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Linear  space au t oma t on  is in t roduced  as a general izat ion of  probabil ist ie 
a u t o m a t o n  and  its var ious  proper t ies  are investigated.  

L inear  space au toma t on  has  the  abilities equivalent  to probabil ist ic au toma ton  
b u t  we can treat  the  former  more  easily t han  the  latter because  we can make  use  
of  propert ies  of  the  l inear space, successfully.  

F i rs t  the  solut ions are given for the  p rob lems  of connectivity,  s tate equiv-  
alence, reduct ion  and  identification of  l inear space automata .  Second,  the  
mat r ix  representa t ion  of  l inear space au t oma t on  is invest igated and  the  relations 
be tween  linear space au toma ton  and  probabil is t ic  au t oma ton  are shown.  Th i rd ,  
we discuss  the  closure proper t ies  o f  the  family  of  all real func t ions  on  a free 
semigroup  2 "  wh ich  are defined by  l inear space au toma ta  and  t hen  give a 
solut ion to the  synthes is  p rob lem of  l inear space automata .  

Finally,  some  considerat ions are g iven to the  p rob lems  of sets of  tapes  
accepted by  1.a.'s and  also of  operat ions u n d e r  wh ich  the  family o f  all t he  
ou tpu t  func t ions  o f  l .a. 's  is no t  closed. 

1. INTRODUCTION 

Since Rabin's (1963) work concerning probabilistic automata (abbreviated 
p.a.), many researchers such as Paz (1966), Salomaa (1967), Honda and 
Nasu (1968), Sugino, Inagaki and Fukumura (1968), Turakainen (1968), 
Carlyle (1968) have concerned with this subject. Despite the above extensive 
works, there remain some difficulties in the theoretical treatment of p.a. 
because the set of states of p.a. is a set of stochastic vectors. 1 

* Research  suppor t ed  in par t  by  M a t s u n a g a  Science Founda t ion .  
1 For  m a n y  o ther  works on this  subject,  see the  exhaust ive  b ib l iography of  A. Paz 

(1971). 
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Hence in this paper  we will introduce a new system with a linear space, 
which will be called linear space automaton (abbreviated 1.a.), and discuss 
its properties as well as its relation to p.a. to have a new view point of p.a. 

I t  will be shown later that many properties of l.a. are easily known and 
in part icular the reduction problem is solved in straightforward way because 
we can use many well-known properties of the linear space. In  order to 
lay stress on this point we will consider 1.a. with linear state space over a 
general field K in the Sections 2-7. 

I t  will be understood that 1.a. is a very natural extension of p.a. and their  
abilities are equivalent to each other. These facts may give us an idea that  
1.a. will become a useful tool to treat p.a. 

2. PRELIMINARY DEFINITIONS 

Alphabet and Tape 

Let  27 ~ { ~ i / i  ~-- 1, . . ,  I} be a nonempty finite set of symbols, which is 
called an alphabet. A finite sequence consisting of elements of 27 is called 
a tape, which is denoted by w, z, etc. The  length of a tape w, which is denoted 
by l(w), is defined to be the number  of symbols contained in w. T h e  concatena- 
tion of tapes w and z is denoted by w • z or simply by wz. T h e  tape with 
zero length is denoted by E. The  set of all tapes generated over 27 is denoted 
by 27", which contains E. 

Linear Space 

A finite dimensional linear space over the field K will s imply be called 
"space" and denoted by V, W, etc. The  dimension of the space V is denoted 
by dim V. A subset S of the space V being a space is called a subspace. 

Linear Mapping 

A linear mapping T from a space V 1 into V 2 is simply called "mapping"  
and denoted by T: V 1 ---> V~. When  the mapping T transforms x ~ V 1 to 
y ~ V~, we write this simply as y z xT.  For  an arbitrary subset S 1 of V 1 , 
we will call 8 2 = T(S1) = {y  [y = xT,  x ~ 81}, T-image of S 1 and for an 
arbitrary subset 82' of V~, S 1' = T-I(S~ ') = {x I x T  ~ $2'}, T-inverse image 
of $2', if T -1, the inverse mapping of T, exists. I f  S 1 is a subspace of V1, 
$2 is a subspace of V 2 and if $2' is a subspace of V~, S 1' is also a subspace 

of V1. 
I f  T-image V 2' of V 1 is identical to V~, T is called a mapping from V 1 

onto V~. 



LINEAR SPACE AUTOMATA 441 

Let V1, V2, Vz, and V 4 be spaces. For mappings T 1 : V 1 -+ Ve and 
T~ : V~ -+ V3, the product T1T ~ : V 1 --+ V~ is defined by xTIT~ = (xT~) Tz 
for all x ~ V .  If  T 3 is a mapping from V 8 into V4, then (T1T~)Tz= 
TI(T2Ts) -~ T1T2T 8 holds, that is, the product of mappings is associative. 

3. LINEAR SPACE AUTOMATON 

In this section the definition of linear space automaton and the relating 
concepts are introduced. 

DEFINITION 3.1. Linear space automaton L over a finite alphabet 27 is a 
system 

L ----- (V ,  {A ,  r i = 1, 2,..., I } ,  u, v )  (3.1) 

where V is the space over the field K, which is called the state space of L 
and of which elements are called the states of L. At is a mapping from V 
into V caused by the input symbol at E 27. u is an element of V and called 
the initial state of L. v is a linear function from V into K. 

The linear space automaton is essentially the same as the generalized 
automaton defined by Turakainen (1968). But the authors would like to 
notice that the concept of l.a. is obtained independently of it by the authors 
(1968). 

DEFINITION 3.2. 
follows and called the response mapping of L. 

F ( ~ )  = E, 

F(z~)  = F(z) A~ for Vz e 27* and 

where E is the identity mapping from V into V. 

For all w e Z*, F(w): V - *  V is recursively defined as 

(3.2) 
V,,~ e 2, 

DEFINITION 3.3. The function f(w): X* ~ K is defined by 

f (w)  = uF(w)v for all w ~ 27" (3.3) 

and called the output function of V. 
From Definition 3.2 and the associative law concerning the product of 

mappings we have directly the following lemma. 
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LEMMA 3.1. 
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For Vw ~ ailcr q "'" ai~ E 27", 

F(w) -~ A , f l~  "" A,~ 

and for Vw, Vz 6 X* 

(3.4) 

F(wz) ---- F(w) Y(z). (3.5) 

4. CONNECTIVITY, DISTINGUISHABILITY AND STATE EQUIVALENCE OF 1.a. 

DEFINITION 4.1. A subset S of V is called an invariant subset of V with 
respect to (w.r.t.) 1.a. L if the following condition holds: 

x ~ S implies xAi  ~ S for Vei ~ ~.  (4.1) 

Moreover,  if S is a subspace, it is called an invariant subspace of V 
w.r . t .L .  

LEMMA 4.1. Let S be an invariant subspace of V. Then for Vwe27*, 

x ~ S implies xF(w) ~ S. (4.2) 

DEFINITION 4.2. For  x E V, the minimal invariant subspace containing x 
is called the connected part of x and denoted by V(x). I f  the connected part  
V(u) of the initial state u is identical to V, L is said to be connected. And 
if for any nonzero x e V, its connected part  V(x) is identical to V, then L 
is said strongly connected. 

We have the following lemma directly from the definition: 

LEMMA 4.2. L is not strongly connected i f  and only i f  there exists at least 
one invariant subspaee except {0} and V. 

DEFINITION 4.3. For  x 1 , x 2 ~ V, if there exists w a 27* such that  

x~F(w)u v'= x2F(w)u (4.3) 

xl and xz are said distinguishable. I f  x 1 and x2 are not distinguishable then 
they are said to be equivalent. 

I f  all x 1 and x 2 in V such that  x 1 :# x 2 are distinguishable, then L is said 
to be distinguishable. 

Now we consider the procedures to obtain V(x) for any given x and to 
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decide whether x 1 and x2 are distinguishable or not for given xl and x~ in V. 
These problems can be solved by using well-known techniques for proba- 
bilistic automata. 2 Then  we describe only the results. 

We can assume that x =# 0 without loss of generality because x = 0 
implies V(x) = {0}. 

Define the sequence of subspaces V~ k (k = 1, 2,...) of V recursively as 
follows: 

v 2  = {~x I ~ e K ) ,  (4.4) 

= x o +  ~ x i A i  x o , x i ~ V ~  ~ , i =  1 , . . . , I .  (4.5) 
i = l  

LEMMA 4.3. V~ ~ is the space spanned by {xF(w) [ w ~ Z*,  l(w) ~ k --  1} 
which is the set of all states accessible from the state x with tapes of  which length 
are (k --  1) or less. 

