, it follows
from Corollary 6.3 that there exists a homomorphism from L,” onto L, .
Hence, from (i) of Lemma 7.5, the eigenvalues of F,(w) are contained in
those of Fy'(w). Thus the eigenvalues of Fy(w) are contained in those of
Fy(w). QE.D.

8. l.a. AND PROBABILISTIC AUTOMATA

For the convenience of describing relations between l.a. and probabilistic
automaton we will consider only l.a.’s defined over the real field R instead
of K in this and the following sections. Thus, if we write simply lLa., it will
mean la. defined over R.

Under the above assumption, 4; is a mapping from the linear space over
R into itself and f(w) is a real function over 2*. Hence, similarly to the case
of p.a., the set of tapes T(L) which are accepted by l.a. L may be defined as
follows.
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DeriNtTiON 8.1.4 'The set of tapes accepted by l.a. is defined by
TL) = {we2* | f(w) > 0} 8.1)
If for two La’s Ly and L, ,
T(L,) = T(L,) (8.2)
holds, that is,
filw) >0  ifonlyif fy(w) >0, (8.3)
then L, and L, are said to be weakly equivalent.

8.1. La.s with Bounded Output Functions and Extension of Rabin’s Theorem

As the first step of describing the relations between l.a.’s and p.a.’s we
intend to extend the Rabin’s result to the case of La., which states that the
tape set accepted by a p.a. with isolated cutpeint is a regular set.

In this section we consider l.a. L with the linear space ¥ over the real
field R.

L=T{4,1i=12,..,1} u,v> (8.4)

DrrintTioN 8.2, A real function p(x) over the linear space IV is called
the norm of V, if the following conditions are satisfied

(1) 0 < p(x) < 0 for VxeVl, (8.9
(i) p(x) =0 ifandonlyif x =0, (8.6
(iit) p(® + %5) < pls) + () for Vx,,Vx,el, 8.7)
(iv) plox) = | a| p(x) for VxeV, VYaeR (8.8)

Lemma 8.1. If there exists a norm p(x) such that the following condition
p(x4) < p(x) for VeV and Vo,eX 8.9

holds, then the output function f(w) of L is bounded, that is, there exists a constant
positive number M such that

[fw)] <M  for YwelZ* (8.10)
Proof. Using (8.9) iteratively, we obtain
plxF(w)) << p(x) for VxelV and YwelZ* (8.11)
Especially, putting ¥ = u we have p(uF(w)) << p(u).

4 We consider only O as the cutpoint since by using the result of Honda and Nasu
(1968) we can easily prove that the families of tape sets accepted by l.a.’s with arbitrary
cutpoints and with the one fixed to 0 are the same.
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On the other hand, it is well known that, for a linear real function v defined
on the linear space V" over R and for a norm p of V, there exists a constant
a > 0 such that |xv | << ap(x) for any x€ V. Thus, the output function
Jf(w) = uF(w)v is bounded. Q.E.D.

Levma 8.2. If La. L is irreducible and its output function is bounded, there
exists @ norm satisfying (8.9).

Proof. For x €V, let us define p(x) by
p(x) = sup{| xF(w)v | | we Z*}. (8.12)

Then this p(x) is the norm satisfying (8.9). In fact, this is proved as follows.
First, it is obvious that p satisfies (8.7) and (8.8). Here, we will prove that
(8.5) and (8.6) hold. From the definition of p(x) of (8.12), we know 0 < p(x)
for Yx € V and p(0) = 0.
Thus, for the proof that (8.5), (8.6) hold and then p is a norm, it is suffi-
cient only to show that

x % 0 implies p(x) # 0 (8.13)
and
p(x) < oo  for Vxel. (8.14)

As we have assumed that l.a. L is irreducible by Corollary 6.1, it is connected
and distinguishable. As L is distinguishable, 0 and x(s= 0) are distinguish-
able, that is, there exists at least a tape w € 2* such that xF(w)v = 0F (w)v = 0.
Thus, from the definition of p(x), we know that (8.13) holds.

Next, if x € V' can be represented by x = uF{(z) for some tape z € 2*, then
p(x) = sup{| uF(z) F(w)v | | w e 2*} = sup{| uF(sw)v | | w € 2*}. Here, as f
is bounded, we have p(x) << M < oo from (8.10). As L is connected, Vx e V/
can be represented by ¥ = Y, | auF(z;), o; € R, where 2;’s (i = 1,..., m) are
the tapes defined in Section 6. On the other hand, as we have known that p
satisfies (8.7) and (8.8), we obtain

o) < f oy | pF(e) < (f; o 1) M < o.