From the definition of V~ k and Lemma 4.3 we can show that V~ ~ is the 
minimal invariant subspace containing x. Thus  we have the following 1emma. 

LEMMA 4.4. V~ n is a connected part V(x) of x. 

Thus V~ ~ is an invariant subspace containing x. By Lemma 4.1, we have 

xF(w) ~ V~ ~ for Yw ~ £*.  (4.6) 

Combining this (4.6) and Lemma 4.3, we obtain the following Theorem 4.1. 

THEOREM 4.1. I f  1.a. has n-dimensional state space, then any states 
accessible from a given state x can be represented by a linear combination of 
states accessible from x with tapes of which length is (n --  1) or less. 

Moreover, we have the following theorem concerning the state equivalence. 

THEOREM 4.2. 
the equation 

For any xl , xe ~ V, x 1 and x 2 are equivalent i f  and only i f  

xlF(w)v = x2F(w)v (4.13) 

holds for all tapes with length (n --  1) or less. 

2 See p. 19 of Paz (1971), for example. 
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5. EQUIVALENCE BETWEEN 1.a.'s 

Given two 1.a.'s Lt  = <V 1 , {Ai}, us,  vl) and L 2 = <V~, {Bi), us,  v25, 
we will denote their response mappings by  F 1 and F2,  their output functions 

by f l  and f~.  

DEFINITION 5.1. I f  the equation 

f l ( w )  = f~ (w)  (5.1) 

holds for Vw 6 2J*, the 1.a.'s L 1 and L 2 are said to be equ iva len t  (or s t rongly  

equ iva len t )  and this relation will be denoted by L 1 ~ "  L2. 
The  relation ~*  is obviously an equivalence relation. Another relation, 

homomorphism between 1.a.'s, which is stronger than =-", is useful and 
defined as follows. 

DEFINITION 5.2. A mapping T: V 1 --~ V 2 is said to be a h o m o m o r p h i s m  

from L 1 into L 2 if the following three conditions are satisfied. 

(i) x A i T  = x T B i  for Yx ~ V 1 and Vcr i ~ E (5.2) 

(ii) u ~ T  -~ u~ (5.3) 

(iii) x v  1 = x T v  2 for Vx E V 1 (5.4) 

THEOREM 5.1. I f  there exis ts  a h o m o m o r p h i s m  f r o m  L 1 in to  L~ then  L 1 

is equ iva len t  to L 2 , t h a t  is, L 1 ~ s  L2 • 

Proo f .  Let T: V 1 --+ Vz be a homomorphism from L 1 into L 2 . Using the 
definition of the response mapping and (5.2), we can prove by induction that 
xF~(w)  T = x T F 2 ( w  ) for Vx~ V~ and Vw ~X*. Thus  we have f ~ ( w ) =  
u l F l ( w  ) v I = u lFa(w)  T v  2 = u l T F 2 ( w )  v 2 = u.2F2(w ) v 2 = f2 (w)  for gw e Z*. 

Q.E.D. 

DEFINITION 5.3. Let  T: V 1 --+ V 2 be a homomorphism from L 1 in to  L 2 . 

(i) I f  T is a mapping from V 1 onto V~ then T is called a homomor- 
phism from L 1 onto L 2 . 

(ii) I f  T is a one to one mapping from V~ into V2, then T is called an 
i somorphism from L 1 in to  L 2 . 

(iii) I f  T is a one to one mapping from V 1 onto V~, then T is called an 
i somorphism from L 1 onto L~ . 

The following lemmas are obtained directly from this definition. 
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LEMMA 5.1. Consider three 1.a.'s L1,  L 2 and L 3 . I f  T is an isomorphism 

(homomorphism) from L 1 into (onto)L 2 and T '  is an isomorphism (homomorphism) 

from L2 into (onto) L z ,  then the product T T '  of  mappings is an isomorphism 

(homomorphism) from L 1 into (onto) L 3 . 

LEMMA 5.2. I f  T is an isomorphism from L 1 onto L2 then the inverse mapping 

T -1 of  T is also an isomorphism from L 2 onto L 1 . 

Here we would like to state another theorem concerning the equivalence 
of 1.a.'s. As this theorem is well known for probabilistic automata, then it 
can be proved in a way similar to them. z 

THEOREM 5.2. Assume that 1.a.'sL 1 and L2 have n 1 and n2 dimensional state 

spaces, respectively. Then L 1 ~ 8 L2 i f  and only i f  ulF~(w) v 1 = u2F2(w ) v 2 holds 

for  all tapes w with length (n 1 + n~ - -  1) or less. 

6. REDUCTION OF 1.a. 

DEFINITION 6.1. An 1.a. L is said to be reducible if there exists any one 
which is equivalent to L and of which state space has the smaller dimension 
than that of L. Otherwise it is said irreducible. 

We will call it reduction of L to obtain the irreducible 1.a. equivalent 
to L. In  the following of this section, the reduction of 1.a. L defined by 
Definition 3.1 is considered. 

Denote the connected part V(u) ofu  of the 1.a. L by W. As Wis  an invariant 
subspace of V, we have a mapping 

Bi : W - +  W (6.1) 

by restricting the domain of A i : V - +  V to W. That  is, for all x ~ W, we 
can define xB  i by 

xBi  = xA i  E W. (6.2) 

And, by v ~ we denote the function obtained by restricting the domain V 
of the linear function v to W. That  is, v * is the function such that 

xv ~ = xv (6.3) 

holds for all x E W. 

See Theorem 2.7 on p. 25 of Paz (1971), for example. 
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DEFINITION 6.2. A new 1.a. L * is defined by 

L0 = (W, {B3, u, ~0) 

and L c is called the connected p a r t  of L. 

(6.4) 

LEMMA 6.1. The  1.a. L ~ is a connected 1.a. which is equivalent  to L .  

Proof .  T h e  identi ty mapping E w from W to W can be considered to be 
a mapping from W into V. Using (6.2), (6.3) and the fact that  the initial 
states of L c and L are the same, we can easily show that  the mapping E w 
is a homomorphism from L c into L. Thus,  by  Theorem 5.1, L c =_8 L. 

Next,  the connectivity of L c is easily shown from the fact that  W is the 
connected part  of u. Q.E.D. 

EXAMPLE 6.1. Let  the field K be the real field R and assume that  
22 = {al}. Then,  we obtain the connected part  L1 c, of L 1 defined by  

L1 = <V, {&), u, v), 

where V is the three-dimensional  linear space generated by the basis 
{e 1 , ez, ea} over the real field R, that is, V = R a. The  mapping A i : V ~ V 
is the one defined by 

e , A  1 = ½e 1 + ½e2, e2A1 = --½e 1 q-  ½e2, eaA1 -~- e a . 

The  initial state u = e 1 , and the linear real function v: V - +  R is the 
one such that 

ezv ~- 1, e2v ~- eav = O. 

Hence, it is easily known that the connected part  W of u is the space 
spanned by {e 1 , e~}. Thus,  the connected partL1 ~ o fL  1 is obtained as follows: 

L1 ° = <W, {B1}, u, v°>, 

where W is the space spanned by  {el,  e~}, B 1 is the mapping such that  

e l B  1 = ½e I -~- ½ez, e=B 1 = --½e 1 q- ½e= and u = e l ,  ely  ~ = 1, ezv c = O. 

Now, assume that  dim V = n and denote tapes with length (n - -  1) or 
less by  z~t, z~ . . . . .  z ~ ,  where their order may be arbitrary except z 1 = e 
(null string) and the value of m is determined by 

m = ~ I ~ = (1 --1~)/(1 - - I ) .  (6.5) 
k=O 
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Here, for x ~ V, we define y ~ K ~ as follows: 

y = (xF(z l )v ,  xF(z~)v,. . . ,  xF(~,,)v).  (6.6) 

That is, y is the m-dimensional row vector obtained by arranging one after 
another the outputs of L in the state x, to which z 1 , z~ ,..., zm are applied. 
Obviously, the correspondence from x to y is a linear mapping and written by 

y - -  xT .  (6.7) 

Thus, T is a mapping from V into K% 

LEMMA 6.2. For Vx 1 , Vx 2 ~ V, 

(i) x a and x 2 are equivalent i f  and only i f  

x l T  = x~T 

holds. 

(ii) 

(6.8) 

I f  (6.8) holds, then for  V(~i E Z 

X l A i T  -~ x2Ai T. (6.9) 

Proof. (1) By the definition of T, the statement (i) is not more than 
an alternative expression of Theorem 4.2. 