Thus, we have shown that (8.14) holds and that p is a norm.
Finally, it is obvious from (8.12) that (8.9) holds. Q.E.D.

Now we extend Rabin’s result to the case of La. with the bounded output
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function f. We assume that 0 is the isolated cutpoint of f, that is, there
exists 8 > 0 such that

§ < |f(w)  for YweZ* (8.15)5

Without loss of generality, we also assume that L is irreducible. Therefore,
from Lemma 8.2 we can define the norm p(x) satisfying (8.9).

Now, let us consider the right invariant equivalence relation =g(;) over
over Z* generated by the tape set

T(L) = {we % | fw) > 0} = {weX* |8 < f(w) < M}. (8.16)

That is, the relation = is defined as follows; for Va,, VYo, e 2%,
w, =7 Wy if and only if, for Vze X*, wyz e T(L) implies wyz € T(L) and
conversely. We prove in the following that the relation =z(;) has a finite
index.

Assume that two tapes w; and @, do not satisfy the relation =y , then
there exists at least a tape » € Z* such that either of the following conditions:

® wize T(L) and  w.zd¢ T(L) 8.17)
(i) w2¢ T(L) and  wel(L) (8.18)
holds. From (8.15), it is seen that (8.17) implies
Flwge) < —8 <0 <8 < fwz) (8.19)
and (8.18) implies
Swz) < —8 <0 <8 < fww) (8.20)

Thus, whichever condition holds, we have
| fwy2) — fwy2)] = 28, (8.21)
Therefore,
p(uF () — uF(w,)) = supf|(uF(w;) — uF(w,)) F()o | | we 2%}

= sup{| f(ww) — f(wyw)| | we 2%}
> 2. (8.22)

On the other hand, from (8.10) we have
p(uF(wy)) < M,  p(uF(wy)) < M. (8.23)

5 See footnote 4.
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Now, let {w, , wy ..., wg} be a set of tapes in which any pair of distinct
tapes does not satisty the relation ==y ;) . Putting x;, = uF(w,); i = 1, 2,..., K|
it follows from (8.28) that

plx; — xy) = 28 for Vj, Vk 1<j#k<K, (8.24)
and
o) <M for ¥, 1<j<K (8.29)

hold.
Now, let us define the pseudo sphere g; with the center ; , and the radius 6
by g; = {x | p(®¥ — x;) << 8}. Then, from (8.24), we have

giN g, = & (empty set) Vi k j#Ek (8.26)

Let the pseudo sphere G of which center is the origin and radius is (M 4 §)
be G = {x | p(#) << M - 8}. Then, from (8.25) and the definition of g; we
obtain g, C G for j = 1, 2,..., K. Thus,

UgCG. (8.27)

Now, assume that dim /' = n. By introducing an appropriate basis to the
space V, we can determine the one-to-one mapping T from V to R". Here,
for a subset S of 7, we define its volume by the one of the image of .S by the
mapping 7. Then, regardless the selection of the basis, the following lemma
holds.

Levmma 8.3, Let the volume of the pseudo sphere with radius 1 be denoted
by a. Then, 0 < a << oo. And the volume of a pseudo sphere with rvadius v is
ar®, which is determined only by the vadius.

From this lemma and (8.26) and (8.27), we have Kad"” < a(M + 8)", and
then K < (M + 8)»/6™. Thus, we have known that the right invariant equi-
valence relation ==p(;) has finite index.

The above discussions prove the following theorem:

Turorem 8.1. Let L be a linear space antomaton with n-dimensional state
space. If its output function is bounded and the cutpoint O is isolated with respect
to L, that is, if there exist 8 and M such that 8 < | f(w)] < M for Vw e 2*
and 0 <8 < M << o0, then the tape set T(L) accepted by L.is the vegular one
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and there exists a deterministic finite staie auiomaton with N or less states which
accepts T(L), where

N = (M + 8)»/s". (8.28)
Here we notice that Theorem 8.1 also holds even if L.a. L is not irreducible.

8.2. La. and Modified Probabilistic Automata

The main object of this section is that we introduce the modified probabil-
istic automata as the special l.a.’s and show that the tape acceptance abilities
of la.’s and modified probabilistic automata are equivalent. Using Honda
and Nasu’s (1968) results, we can easily show that the abilities of the modi-
fied probabilistic automata and the probabilistic automata defined by Rabin
(1963) are equivalent. Hence, we know that l.a.’s have the same ability as the
probabilistic automata. Furthermore, we show the conditions that a given
l.a. should satisfy so that it has the strongly equivalent modified p.a.

DrrinitioN 8.3. Let L = (R?, {4,}, u, v> be La. of which state space is
the n-dimensional row vector space R" over R. If each A, is a stochastic

matrix and # is an n-dimensional stochastic row vector, then it will be called
modified p.a.8

Taeorem 8.2. For an arbitrary La. L, there exists a modified p.a. L, which
is weakly equivalent to L. That is, there exisis a modified p.a.L, such that
T(L) = T(L,).

By Lemma 7.1, we have known that for an arbitrary la. there exists an
equivalent one whose state space is a row vector space. Thus, it is sufficient
to consider lLa. of Definition 8.3.

The detailed proof is omitted since Turakainen (1968) gave the proof for
La. of Definition 8.3. But the more concise and more straightforward proof
was given by the authors (1968) independently of him, although these two
proofs are essentially same. Turakainen (1968) also proved that the tape
acceptance abilities of the generalized automata (La.’s), the generalized
p-a.’s (modified p.a.’s) and p.a.’s are same.

It should be noticed that for a general l.a. there does not always exist a
modified p.a. which is strongly equivalent to it, because the output function
of any modified p.a. is bounded but that of l.a. is not necessarily bounded.

¢ The modified p.a. corresponds to the generalized probabilistic automaton of
Turakainen (1968).
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Hence, in what follows, we consider on what conditions a given l.a. has the
equivalent modified p.a.

Let L = (V, {4,}, u, v> be lLa. with the linear space over the real field R.
Let S ={a,, a;,..., a,} be a finite subset of V. Let us denote the convex
polyhedron of which extreme points are all elements of .S by Conv(.S), that
is,

R

Conv(S) = | [ x =3 la, ;=03 & =1l. (8.29)

i=1 i

1

Levmia 8.4, If there exists S satisfying the following conditions (i) and (i),
then La. L has an equivalent modified p.a.

(i) ue Conv (S),
(ii) Conv(8) is an invariant subset of V.

Proof. Since the conditions (i) and (ii) hold, l.a. L’ defined by (7.9) with
K = R can be reconstructed to be a modified p.a. That is, from the condi-
tion (i), the right hand side of (7.6) can be represented by a convex combina-
tion of elements of S7. Moreover, from the condition (ii), for any a; € S,
a,A4; can be represented by a convex combination of elements of S. Thus,
u' of L' of (7.9) and of? defined by (7.7) can be determined so that #’ may be
a stochastic vector and 4, having of¥) as its (k, ) entry may be a stochastic
matrix. Hence, l.a. L’ is a modified p.a. and equivalent to L by Lemma 7.1.

Q.E.D.

If la. L is irreducible, the inverse of Lemma 8.4 also holds. This will be
shown in the following lemma.

Lemma 8.5. If La. L is drreducible and has an equivalent modified p.a.,
then there exists a subset S satisfying the conditions (i) and (ii) of Lemma 8.4.

Proof. Let the modified p.a. equivalent to L be
L, =R™ {P}, u,, v, (8.30)

and denote the set of all m-dimensional stochastic row vectors by ™. Q™
is the convex polyhedron with m extreme points, which are the row vectors
having 0 elements except only one 1 element.

7 But we should notice that, if the elements of S are not linearly independent,
0;, 0, ,..., 0, in the right hand side of (7.6) are not uniquely determined as already
mentioned and so there may exist representations not to be convex combination.
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Since P; is stochastic matrix, x € 2™ implies &#P; € 2™. This means that
£™ is an invariant subset of L.

Here, according to Definition 6.2, the connected part L,¢ of L, is
defined by L,¢ =<W,, {B,?}, u,, v,. Since x € W, N 2™ implies xB,? =
xP;e W, N ™ W, N L™ is an invariant subspace of L,¢. Because the inter-
section of any subspace ¥ of R" and the convex polyhedron Conv (S), where
S is a finite subset of R", is also a convex polyhedron®, W, N 2™ is a convex
polyhedron. That is, there exists a finite subset S; such that W, N Q27 =
Conv (S5y).