(2) From (i), if (6.8) holds then x 1 and x 2 are equivalent and thus, 
xlF(w)v ~ x2F(w)v holds for Vw E 27*. In particular, by putting w ---aiz~ 

(1 ~ l ~ m )  wehave  

xlA~F(zt)v = xaAiF(zt)v (1 = 1,..., m). (6.10) 

Thus (6.10) means (6.9). Q.E.D. 

Now, let Z be the image of W by T and define y 6 Z by 

y = x T  (6.11) 

for x c W. For this y we define y C i  by 

y C i  = x A i T .  (6.12) 

This C i is a mapping from Z into Z. In fact, by (ii) of Lemma 6.2, the right 
hand side of (6.11) is uniquely determined for y; in other words, it is deter- 
mined independently of the selection of x which satisfies (6.11). Thus, 
Ci is known to be a unique correspondence from Z into K% Obviously, 
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this correspondence is linear. Therefore, C i is a linear mapping from Z 
into K 'L  Finally, W is the invariant subspace of L ,  and so, if x 6 W then 
x A i  ~ W .  Thus,  y C i  = x A i T  ~ Z .  

Next, for the vector 

y = X T = (xxl~(Zl)V , x F ( z 2 ) v , . . .  , x/~'(~w~n)v ) (6.13) 

a linear function v ~ from Z into K is defined by 

y v "  - - x F ( z a ) v  = x F ( ~ ) v  = xv .  (6.14) 

That  is, y v  ~ is the first component of y. Finally, the urE Z is defined by 

u ~ = u T .  (6.15) 

Using the Z, {Ci}, u r, v ~ defined above, we may construct a new 1.a. L ~ 
as is given in the following definition: 

DEFINITION 6.3. For a given 1.a. L we define 1.a. L r by 

L~ = <z,  { c J ,  u ~, ~>. (6.16) 

LEMMA 6.3. T h e  m a p p i n g  T 1 ob ta ined  by  res tr ic t ing  the  d o m a i n  V o f  

T :  V --+ K ~ to W is a m a p p i n g  f r o m  W onto Z a n d  also a h o m o m o r p h i s m  

f r o m  L c onto L ~. 

Proo f .  As Z is the image of W by T, it is evident that T1 is a mapping 
from W onto Z. 

Next, putting y = x T  for x e  W, from (6.11) and (6.12), we have 

x A i T  = y C  i = x T C  i . (6.17) 

Thus,  for Bi and T 1 obtained from A i and T by restricting their domain V 
to W, the following equation holds: 

x B i T  = x T i C  i for Vx e W. (6.18) 

From (6.15), we have 

u ~ = u T  1 (6.19) 

and from (6.13) and (6.14) we have 

x v  ~ = x v  = y v  ~ =- x T v  ~ ~ x T l v  ~ for Vx ~ W, (6.20) 

where y = x T  a . Thus, T 1 is a homomorphism from L e onto L r. Q.E.D. 
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THEOREM 6.1. The 1.a. L ~ is the irreducible 1.a. equivalent to L. 

Proof. By Lemma 6.1, L and L c are equivalent and by Lemma 6.3 and 
Theorem 5.1 L c and L r are equivalent. Thus, L * is equivalent to L. 

Next, we show the irreducibility of L L Assume thatL '  -~ ~ V', {_/1(), u', v ' )  
is equivalent to L r and is also equivalent to L. Let the response mapping 
of L'  be F '  and define T': V'  --> K m by the following equation: 

x ' T '  ~- (x'F'(zl)v' , x'F'(z2)v', .... x 'F'(z~)v')  for x ' e  V'. (6.2l) 

From the above assumption that L '  and L are equivalent, we have 

uF(w) F(z~)v -~ u'F'(w) F'(z~)v' for Vw c 2:* and 1 = 1, 2 ..... m. (6.22) 

Therefore, by the definition of T and T '  the equation 

uF(w)T = u'F'(w)T" (6.23) 

holds. 
On the other hand, combining Lemmas 4.3 and 4.4, we know that W 

is the space spanned by 

{uF(zx), uF(z~),..., uF(z~,~)} (6.24) 

and Z is the image of W by T. Thus, Z is the space spanned by 

{uF(z~)T, uF(zz)T,..., uF(z~)T}.  (6.25) 

Here, let Z '  be the image of V' by T '  and since the right hand side of 
(6.23) is an element of Z '  for Vw ~ 27", any element of (6.25) is contained 
in Z'.  Therefore, the space Z is a subspace of Z',  that is, Z C Z'.  

Hence, recalling that we have denoted the image of V' by Z' ,  we obtain 

dim Z ~ dim Z '  ~ dim V'. (6.26) 

Thus, we have known that L ~ is irreducible. Q.E.D. 

THEOREM 6.2. I f  we know all values of output function f (w) of L for all 
tape," w such that 0 ~ l(w) ~ 2n - -  1, then we can construct L ~, where n is 
the dimension of the state space of L. 

Proof. As described in the proof of Theorem 6.1, the state space Z of 
L ~ is the space spanned by (6.25). Therefore, these row vectors can be 
determined by the values of output function f ( w )  of L for all tapes w with 
length (2n - -  2) or less. 
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I n  order  to de termine  C~ : Z ~ Z, it is sufficient to know 

uF(zi) TCa = uF(zi) A jT  = uF(zio~)T for all (rj ~ X and  i = 1, 2,..., m. 

(6.27) 

These  can be obta ined f rom values of f (w) of L for tapes w such that  

0 ~ l(w) ~ 2n - -  1. De te rmina t ion  of u ~ and  v ~ is easy. Q.E.D.  

EXAMPLE 6.2. Le t  us  reduce 1.a. of Example  6.1. Th i s  1.a. has I =- 1, 

d im V-----3 and  so m = 3. Hence  pu t t ing  z 1 =-e ,  z2 = ~1, z3 = e l a l ,  
the space Z spanned  by  uF(za)T , uF(z2)T and uF(zs)T is obta ined as follows: 

u F ( z l ) T  = (uF(Zl) F(Zl)V, ~/F(~I) F(~f2)v, uF(,~l) F(/~'3)v ) 

= @1% elAlV, elA1A1 v) 

= (1, ½ ,0 ) ,  

uF(z2)T = (½, O, --~), 

uF(z3)T ----- ( 0 , - - ~ , - - i ) .  

T h e  vectors uF(zl)T and  uF(z~)T are l inearly independen t  and  uF(zs)T 
can be represented by  a l inear  combina t ion  of the other  two, i.e., 

uF(zs)T = --½uF(zl)T + uF(z2)T. 

Hence,  we choose the basis {Ya, Y~} of Z so that  

Yl = uF(z~)r, y~ = uF(z~)T. 

T h e  mapp ing  C 1 : Z - +  Z is de te rmined  as follows: 

ylC~ = uF(~)  r q  = uF(~)  A~T = u F ( ~ ) T  = y~,  

y~Ca = uF(z2) TC~ = uF(z~) A~T = uF(z3)T = --½yl + y~ . 

Final ly,  the l inear real funct ion  v r over Z is de te rmined  as 

ylv" = 1, yzv ~ = ½ 

and the init ial  state u ~ is also de te rmined  as u ~ = Yl .  Here, 1.a. L ~ = 
<Z, {C1}, u r, v ~) obta ined in  the  above discussion is the i r reducible  1.a. 
equivalent  to L. 

COROLLARY 6.1. The 1.a. L is irreducible if and only if L is connected 
and distinguishable. 
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Proof. From Theorem 6.1, L is irreducible if and only if 

dim V = dim Z. (6.28) 

Since Z is the image of the subspace W of V by T, (6.28) holds if and only 
if W coincides with V and T is one to one mapping. Therefore, combining 
Definition 4.2 of connectivity and (i) of Lemma 6.2 this corollary results. 

Q.E.D. 

COROLLARY 6.2. I f  two 1.a.'s L 1 and L 2 are equivalent and both are 
irreducible, there exists an isomorphism from L 1 onto L 2 . 

Proof. The assumption of the corollary implies that output functions 
of L 1 and L 2 are the same and the dimensions of their state space are equal. 
Therefore, it follows from Theorem 6.2 that L1 r of L 1 and L f  of L 2 are the 
same one. 

From Corollary 6.1, L 1 is known to be connected and distinguishable. 
Therefore, T is a one-to-one mapping from V onto Z. It  is easily shown 
that this T is an isomorphism from L 1 onto L1 r. Similarly, it is known that 
there exists an isomorphism T '  from L 2 onto L~ r. 