On the other hand, since L is irreducible and equivalent to L, , from
Lemma 6.3 there exists a homomorphism from L, ¢ onto L. If the image of
S; by Ty is denoted by S,, the image of Conv (S;) by T is obviously
Conv (.5,). As Conv (S}) is an invariant subset of L,¢ and contains #,, , it is
obvious that Conv (S,) is an invariant subset of L and contains . Thus,
S, satisfies the conditions (i) and (ii) of Lemma 8.4. Q.E.D.

Combining Lemmas 8.4 and 8.5, the following theorem results.

Treorem 8.3. If La. L is drreducible, the necessary and sufficient condition
that there exists a modified p.a. equivalent to L is that there exists S satisfying
the conditions (i) and (ii) of Lemma 8.4.

Here, we notice that even if a given La.’s output function is bounded, it
does not always have a strongly equivalent modified p.a. This is shown by
the following example.

Exampere 8.1. Let X ={c} and consider L = (R? {4}, u, v), where

cos§ sinf
4= (—sin 6 cos 0)
and 6/ is not rational, and # = (1, 0), v = (0, 1)*.

"The output function of this La. is f(w) = sin 0, for w = ¢’ € Z*, Obvious-
ly, this function is bounded. On the other hand, the output functions of lL.a.’s
with the state space of which dimensions are 1 or less must be represented
in the form g(w) = « - £, «, B € R. Thus, La. L is irreducible.

Now, we know from Theorem 7.4 that the set of eigenvalues of the response
function of La.’s equivalent to L must contain the eigenvalues of 4 for o € 2.
But eigenvalues of 4 are e and 8/ is not rational. Therefore these eigen-

8 For example, refer to Valentine (1964).
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values can not be ones of the stochastic matrix. Thus, there does not exist
any modified p.a. equivalent to L.

As shown in the above example, even if the output function of la. is
bounded, it does not always have the equivalent modified p.a. But if the
output function is bounded, the following corollary holds.

CoroLrary 8.1. If La. L =<V, {4}, u, vy has the output function f(w)
which is bounded, for any e such that 0 << e << 1 there exisis a modified p.a.
with the output funciion

gw) = &Vf (w) (8.31)
where l(w) is the length of w.

Proof. We can assume without loss of generality that L is irreduc-
ible. Hence, by Lemma 8.2, there exists the norm p(x) of I/ satisfying
the condition, p(x4,) < p(x) for Yxe V. Here, let us define lLa.L’ by
L' = V,{B;}, u, v), where B; = eA4;. Clearly, the output function of this
La. L’ 1s g(w) of (8.31).

Considering the properties of p(x), we have

p(xB;) < ep(x)  for Vxel. (8.32)

Here, put
4 —plu) and b=—1la (8.33)

€

If @ =0 then u = 0 and f(w) is identically equal to zero. In such case
this corollary is trivial. Thus we assume that @ £ 0. Then, 0 < a < b.
Hence, there exists a convex polyhedron Conv (S) such that?

{x | p(x) < @} C Conv (S) C{x | p(x) < b}. (8.34)
By (8.32), (8.33) and (8.34), we know that
x e Conv (S) implies p(x) < b,
p(x) < b implies p(xB;) < eb = a,
p(xB;) < a implies xB;e Conv (S).
Therefore, Conv (S) is an invariant subset of L'.
On the other hand, from (8.33) and (8.34), we know that « e Conv (S).

Thus, it follows from Lemma 8.4 that there exists a modified p.a. strongly
equivalent to L’ Q.E.D.

¢ This statement is proved in Klee (1959)’s Corollary 6.4, p. 104.

643/20/5-5
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9. CoNSTRUCTION OF la. anD Quasi-RecurLar Function1®

Since for any given l.a. we can obtain the equivalent La. with the state
space which is the row vector space, we may consider the latter lLa.’s in this
section. Moreover, for the simplicity of description, we will denote lLa. by

L = {434, 0> ©.1)

leaving out the symbol of the state space, where 4,’s, ¥ and v are the square
matrices, the row vector and the column vector, respectively, and these
dimensions are the same.

Dermntrion 9.1. The real function f over 2* is called quasi-regular
function if there exists La. having f as its output function. Let us denote the
family of all the quasi-regular functions by #.

For the construction of La.’s, it is convenient to know under what oper-
ations the family . is closed. Hence we define some operations on % and
will show that & is closed under these operations.

DEeriNiTioN 9.2, Let f and g be real functions over 2*. For f and g, let
us define new real functions over 2*:

() sum of fand g; (f - g)w) = f(w) + g(w), ©-2)
(ii) product of f and g; f - g(w) = f(w) - g(w), (9.3)
(iii) convolution of f and g; f o g(w) = oy ., f (1) * £(w5), 9.4)
where 3y, .4,~, means the summation over all the pairs @, , w, such that
Wyt Wy = W.
Next, let us define the operations for la.’s corresponding to the above
defined operations on &.

DrriniTION 9.3 Let two la’s L, and L, be L; = {{4,}, uy , 7;» and
L, = {{B;}, uy, v5y. Then, we define new La.’s using L; and L, :

(1) divect sum of Ly and L, :

Li DLy, = {4; © B}, uy Quy, v; Doy, (9.5)

19 The discussions which will be developed in this section is also warranted in the
case of general field K instead of the real field R.
11 As to operations @ and ®, refer to the Section 7.1.
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(i) direct product of L; and L, :
Ly ®Ly, = {4; @ B3}, ; Q tt , v1 Q 03, 9.6)

(iii) convolution of L, and L, :

Ly oL, == {C}}, u, v, (0.7
where
c=(y B ) D=ovw

uw=u Quovu,andv =0Pv,.

Lemma 9.1,  Denote the vesponse mappings of L, and Ly by Fy and F,,
respectively. Then the response mapping I of L, o L, is given by

P 1

where Fyy is determined by

Fyy(w) = —Fy(c) DFyw) + 3, Fy(wy) DFyw,)  for VweZ*,

o (9.9)

Proof. We can prove the lemma by induction. First, for w = ¢, we have
_ (Fi(e) Fugle)y _ ; ;

F(e) = ( 0 Fyf ) = F  (unit matrix). (9.10)

Next, assume that (9.8) holds for w = 2. Thus, for Yo; € 2, we have

F(z0;) = F(z) C; = (F 1(52) ?;ES)) (‘gi ‘2?). (9.11)

Hence, it follows from (9.9) and the definitions of F; and F, that

Fi(zoy) F1z(z<7i)).

F(zo,) = ( 0 Tz (9.12)

Q.E.D.

COROLLARY 9.1. Let the output functions of L, and Ly be f, and f, , respec-
tively. Then, the output function of Ly oLy is fy o f, .



470 INAGAKI, FUKUMURA, AND MATUURA

Proof. Denoting the output function of L, o L, by f, we have

f = uFo = (u; @ uou,) (F01 ?:2) (0D vy)

= {uFy @ (F1s + w01, F) (0 D v,)
= u P10y + wyouFov, 9.13)

from Lemma 9.1 and the definition of # and v. Rewriting (9.13) for an arbi-
trary tape w € 2* by using (9.9), we obtain

f@) = — wFi(e) vapFo(w) v, + Y. wFy(wy) vyuaFo(wy) v,

Wyt We=wW
+ vy, Fo(w) v,
= z w,Fy(w,) vy Fo(wy) 05 = fi * fo(w). (9.14)
e QED.
TreorREM 9.1. Iff,, fo € Z then

ht+fed, fi fe& and ficfheZ.

Proof. We can easily prove that the output functions of L; @ L, and
L, ®L, are f; + f» and f; - f,, respectively. Corollary 9.1 gives the proof
for fi of, - Q.E.D.

DerinitioN 9.4. For fe # we define three unary operations as follows:

(1) multiplication by constant: (of Yw) = of (w) (9.15)
where a € R.
(i) dagger: f+=f+ fof+fofof+ - 016y
This is defined only when f(¢) = 0.
(iii) reverse: fR(w) = f(w¥) 9.17)

Lemma 9.2. If f(e) = O then f+(w) is the summation of
Fwn) “f(wn) - - - flwn) (0.18)

12 Since the operation of convolution satisfies the associative law, (fog)ock =
fo(goh) and this is denoted simply by fogo A.
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over all B's (1 <k <l(w)) and all the k-tuples w, , wy ,..., w;, such that
WWy Wy, = W,
Proof. Put
R

then, from the definition of convolution, g,(w) is the summation of (9.18)
over all A-tuples w; , @, ,..., w;, such that their concatenation is equal to =.
Since f(€) = 0, we know that g,(w) = 0 for £ > I(w) -+ 1. On the other hand,
Jftisrepresented by f+ =gy + g, + - -+ g, + - . Thus, this lemma holds.