Hence, if we denote the inverse mapping of T '  by T '-1 then T T  '-1 is 
obviously an isomorphism from L 1 onto L 2 . Q.E.D. 

COROLLARY 6.3. I f  l.a.'s L 1 and L2 are equivalent and L 2 is irreducible 

then there exists a homomorphism from the connected part  L1 e of  L 1 onto L z .  

Particularly, i f  L 1 is connected then a homomorphism exists from L 1 onto L z .  

Proof. From Lemma 6.3 there exists a homomorphism T 1 from Llc onto 
L1 *. Since L1 * is irreducible, it follows from Corollary 6.2 that there exists 
an isomorphism T 2 from Llr onto L 2 . Hence, T1T 2 is a homomorphism 
from L 1 onto L 2 . Q.E.D. 

7. 1.a.'s REPRESENTED BY ]V[ATRICES 

7.1. Notations Relating to Vector and Matr ix  

In  the following sections we consider mainly row vector spaces and 
matrices; here we refer to some notations relating to them. 

A mapping T: K ~ -+  K s is the matrix with m rows and n columns. These 

643/20/3-4 
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row vectors will be denoted by a 1 , a 2 ,..., a m . That  is, the mapping T is 
represented by 

T ~ 2 al as am ~ K n. 

\ a m /  

Hence, the number  of linearly independent  vectors in a 1 , a 2 ..... am is called 
the rank of T and denoted by rank T. 

Le t  us denote the transposes of vector x and matrix A by x t and A t, 
respectively. 

The  direct sum of vectors 

X = ( E l ,  ~ 2 , ' " ,  ~m) E K m and y = (7]1 , 7~2 , . . . ,  7In ) @ K n 

is denoted by x @ y and defined by 

x Q y - - - - ( ~ l , f a  .... ,~m,Vl ,* /2  .... , ~ ) ~ K  ~+~. (7.1) 

T h e  direct sum of m x m matrix A and n X n matrix B is denoted by  
A (~ B and defined by  

9 A @ B =  0 ~ , ~  ' 

where 0~,~ and 0 . . . .  are m x n and n X m zero matrices, respectively. 
Next,  the direct product  x (~ y of x and y is defined by 

x (~ y = (~l~h, ~ / 2  .... , ~ / ~  ,..., ~m~7~, ~m~/2 ,..., ~mT/n)- (7.3) 

And  the direct product  of A = ("iJ) and B is 

{%1B ~12B ..- ~I~B\ 
A @ B = | C~lB ~2~B "'" ~mB ) .  (7.4) 

\~mlB ~m~B "'" am~B 

7.2. M a t r i x  Representat ion o f  I.a. and  Invar ian t  Sub@ace 

Let  us consider 1.a. of Definition 3.1. Let  us denote a finite subset of 
the state space V of L by 

S ~- {al, a 2 ,..., at}. (7.5) 

Here we assume that the space spanned by S contains the initial state u 
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of L and it is an invariant subspace of V. That  is, u can be represented by 

u =  ~ O~a~ ; O~ ~ K,  ak e S (7.6) 

and for any a~ e S, akAi can be represented by 

a~A i = ~ ~]a~ ", ~(i)k, ~ K,  aj ~ S. (7.7) 
j= l  

And we also assume that the linear function v is a mapping from V into K, 
i.e., can be represented by 

akv = ~Tk ~ K for all a~ ~ S. (7.8) 

Here we define 1.a. L '  of which state space is K r as follows. 

L'  = ( K L  {Ai'}, u', v'},  (7.9) 
(i) ' ( (i)x is the r × r square matrix whose (k , j )  entry is akj where A i : ~o~kj ! 

determined by (7.7) and u'  and v'  are defined as follows: 

u' = ( o l ,  o~ , . . . ,  0~), v' = (71 ,  ~ . . . .  , ~r) ~. 

Moreover, we define a mapping T: K r -)- V by 

y T  : ~ Cjaj for y : ((~ ,..., ¢~) ~ K ~ (7.10) 

LEMMA 7.1. (i) The mapping T: K ~ --~ V is a homomorphism from L'  
into L. 

(ii) I f  the space spanned by S coincides with V, then T is a homomorphism 
from L'  onto L. 

(iii) I f  the elements of S are linearly independent, then T is an isomorphism 
from L'  into L. 

(iv) I f  S is a basis of V, then T is an isomorphism from L'  onto L. 

Proof. First, from the definitions we can prove that for Vy ~ K ~ and 

V~i ~ Z, 

y A ~ ' T  : yTA~ (7.11) 

holds. From the definitions of u', v' and T, we also know that u 'T  - u 
and yv '  : yTv .  Thus  we know that T is a homomorphism from L '  into L 
and have verified (i) of this lemma. 
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I t  is obvious that  if the space spanned by S coincides with V, then T 
is a mapping from K r onto V and that if elements of S are linearly inde- 
pendent,  T is a one-to-one mapping. Wi th  these discussions and (i) of this 
lemma, we may obtain (ii)-(iv). Q.E.D. 

As known from the above discussions, for any l.a. we can construct the 
one with the row vector space as its state space, which is equivalent to it. 
Such I.a.'s will be called l.a. represented by matrices to distinguish them 
from the others. I f  we take the set S of (7.5) as the basis of  V, the space 
spanned by S is V and obviously the invariant subspace containing the initial 
state u. 

Here we notice that if the elements of S are not linearly independent,  
the expressions of (7.6) and (7.7) are not unique and so u' and A /  are not 
uniquely determined. 

Now, we proceed to consider the invariant subspace of 1.a. represented 
by matrices. We  consider 1.a. L = <K ~, {Ai} , u, v),  where Ai's  are n × n 
square matrices, u ~ K ~ and v t ~ K n. 

Let  V be the invariant subspace of K n of L, its dimension be n 1 , and 

its basis be S 1 -~ {el,  e 2 ..... e~}. Hence, as is well known, we can select 

S 2 = {enl+l , end+2 ,..., en} so that S = S 1 k3 S~ = {el,  e~ .... , en} becomes 
the basis of K% Thus,  for ga  i e 27 and Ve k ~ S, ekA ~ can be uniquely repre- 
sented by 

ekA i = ~ R(i)e • k = 1, 2,..., n. (7.12) i- kj v j  , 
j = l  

On the other hand, since S 1 have been assumed to be the basis of the 
invariant subspace, for e~ (k = 1, 2,..., nl), e~A i can be represented by a 
linear combination of elements of S 1 . Then,  because ~") '  t-~j s are the uniquely 
determined values, we have 

g(0 = 0; k 1, 2,..., nl j = n~ + 1, . . ,  n. (7.13) kj ~ 

(i) and put t ing Here, denoting (k,j) element of the matrix A i by %j 
ek = ( ~ 1 ,  fk2 ,..., ~ ) ;  k -= 1, 2,..., n, ekAi can be represented by 

where 

e~Ai = (~x, ~2 ," ' ,  ~n), (7.14) 

= ~kj ~'r" (7.15) 
j = l  



L I N E A R  SPACE A U T O M A T A  455 

Concerning ~,, we also have from (7.12) 

o(i)~: r (7.16) = Z • 
j = l  

Comparing (7.15) and (7.16), we have 

i "(i) io(i)~ ¢~ja~r = (7.17) P k j  J r "  
j=l j-i 

Thus, if we denote n X n square matrix having fl~.) as its (k, j )  entry by 
Bi and n × n square matrix having ~:kj as its (h,j)  entry by Q, (7.17) means 
Q-d i - BiQ. Since S is the basis of K n and ~:~j- has been defined as the 
j - th  component of eke S, Q is nonsingular and so there exists its inverse Q-1. 
Thus, we have 

QA~Q -1 = B~. (7.18) 

Here, we notice that from (7.13) B i has the form of 

n 1 n - -  n 1 

= • . . . . . .  , (7.19) 

where B i' is the n 1 × n 1 square matrix. Thus,  if l.a. L has an nl-dimensional 
invariant subspace, then there exists a nonsingular square matrix Q such 
that (7.18) holds. 

Conversely, assume that there exists a nonsingular n X n square matrix 
Q such that QM~Q -1 is in the form of the right hand side of (7.19). Hence 
if we denote (k , j )  entry of Q by ~:kj and (k , j )  entry of QAiQ -1 bv R(o then a ~ ' k j ,  

we know that (7.17) holds. Here, if we put ee = (~kl, ~:k~ .... , sek~); 
k = 1, 2,..., n, it follows from the nonsingularity of Q that the set {el, e2,..., en} 
is the basis of K n. Since we have assumed that Q21iQ-1 is in the form of 
the right hand side of (7.19), (7.13) holds. Thus, from (7.17), we know that 
ektli can be represented by a linear combination of {el, e 2 ,..., e%} for 
k = 1, 2,..., n 1 . That  is, the nl-dimensional subspace spanned by S 1 is 
an invariant subspace of K n of L. 