Q.E.D.

DrrintTioN 9.5. We define new la.’s from lLa.L of (9.1) as follows:

(i) multiplication of L by constant: ol = {4}, u, ov)> 9.19)
where a € R.
(it) dagger of L: L+ = {{A(E + vu)}, u, v). (9.20)
This L+ is defined only when zz = 0.
(iii) #ramspose of L: Lt = ({41}, o*, u®). (9.21)

Lemma 9.3, If we denote the output function of L by f, then the output
Junctions of oL and Lt are of and fR, respectively. And if f(e) = 0, then the
output function of L* is f+.

Proof. As to oL, it is obvious, and as to L?, it has been already proved in
Lemma 7.2 of Section 7.3. Here we will give the proof for L+. Denoting the
output function of L* by g, we have

g(w) = ud; (E -+ vu) A, (E + vu) -~ 4; (E - vu)y (9.22)
for w = o0, 0; *+* 0; € 2*. Since uv = 0 and (E + vu)v = v, we obtain

gw) = ud,(E + vu) A (E + vu) - A;, (E + o) A;p. (9.23)

i1

Expanding the right hand side of (9.23), this term is represented by the

summation of (9.18) over all &’s and A-tuples @, , @, ,..., @; such that their
concatenation is equal to w. Thus, by Lemma 9.2, we know that g = f*.
Q.E.D.

This lemma gives the following theorem.
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Taeorem 9.2. If fe & then of € £ and fRe L. Moreover, if f(e) =0,
thenfte .

Now, for a subset S of 2*, we denote the characteristic function of S by
X » that is,

1 for weS
Xs®) =10 for w¢s (0-24)
TrEOREM 9.3. Let f be a real function over X*. The necessary and sufficient
condition that f € £ is that f can be obtained from x(g , X(o} s Xtop bY finite
numbers of applications of sum, convolution, dagger and multiplication by
constant. In other words, £ is the minimal family of real functions over X*
which is closed under the operations of sum, convolution, dagger and multiplica-
tion by constant.

Proof. 'The necessity is proved by Sugino, Inagaki and Fukumura (1968).

The sufficiency can be shown as follows. In fact, there exist l.a.’s of which
output functions are Xy, Xfo} s+ X(op - For example, la. whose output
function is equal to y(,; can be obtained by determining 4,s, » and v as
follows:

A,=(0 O Ay=dy=e =4, =0,

u=01,0, o=}

Thus, x4 5 Xto} 3+ Xtop € Z-
This fact and Theorems 9.1 and 9.2 establish the sufficiency. Q.E.D.

THEOREM 9.4. ys€ &L if and only if S is regular.

Proof. Since any finite automaton can be considered as l.a. by representing
it by use of matrices, the characteristic function yg of the regular set S is
contained in Z.

Conversely, assume that ygse .. Then, f=ys— ¥z € L. It can be
easily known that this function f is to be such that

_f % for weS
@ =11 for wes

Thus, fis bounded and the cutpoint 0 is isolated. Therefore, by Theorem 8.1,
S is regular. Q.E.D.
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The above discussions give a solution of the problem to specify the quasi-
regular function, that is, to answer the question what real functions over 2*
can be realized by l.a.’s. The algebraic properties of .# are detailed in Inagaki,
Sugino and Fukumura (1970).

Here, we present some examples of the quasi-regular functions.

ExamrpLE 9.1. Examples of the quasi-regular functions;

(1) The function giving the length /(@) of a tape w. This can be realized
by

A=Ay == d= (], w=@,0, o= {)-

(2) The function fs(w) giving the number of elements which are con-
tained in a given regular set .S and which also are subwords of tape w.

If the set .S is regular, then ys€ .. Therefore, f = ysz«o yso xz+ is an
element of % and then the desired function. Here we should notice that the
function I(w) of (1) is a special case of fg(w) and I(w) may be represented by
Z:XZ*OXZ‘OXE*-

Next let us refer to output functions of modified p.a.’s and denote the set
of all the output functions of modified p.a.’s by ',

TueoreMm 9.5. The set &' is closed under the operations of sum (),
product (), multiplication by constant and reverse.

Proof. As for product and multiplication by constant, the theorem is
obvious. As for sum, by using $u#; @ du, and 2v, P 29, instead of u; @ u,
and ©; @ v, in (9.5), respectively, we know that there exists a modified p.a.
of which output function is the sum of two modified p.a.’s functions. Finally,
as for reverse, refer to Nasu and Honda (1968). Q.E.D.

Remark 9.1. We should notice that the set ' is not closed under oper-
ations of o and *+. In fact, x5 and ys« are in &’ but the function / cited in
Example 9.1 (2), which is represented by [ = ys«o xzo xz+ is not in &
because it is not bounded. As for the operation *, the characteristic function
of Z* — e is in &' but the function obtained by applying the operation +
to it is not bounded.
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10. AN AprLicATION OF QUasI-REGULAR FUNCTIONS AND SETS
oF TaAPEs ACCEPTED BY l.a.’s

In this section, we discuss some properties of the family of languages
accepted by l.a.’s by using the quasi-regular functions.

Turorem 10.1. Let S be an arbitrary regular set and L be an arbitrary l.a.
Then there exist La’s L' and L" such that S U T(L) = T(L')y and S " T(L) =
T(L"), i.e., the family of languages accepted by l.a.’s is closed under the operations
of union and intersection with the regular set.

Proof. Although this theorem is obvious from Theorem 44 of Paz (1966),
we prove here this theorem by using quasi-regular functions.
Denoting the output function of L by f, we have

SUTE) = {w| gy(w) > 0},

where g, is represented by g; = ys -+ (xz+ — xs) - f and this is in #. Next,
defining g, by g, = f * xs we know SN T'(L) = {w | gy(w) > 0}. Q.E.D.

TueoreMm 10.2. Let f and g be real functions over XZ* which assume only
nonnegative values, and define

Sy ={weXZ*|flw) >0 and S, ={weZ*|glw) > 0}

Then f+g, f-g, fog ft and fR are also nonnegative-valued real functions
and the sets of iapes for which these functions assume positive values are
S,V Sy, S;N Sy, Sp- Sy, Sy Sy* and SyR respectively, where f+ can be
taken into consideration only when f() = 0.

The proof is obvious and omitted,

CoroLLARY 10.1.  The family of tape sets defined by S = {w | f(w) # 0}
for some f € L is closed under the operations U, N, -, * and reverse R.

Proof. If fe#, then f-feZ. Therefore, S ={w|f(w)#0}=
{w | ff(w) > 0}. Thus S is the set of tapes for which the nonnegative real
function ff assumes positive values. Therefore, Theorem 10.2 asserts that
this theorem holds for N, U, - and &,

Here we prove it for the operation *.Putg = ffe Land g’ =g — g(¢) * (9 -
g’ is a nonnegative real function and g’(e) = 0 and hence

] g/(w) > 0} = {w] glw) > 0} —{&} = § —{e.
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Thus, 2 = g+ 4+ xia 1s also a nonnegative real function and {w | A(w) > 0} =
{w g™ 4 yu@) >0 =5 57U {g=5*% QE.D.

Exampre 10.1. Examples of constructions of la.’s accepting the given
tape sets:

(1) Put X ={oy, o3} and let .S be the set of tapes w which contains
more a,’s than o,’s. Let us construct l.a. which accepts .S, In order to do this,
it is sufficient to construct la. having output function g = 24 — 2%, Such
l.a. certainly exists. In fact, l.a. L with the output function g may be obtained
as follows. L = ({4, , 4.}, u, v, where

2 0)

4 = (o 1 A = ((1) (2)) w=(L1), o= (—})

(2) 'The set {oy'oyt | I = 0} is accepted by La. of which output function
is given by

[ = X[l — (2 — 2%,

where /; and I, is the functions giving the numbers of oy and g, in the tape,
respectively.

(3) The sets {oy/ayl0y" | I = 0} and {o;0,%0%" | I > 0} are also acceptable
for some l.a.’s.

11. OperaTiONS UNbDER WHICH .Z Is Not CLOSED

DeriniTiON 11.1. Let f and g be real functions over 2*. We define two
functions f v g and f A g as follows:

Jv g(w) = max{f(w), g@)}, (11.1)

£ & glar) = min{f(e), g(a). (11.2)

THEOREM 11.1 % is not closed under operations v and A.