From these discussions, we have the following theorem: 
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THEOREM 7.1. 1.a. L • ( K  ~, {Ai}, u, v)  has an nl-dimensional invariant 
sub@ace i f  and only if  there exists a nonsingular matrix Q such that, for all 
~ ~ X, QA~Q -1 is in the form of the right hand side of (7.19). 

Here, if we have Q such that QAiQ -1 is in the form of the right hand 
side of (7.19) for V ai~X ,  from 1.a. L we can construct a new 1.a. L '  

"~ ' -= ~ uQ -1, Qv. Hence, ( K  , {Bi}, u ,  v') ,  where Bi QAiQ -1, u' v' = 
Q-l :  K n _+ K s is an isomorphism f romL ontoL' .  In  a sense, the construction 
of such 1.a. L '  may be considered as the reduction of 1.a. But, it is a rather 
difficult problem left open for decision whether or not there exists any 
invariant subspace except {0} and K n, that is, whether l.a. L is strongly 
connected or not. 

7.3. Dual 1.a. and Properties of Connectivity and Distinguishability 

For 1.a. L = ( K  ~, {Ai}, u, v )  we define L* = ( K  ~, {Ai*}, v ~, ut). This L ~ 
will be called the transpose of L or dual 1.a. It  is clear from the definition 
that (L~) t = L. 

LEMMA 7.2. Denoting the response mappings of L and L t by t 7 and G, 
respectively, and their output functions by f and g, respectively, for Vw ~ Z* 
we have  

G(w) = (F(wR)) ~, (7.20) 

g(w) = f ( w  R) (7.21) 

where w R denotes the reverse of a tape w, which is recursively defined by eR _~ e 
a n d  ( w o )  R = o w  R. 

Next, the dual properties of connectivity and distinguishability are sum- 
marized in the form of a theorem. 

THEOREM 7.2. (i) L is connected i f  and only if  L t is distinguishable. 

(ii) L is distinguishable i f  and only i l L  ~ is connected. 

(iii) L is irreducible i f  and only if  L ~ is irreducible. 

(iv) L is strongly connected if  and only i f  i ~ is strongly connected. 

Proof. (i) Assume that L is connected. Hence, for arbitrary elements 
x 1 and x 2 such that x 1 @ x 2, we put x = x 1 - -  x 2. From the assumption 
of connectivity of L, x can be represented by 

x = ,luF(za) + ~2uF(z2) + "'" + ~mue(z~); ai (i -~ 1,..., m) e K,  (7.22) 

where z l ,  z2 ,..., z~ are the tapes with length ( n -  1) or less, which have 
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been defined in Section 6. Since we have assumed that x 1 ~ - x  2 and so 
x ~ 0, we have 

xx  t =/= O. (7.23) 

Substituting (7.22) to (7.23), we have ~x{uF(z l ) }  t - /  "" + c~mx{uF(z~)} ~ ~ O. 

Thus, there exists at least an integer k(1 ~ k ~< m) such that x{uF(zk)} t -~ 
xG(z~ R) u ~ ~ 0 and therefore xlG(z~ R) u ~ ~ x2G(z~ n) u t. Thus, L ~ is dis- 
tinguishable. 

Next assume that L is not connected. Then, if W denotes the connected 
part of the initial state u of L,  then W G K ~. Hence, there exists a nonzero 
element a in K ~ which is orthogonal to all elements in W. For such an element 
a ~ K ~ and all w ~ 22", we have a G ( w ) u  ~ = a{uF(wR)} t -=  uF(w R) a t. Since 
W is the connected part of u and so uF(w a) ~ W and since the element a is 
orthogonal to any x in W, i.e., xa t = 0 for all x E W, we have uF(w R) a t = 0. 

Thus, aG(w)u* -~ 0 holds for all ~v ~ X*. Therefore, a and 0 can not be 
distinguished by L *. 

(ii) Obvious from (i) since L - -  (L*) t. 

(iii) Obvious from (i), (ii) and Corollary 6.1. 

(iv) Let V denote a subspace of K n and define the annihilator V ± 
of V by V ± = {y l y x  t ~ 0, for Vx ~ V}. Here, if V is an invariant subspace 
of L, then V x is also an invariant subspace of L t. Because, for Vy ~ V ±, 

y A i t x  t = y ( x A i )  t. Therefore, noticing x A  i ~ V for Vx ~ V, we have y A i t x  * -~ 

y ( xA i )  t = O. This means that y-di* ~ V ± and so g ± is an invariant subspace 
o fL  t. 

Since dim V @ dim V ± ~- n, if V is neither {0} nor K ~ then so V ±. 
Accordingly, it follows from Lemma 4.2 that i fL  is not strongly connected 

then so L t. 
The inverse of this also holds since L ~ (Lt) t. Q.E.D. 

One more property is described concerning the duality between L and L t. 

THEOREM 7.3. Consider two 1.a.'s, L 1 ~ ( K  ~1, {Ai}, us ,  v l )  and L~ = 
( K %  {Bi}, u2 , %) .  Let  T be a mapping f rom K ~1 into K ~ .  Then, 

(i) T is a homomorphism f rom L 1 into L 2 i f  and only i f  T t is a homo- 

morphism f rom Le t into LI*. 

(ii) T is a homomorphism f rom L 1 onto L~ i f  and only i f  T t is an iso- 

morphism from L~ t into L1 ~. 

(iii) T is an isomorphism f rom L 1 onto L 2 i f  and only i f  T t is an iso- 

morphism f rom L~ t onto LI  t. 
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Proof. T h e  necessary and sufficient condition that T is a homomorphism 
from L 1 into L 2 is that 

d i T  -~ TB i , u l T  ~ u~ and v 1 = Tv~ (7.24) 

hold. Applying the transpose operation to the both sides of these equations, 
we have 

Bi~T t -~ TtAi  ~, v~tT t -~ vl t and U2 t = Ttu~ *. (7.25) 

Conversely, if (7.25) holds, then (7.24) holds. Thus,  we have confirmed 
the validity of (i) of this theorem. 

The  statements (ii) and (iii) are obvious from (i). Q.E.D. 

7.4. Eigenvalues of  Response Mapping 

In  this section we will make some consideration on eigenvalues of response 
mappings of 1.a.L. 

LEMMA 7.3. Let d be an m × m square matrix and B be an n × n square 
matrix. Assume that an m × n matrix T satisfies 

A T  ~- TB.  (7.26) 

Then, i f  rank T ~- r ( ~ m, n), A and B hold at least r eigenvalues in common. 

Since this lemma can easily be proved by using well-known properties 
of linear space, the proof is omitted. 

LEMMA 7.4. For l.a.'s L1 and L~ of  Theorem 7.3, i f  there exists a homo- 
morphism T with rank r, then for  Vw ~ Z* the response mappings Fl(w ) and 

F~(w) of  L 1 and L 2 hold at least r eigenvalues in common. 

Proof. I f  T is a homomorphism from L 1 into L 2 , for Vw ~ 27", 

Thus,  

yF l (w)T  = yTF2(w) for y E K ~1. 

FI(w)T ~ TF2(w ). 

I f  we combine (7.28) and Lemma  7.3, this lemma results. 

(7.27) 

(7.28) 

Q.E.D. 

LEMMA 7.5. Let L 1 , L 2 and T be the same as Lemma 7.4. Then, 

(i) I f  T is a homomorphism from L 1 onto L2,  then the eigenvalues of  
Fl(w ) are contained in those of  F~(w). 
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(ii) I f  T is an isomorphism from L 1 into L2, then the eigenvalues of 
Fl(w ) are contained in those of F2(w ). 

(iii) I f  T is an isomorphism from L 1 onto Lz,  then the eigenvalues of 
Fl(w ) are identical to those of F~(w). 

Proof. (i) Since rank T = r = n~, F,(w) and F2(w ) hold n 2 eigenvalues 
in common. On the other hand, F2(w ) has just n2 eigenvalues. Therefore, 
the eigenvalues of F2(w ) are contained in those of F~(w). The  (ii) and (iii) 
are justified in a similar way. Q.E.D. 

THEOREM 7.4. Let L 1 and L~ be equivalent and L2 be irreducible. Then, for 
Vw E X*, the eigenvalues of the response mapping F2(w ) of L 2 are contained in 
those Of FI(w) of L~ . 

Proof. Let V(ul) denote the connected part of the initial state u 1 of L 1 . 
Assume that dim V(ul) = r and S = {al',..., at'} is the basis of V(ul). Here 
we construct L 1' -= <K r, {Ai'}, ul', % ' )  by the same way as in the case of the 
1.a. of (7.9). Hence, the mapping T 1 : K *--~ K %  which is defined similarly 
to (7.10), is an isomorphism from L (  into L 1 . This results from (iii) of 
Lemma 7.1, since the elements of S 1 are linearly independent. Thus, by 
(ii) of Lemma 7.5, the eigenvalues of the response mapping Fl'(W ) of L 1' are 
contained in those of Fl(w) for all w E Z*. I t  is obvious from the construction 
procedure of L x' that L 1' is the connected part of L x . Therefore, it follows 
from Corollary 6.3 that there exists a homomorphism from L 1' onto L 2 . 
Hence, from (i) of Lemma 7.5, the eigenvalues of F~(w) are contained in 
those of Fl'(w). Thus the eigenvalues of F2(w ) are contained in those of 
Fl(w). Q.E.D. 

8. l.a. AND PROBABILISTIC AUTOMATA 

For the convenience of describing relations between 1.a. and probabilistic 
automaton we will consider only 1.a.'s defined over the real field R instead 
of K in this and the following sections. Thus, if we write simply 1.a., it will 
mean 1.a. defined over R. 

Under the above assumption, Ai is a mapping from the linear space over 
R into itself andf (w)  is a real function over Z*. Hence, similarly to the case 
of p.a., the set of tapes T(L) which are accepted by 1.a. L may be defined as 
follows. 
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The  set of tapes accepted by 1.a. is defined by 

T(L) = {w e Z* If(w) > 0}. 

I f  for two 1.a.'s L~ and L 2 , 

(8.1) 

holds, that is, 

f~(w) > 0 if only if f2(w) > O, (8.3) 

then L 1 and L 2 are said to be weakly equivalent. 

8.1. 1.a.'s with Bounded Output Functions and Extension of Rabin's Theorem 

As the first step of describing the relations between 1.a.'s and p.a. 's we 
intend to extend the Rabin's result to the case of 1.a., which states that the 
tape set accepted by a p.a. with isolated cutpoint is a regular set. 

In  this section we consider 1.a. L with the linear space V over the real 
field R. 

L = (V,  {A i I i = 1, 2 ..... I}, u, v )  (8.4) 

DEFINITION 8.2. A real function p(x) over the linear space V is called 
the norm of V, if the following conditions are satisfied 

(i) 0 ~ p(x) < ~ for Vx ~ V, (8.5) 

(ii) p(x) = 0 if and only if x = 0, (8.6) 

(iii) p(xa + x2) ~ p(x~) + p(x2) for Vx~, Vx 2 ~ V, (8.7) 

(iv) K~x) = I ~ I Kx) for Vx ~ V, W e R. (8.8) 

LEMMA 8.1. I f  there exists a norm p(x) such that the following condition 

p(xAi) ~ p(x) for Vx ~ V and Vo', ~ Z' (8.9) 

holds, then the output function f (w) of L is bounded, that is, there exists a constant 
positive number M such that 

lf(w)l ~ M for VwaX*.  (8.10) 

Proof. Using (8.9) iteratively, we obtain 

p(xF(w))~p(x)  for V x E V  and Vw~X*.  (8.11) 

Especially, putting x = u we have p(uF(w)) ~ p(u). 

W e  consider  only 0 as the  eu tpoin t  s ince by  us ing  the  resu l t  of  H o n d a  and  N a s u  
(1968) we ean easily prove tha t  the  families of  tape sets accepted by  1.a.'s wi th  arb i t rary  
cut-points and  wi th  the  one fixed to 0 are the  same.  

T(L1) = T(L2) (8.2) 
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On the other hand, it is well known that, for a linear real function v defined 
on the linear space V over R and for a norm p of V, there exists a constant 
a > 0 such that [ xv I < ap(x) for any x ~ g.  Thus,  the output function 
f (w) = uF(w)v is bounded. Q.E.D. 

LEMMA 8.2. I f  1.a. L is irreducible and its output function is bounded, there 
exists a norm satisfying (8.9). 

Proof. For x ~ V, let us define p(x) by 

p(x) = sup{] xF(w)v [ I w e 27*}. (8.12) 

Then  this p(x) is the norm satisfying (8.9). In  fact, this is proved as follows. 
First, it is obvious that p satisfies (8.7) and (8.8). Here, we will prove that 

(8.5) and (8.6) hold. From the definition of p(x) of (8.12), we know 0 ~ p(x) 
for Vx ~ V and p(0) ~ 0. 

Thus,  for the proof that (8.5), (8.6) hold and then p is a norm, it is suffi- 
cient only to show that 

and 

x =/= 0 implies p(x) =# 0 (8.13) 

p(x) < ov for Vxe  V. (8.14) 

As we have assumed that 1.a. L is irreducible by Corollary 6.1, it is connected 
and distinguishable. As L is distinguishable, 0 and x(=/= 0) are distinguish- 
able, that is, there exists at least a tape w ~ 27* such that xF(w)v ,/= OF(w)v = O. 
Thus, from the definition of p(x), we know that (8.13) holds. 

Next, if x ~ V can be represented by x = uF(z) for some tape z ~ Z*, then 
O(x) = sup{t uF(z)F(w)v  r I w ~ 27*} = sup{J uF(zw)v [ ] w ~ 27*}. Here, as f 
is bounded, we have p(x) ~< M < oo from (8.10). A s L  is connected, Vx ~ V 
can be represented by x = ~2i=1 ~iuF(zi), ~i ~ R, where zi's (i = 1,..., m) are 
the tapes defined in Section 6. On the other hand, as we have known that p 
satisfies (8.7) and (8.8), we obtain 

, .  

Thus, we have shown that (8.14) holds and that p is a norm. 
Finally, it is obvious from (8.12) that (8.9) holds. Q.E.D. 

Now we extend Rabin's result to the case of 1.a. with the bounded output 
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function f .  We assume that 0 is the isolated cutpoint of f, that is, there 
exists 3 > 0 such that 

8 ~ [f(w)l for VwE27*. (8.15) 5 

Without loss of generality, we also assume that L is irreducible. Therefore, 
from Lemma 8.2 we can define the norm p(x) satisfying (8.9). 

Now, let us consider the right invariant equivalence relation ~ ( L )  over 
over Z* generated by the tape set 

T ( L ) = { w ~ X * l f ( w ) > O } = { w ~ X * ] 8 ~ f ( w ) ~ M } .  (8.16) 

That is, the relation ~T(L) is defined as follows; for g % ,  V%EX*,  
wl ~r(z) w~ if and only if, for gz e X*, wlz ~ T(L) implies wzz ~ T(L) and 
conversely. We prove in the following that the relation ~T(L) has a finite 
index. 

Assume that two tapes w~ and w 2 do not satisfy the relation ~T(L), then 
there exists at least a tape z e 27* such that either of the following conditions: 

(i) w,z ~ T(L) and w~z ~ T(L) (8.17) 

(ii) wlz ~ T(L) and w2z E T(L) (8.18) 

holds. From (8.15), it is seen that (8.17) implies 

and (8.18) implies 

f(w2z) ~ --3 < 0 < 8 ~ f ( w l z  ) (8.19) 

f (wlz  ) ~ --8 < 0 < 3 <~ f(w2z ). (8.20) 

Thus, whichever condition holds, we have 

]f(w,z) --f(w2z)j > 28. (8.21) 

Therefore, 

p ( u F ( ~ , )  - -  u F ( v , ) )  = sup{l (uF(wl)  - -  u F ( ~ ) ) F ( ~ ) v  I J ~ ~ Z*} 

= sup{[f(%w) --f(w2w)] I w E X*} 

>~ 28. (8.22) 

On the other hand, from (8.10) we have 

p(uF(wl)) ~ M, p(uF(w2) ) ~ M. (8.23) 

5 See footnote 4. 
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Now, let {w 1 , w 2 ,..., wK} be a set of tapes in which any pair of distinct 
tapes does not satisfy the relation ~r(L) • Putting x i = uF(wi); i ~ 1, 2,..., K, 
it follows from (8.28) that 

and 

p(x j - -x~)  >/23 for Vj, Vh, 1 ~<j=/=h~<K, (8.24) 

e(x~) ~< M for Vj, 1 ~< j ~< K (8.25) 

hold. 
Now, let us define the pseudo sphere gj- with the center x 5 , and the radius 3 

by gj- = {x ] p(x -- xj-) < 8}. Then, from (8.24), we have 

g i n  g~ = ~ (empty set) gj, k, j =~ k. (8.26) 

Let the pseudo sphere G of which center is the origin and radius is (M + 8) 
be G = {x I p(x) <~ M + 3}. Then, from (8.25) and the definition of gj we 
obtain gj C G for j -= 1, 2,.., K. Thus, 

K 

~) gj _C G. (8.27) 
j= l  

Now, assume that dim V = n. By introducing an appropriate basis to the 
space V, we can determine the one-to-one mapping T from V to R n. Here, 
for a subset S of V, we define its volume by the one of the image of S by the 
mapping T. Then, regardless the selection of the basis, the following lemma 
holds. 