Proof. Putting X = {0, , 6,}, we denote the number of o; contained in
we 2* by L(w) and the number of o, contained in w by L{w). Here we
consider the following functions f and g.

f=@"—-®" (11.3)
g=0. (11.4)
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Since g is the characteristic function of the empty set, which is a regular
set, we know from Theorem 9.4 that g € Z.
Next fis the output function of L, defined as follows:

Lp:<{P1’P2}, u: 1)>) (11-5)
where
+ 0 3 1 00
P1=(0 1 0), P2=(0 % %),
0 0 1 0 0 1
2
u=(}40), 0= (— )
0
Thus, fe Z.

Here we assume that there exists l.a. L of which output function is f v g,
and that this L has #-dimensional state space and is defined by

L = (R, {4, , A, u, 0. (11.6)
The output of L for w = ololr € Z* is given by
wAl A = f v glw) = max{(h)* — (B, O} (11.7)

Now, from this L, we can construct a new l.a.L’ with the set of input
symbol, 2’ = {6} having only one element, as follows:

L' = (R* {B}, v, v'), (11.8)
where B, == 4, , 4’ = uA,", v = v. Hence the output of L' for &' = o, is
given by

w' By = uAy,"A'v = max{(})! — ()", 0} (11.9)

Therefore we know that

=0 for 0<In

’ 1o/ ~= ~ "
WBiIS 0 for I>n1 (11.10)
On the other hand, the dimension of the state space of L' is # and from
(11.10), the outputs of L’ is equal to O for all tapes with length # or less.
Therefore it follows from Theorem 4.2 that #” and 0 and not distinguishable.
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That is, #'Byv’ = 0 for all [ > 0. But this contradicts to (11.10). Therefore,

fvegeZ
In the same way we can prove that f A g ¢ L. Q.E.D.

Thus we have known that % is not closed under the operations v and A.
But we can prove that if f and g are in % and bounded there exists the
sequence of elements of % uniformly converging to f v g and f A g, respect-
ively. For this end, we prove the following lemma.

Lemma 11.1. Putting 0 < a < b < 1, we define the sequence {c,} by

e =ab and ¢, =c,+ (@a— c,)(b — c,).

Then the sequence {c,} converges to min{g, b} at the rate not slower than
the rate at which the following sequence {6,} converges to (.

0, =%, Oppy = 0, — 0,2

The proof is omitted since it is easily done.
From Lemma 11.1, we obtain the interesting corollary.

CoroLLARY 11.1. Let f and g be real functions over X* and assume that
f and g satisfy the conditions that 0 < f(w) <1 and 0 < g(w) < 1 for all
we Z*, Define the sequence by, by ...y by ... of rveal functions over X* as
Jollows:

= fg, hn+1 = hy -+ (f — ha)(g — b,)-
Then the sequence {h,} converges uniformly to f A g.
TreorREM 11.2. If f, g€ ¥ are bounded, then there exist sequences of

elements of &, which are bounded, converging uniformly to fv g and f A g,
respectively.

Proof. Assume that | f(w)| < M and | g(w)] < M for all weX*, and
define f* and g’ as follows:

f’(w)=—2—1]qf(w)+%, g’(w)r—z—]LWg(w)+%. (11.11)

Then, we may easily verify that f' € £ and g’ € &, and 0 < f'(w) < 1 and
0 <g'(w) <1 forall we2*
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Here, we define the sequence {4,} by
h'=f¢ and Ry =h'+ (" = k)¢ —h). (11.12)

From Corollary 11.1, this sequence {#,’} converges uniformly to f’ A g’
On the other hand, as % is closed under operations of sum, product and
multiplication by constant, &,” (n = 1, 2,...) are contained in Z.
By defining the sequence {k,} as h, = 2M(k,” — %), we see that {,}
converges uniformly to fA g and %, (n = 1,2,...) are the elements of Z.
Concerning f v g, we can also verify the statement of this theorem in the
same way. Q.E.D.

CoroLLarY 11.2  The family &' of the all output functions of the modified
p.a’s is not closed under the operations v and A. Bui if f, g € P, then there
exist the sequences of elements of P’ converging to f v g and f A g, vespectively.
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