LEMMA 8.3. Let the volume of the pseudo sphere with radius 1 be denoted 
by a. Then, 0 < a < oo. And the volume of a pseudo sphere with radius r is 
ar ~, which is determined only by the radius. 

From this lemma and (8.26) and (8.27), we have Ka3 ~ ~ a(M + 3)% and 
then K <~ (M + 3)n/8 n. Thus, we have known that the right invariant equi- 
valence relation ~r(z) has finite index. 

The above discussions prove the following theorem: 

THEOREM 8.1. Let L be a linear space automaton with n-dimensional state 
space. I f  its output function is bounded and the cutpoint 0 is isolated with respect 
to L, that is, i f  there exist 3 and M such that 3 ~ [f(w)I ~ M for Vw e Z* 
and 0 < $ <~ M < co, then the tape set T(L) accepted by L is the regular one 
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and there exists a deterministic finite state automaton with N or less states which 
accepts T(L ), where 

N = (M-+-  3)"/3". (8.28) 

Here we notice that Theorem 8.1 also holds even if 1.a. L is not irreducible. 

8.2. 1.a. and Modified Probabilistic Automata 

T h e  main object of this section is that we introduce the modified probabil- 
istic automata as the special l.a.'s and show that the tape acceptance abilities 
of 1.a.'s and modified probabilistic automata are equivalent. Using Honda  
and Nasu's  (1968) results, we can easily show that the abilities of the modi- 
fied probabilistic automata and the probabilistic automata defined by Rabin 
(1963) are equivalent. Hence, we know that 1.a.'s have the same ability as the 
probabilistic automata. Furthermore,  we show the conditions that a given 
1.a. should satisfy so that it has the strongly equivalent modified p.a. 

DEFINITION 8.3. Let  L = (R",  {Ai} , u, v )  be 1.a. of which state space is 
the n-dimensional row vector space R" over R. I f  each A i is a stochastic 
matrix and u is an n-dimensional stochastic row vector, then it will be called 
modified p.a. 6 

THEOREM 8.2. For an arbitrary 1.a. L, there exists a modified p.a. L~ which 
is weakly equivalent to L. That is, there exists a modified p.a. L~ such that 
TfL) = T(L~). 

By Lemma  7.1, we have known that for an arbitrary 1.a. there exists an 
equivalent one whose state space is a row vector space. Thus,  it is sufficient 
to consider 1.a. of Definition 8.3. 

The  detailed proof is omitted since Turakainen (1968) gave the proof for 
l.a. of Definition 8.3. But the more concise and more straightforward proof 
was given by the authors (1968) independently of him, although these two 
proofs are essentially same. Turakainen (1968) also proved that the tape 
acceptance abilities of the generalized automata (1.a.'s), the generalized 
p.a. 's (modified p.a.'s) and p.a. 's are same. 

I t  should be noticed that for a general 1.a. there does not always exist a 
modified p.a. which is strongly equivalent to it, because the output function 
of any modified p.a. is bounded but that of 1.a. is not necessarily bounded. 

The modified p.a. corresponds t o  the generalized probabilistie automaton of 
Turakainen (1968). 
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Hence, in what follows, we consider on what conditions a given 1.a. has the 
equivalent modified p.a. 

Let L = (V, {Ai} , u, v) be 1.a. with the linear space over the real field R. 
Let S = {a 1 , a z ,..., a~} be a finite subset of V. Let us denote the convex 
polyhedron of which extreme points are all elements of S by Conv(S), that 
is, 

lx 
LElVIMA 8.4. I f  there exists S satisfying the following conditions (i) and (ii), 

then 1.a. L has an equivalent modified p.a. 

(i) u e Cony (S), 

(ii) Cony(S) is an invariant subset of V. 

Proof. Since the conditions (i) and (ii) hold, l.a. L '  defined by (7.9) with 
K ~ R can be reconstructed to be a modified p.a. That  is, from the condi- 
tion (i), the right hand side of (7.6) can be represented by a convex combina- 
tion of elements of S T. Moreover, from the condition (ii), for any ak ~ S, 
a~Ai can be represented by a convex combination of elements of S. Thus, 

(i) defined by (7.7) can be determined so that u' may be u' of L '  of (7.9) and ~ j  
, (i) a stochastic vector and Ai having ~kj as its (k,j) entry may be a stochastic 

matrix. Hence, 1.a. L '  is a modified p.a. and equivalent to L by Lemma 7.1. 
Q.E.D. 

I f  1.a. L is irreducible, the inverse of Lemma 8.4 also holds. This will be 
shown in the following lemma. 

LEMMA 8.5. I f  1.a. L is irreducible and has an equivalent modified p.a., 
then there exists a subset S satisfying the conditions (i) and (ii) of Lemma 8.4. 

Proof. Let the modified p.a. equivalent to L be 

L,  = (R ~, {P~}, u , ,  % )  (8.30) 

and denote the set of all m-dimensional stochastic row vectors by £2 m. ~9 m 
is the convex polyhedron with m extreme points, which are the row vectors 
having 0 elements except only one 1 element. 

But we should notice that, if the elements of  S are not  linearly independent,  
01 , O~ ,..., Or in the right hand side of  (7.6) are not  uniquely determined as already 
mentioned and so there may exist representations not  to be convex combination. 
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Since Pi  is stochastic matrix, x e ~ implies x P  i ~ 0 %  This means that 
~2 m is an invariant subset o fL~.  

Here, according to Definition 6.2, the connected part L~ * of L9 is 
defined by L~ ~ = ( W ~  , {Bi~}, u~ , v2o ) .  Since x ~ W~ c~ t9 m implies xB i  ~ = 

x P  i E W~ 6~ ~ ,  W~ (~ ~'~ is an invariant subspace of L~ .  Because the inter- 
section of any subspace V of R ~ and the convex polyhedron Cony (S), where 
S is a finite subset of R n, is also a convex polyhedron s, W~ ~ Y2 "* is a convex 
polyhedron. That  is, there exists a finite subset  S 1 such that VV'~ ~ f2 m 
Cony (81). 

On the other hand, since L is irreducible and equivalent to L~,  from 
Lemma 6.3 there exists a homomorphism from L~ ~ onto L. I f  the image of 
S 1 by T 1 is denoted by $2,  the image of Conv (S~) by T 1 is obviously 
Cony (S~). As Conv ($1) is an invariant subset of L~ * and contains u~, it is 
obvious that Cony ($2) is an invariant subset of L and contains u. Thus,  
S~ satisfies the conditions (i) and (ii) of Lemma 8.4. Q.E.D. 

Combining Lemmas 8.4 and 8.5, the following theorem results. 

THEOREM 8.3. I f  1.a. L is irreducible, the necessary and sufficient condition 

that there exists a modified p.a. equivalent to L is that there exists S satisfying 

the conditions (i) and (ii) of  Lemma 8.4. 

Here, we notice that even if a given 1.a.'s output function is bounded, it 
does not always have a strongly equivalent modified p.a. This is shown by 
the following example. 

EXAMPLE 8.1. Let  27 = {a} and consider L ~ (R  2, {A}, u, v), where 

A ~ (  cosO sinO0) 
\ - - s in  0 cos 

and 0fir is not rational, and u = (1, 0), v = (0, 1) ~. 
The  output function of this 1.a. isf(w) = sin 10, for w = (r ~ ~ 27*. Obvious- 

ly, this function is bounded. On the other hand, the output functions of 1.a.'s 
with the state space of which dimensions are 1 or less must be represented 
in the form g(w) ~ a • fit, c~, fi ~ R .  Thus,  1.a. L is irreducible. 

Now, we know from Theorem 7.4 that the set of eigenvalues of the response 
function of l.a.'s equivalent to L must contain the eigenvalues of A for a ~ 27. 
But eigenvalues of A are e ±~'° and 0fir is not rational. Therefore these eigen- 

8 For example, refer to Valentine (1964). 
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values can not be ones of the stochastic matrix. Thus,  there does not exist 
any modified p.a. equivalent to L. 

As shown in the above example, even if the output function of 1.a. is 
bounded, it does not always have the equivalent modified p.a. But if the 
output function is bounded, the following corollary holds. 

COROLLARY 8.1. ff l .a .L = (V,  {di}, u, v)  has the output function f (w )  
which is bounded, for any e such that 0 < e < 1 there exists a modified p.a. 
with the output function 

g(w) = E~(w)f(w) (8.31) 

where l(w) is the length of w. 

Proof. We can assume without loss of generality that L is irreduc- 
ible. Hence, by Lemma  8.2, there exists the norm p(x) of V satisfying 
the condition, p(xA~)<~ p(x) for Vx~ V. Here, let us define 1.a.L' by 
L' = (V ,  (Bi}, u, v),  where Bi = ~Ai . Clearly, the output function of this 
1.a.L' is g(w) of (8.31). 

Considering the properties of p(x), we have 

Here, put  

p(xB~) <<, ep(x) for Vx e V. (8.32) 

1 
a = p(u) and b • - a. (8.33) 

E 

I f  a = 0 then u ~ 0 and f (w )  is identically equal to zero. In  such case 
this corollary is trivial. Thus  we assume that a =A 0. Then,  0 < a < b. 
Hence, there exists a convex polyhedron Cony (S) such that 9 

{x I p(x) ~< a) _c Cony (S) c {x l p(x) < b}. (8.34) 

By (8.32), (8.33) and (8.34), we know that 

x ~ Cony (S) implies p(x) ~ b, 

p(x) ~ b implies p(xBi) <~ eb -= a, 

p(xBi) ~ a implies xBi E Conv (S). 

Therefore,  Cony (S) is an invariant subset of L ' .  
On the other hand, from (8.33) and (8.34), we know that u E Cony (S). 

Thus,  it follows from L e m m a  8.4 that there exists a modified p.a. strongly 
equivalent to L' .  Q.E.D. 

9 This statement is proved in Klee (1959)'s Corollary 6.4, p. 104. 

643/2ol5"5 
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9. CONSTRUCTION OF 1.a. AND QUAsi-REGULAR FUNCTION 1° 

Since for any given 1.a. we can obtain the equivalent 1.a. with the state 
space which is the row vector space, we may consider the latter 1.a.'s in this 
section. Moreover,  for the simplicity of description, we will denote 1.a. by 

L = <{A,}, u, v} (9.1) 

leaving out the symbol of the state space, where Ai 's ,  u and v are the square 
matrices, the row vector and the column vector, respectively, and these 
dimensions are the same. 

DEFINITION 9.1. The  real function f over 27* is called quasi-regular 
function if there exists 1.a. having f as its output  function. Let  us denote the 
family of all the quasi-regular functions by ~ .  

For  the construction of 1.a.'s, it is convenient to know under  what  oper- 
ations the family ~ is closed. Hence we define some operations on LJ? and 
will show that  ~0 is closed under  these operations. 

DEFINITION 9.2. Let  f and g be real functions over 2]*. For  f and g, let 
us define new real functions over 27*: 

(i) sum o f f  and g; ( f  + g)(w) = f ( w )  + g(w), (9.2) 

(ii) product o f f  and g; f ' g ( w )  = f ( w )  "g(w), (9.3) 

(iii) convolution o f f  and g; f o g(w) = Z%.%=~f (wl) " g(w~), (9.4) 

where Z%.%=~ means the summation over all the pairs w 1 , w~ such that  

W 1 " W 2 ~ W .  

Next, let us define the operations for 1.a.'s corresponding to the above 
defined operations on £~. 

DEFINITION 9.3.11 Let  two 1.a.'s L 1 and L 2 be L z = ({Ai} , u l ,  vl} and 
L2 ~- ({B~}, u2, v2}. Then,  we define new l.a. 's using L 1 and Le : 

(i) direct sum of L 1 and L 2 : 

L 1 @ L  2 = ({A~ @ Bi}, ul @ u2, vz @ %}, (9.5) 

z0 The discussions which will be developed in this section is also warranted in the 
case of general field/~ instead of the real field R. 

11 As to operations @ and @, refer to the Section 7.1. 
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(ii) direct product o f L  1 and L~ : 

L1 @ L2 = <{As @ Bi), ul @ u2, Vl @ v2), 

(iii) convolution o f L  1 a n d L  2 : 

51 o5  2 -~- ({Ci} , U, V), 

where 

Bi ] '  

U = U 1 @ UlVlU 2 and v = 0 @ va. 

D = VlU 2 

LEMMA 9.1.  

respectively. Then the response mapping F of L 1 o L 2 is given by 

469 

(9.6) 

(9.7) 

Proof. 

where F u is determined by 

Fl~(w ) = --F~(~) D~(w)  + 

Next, assume that (9.8) holds for w = z. Thus,  for Vat ~ 27, we have 

F(ze,) = F(z) C, = (F~z) Fu(z)](A , A,D] (9.11) 
F2(z ) ] \ 0 B~ ]" 

Hence, it follows from (9.9) and the definitions o f f  1 and F~ that 

F(zai) = (F1(~ai) F,~(za~)~ (9.12) ]" 
k k l  

Q.E.D. 

COROLLARY 9.1. 
tively. Then, the output function of L 1 o L 2 is f l  ° f~ . 

Let the output functions of L 1 and L 2 be f l  and f2,  respec- 

Fl(W~) DF2(w~) for Vw ~ 27*. 
wl"wa=w (9.9) 

W e  can prove the lemma by induction. First, for w = ~, we have 

F ( ~ ) = ( F a ( ( ) ; : ~ ; ) ) = E  (unit matrix). (9.10) 

Fu] (9.8) F=(O1 F~I' 

Denote the response mappings of L 1 and L~ by F1 and F2, 



470 INAGAKI, FUKUMURA, AND MATUURA 

Proof. Denoting the output function ofL 1 oLz by f ,  we have 

f : uFv = (u10  ulvlu2) (Fo x F2 l (O O v~) 

~- {ulF1 (~  (UlF12 -~- ulvlu2F~))(O 0 v~) 

-- ulFl~% -k ulvau2F2v~ (9.13) 

from Lemma 9.1 and the definition of u and v. Rewriting (9.13) for an arbi- 
trary tape w ~ X* by using (9.9), we obtain 

f (w) = -- ulFl(, ) ~31u2F~(w ) v 2 ~- Z UlFI(wl) %u~F2(w2) va 
~1"W2~Y3 

+ ulvlu2Fa(w) v2 

~ ulFI(wl) vlu2Fz(w~) v2 ~ f l  "f2(w) • (9.14) 
1" W9 ~W 

Q.E.D. 

THEOREM 9.1. I f  f l ,  f2 ~ ~ then 

f l + f ~  E ~ ,  f l  .f~ e £e and flof2e~z~. 

Proof. We can easily prove that the output functions of L 1 @L2 and 
L1 @L2 are f l  + f ~  and f l  "fi,, respectively. Corollary 9.1 gives the proof 
forf~ °f2- Q.E.D. 

DEFINITION 9.4. For f ~ ~VP we define three unary operations as follows: 

(i) multiplication by constant: (af)(w) ~ af(w) (9.15) 

where ~ ~ R. 

(ii) d a g g e r : f + ~ - f + f o f + f o f o f +  ... (9.16) TM 

This is defined only whenf(E) ---- 0. 

(iii) reverse: fR(w) = f (w  R) (9.17) 

LEMMA 9.2. I f  f(E) = 0 then f+(w) is the summation of 

f (wl)  . f(wz) . . . . .  f(w~) (9.18) 

x2 Since the operation of convolution satisfies the associative law, ( fo  g)o h = 
f o (g o h) and this is denoted simply by f o g o h. 
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over all k's (1 <~ h <~ l(w)) and all the h-tuples w l ,  w~ ,..., w k such that 
g01W 2 " '"  W k ~ W. 

Proof. Put 

k 

gk = f o f o  ... o f ,  

then, from the definition of convolution, gk(w) is the summation of (9.18) 
over all k-tuples wl ,  wz ,..., wT~ such that their concatenation is equal to w. 
Sincef(E) = 0, we know that g~(w) = 0 for k >f l(w) + 1. On the other hand, 
f +  is represented b y f  + = gl -}- g2 -]- "'" -I- gk + "'" • Thus,  this lemma holds. 

Q.E.D. 

D E F I N I T I O N  9 . 5 .  

(i) multiplication of L by constant: c~L - -  <{Ai}, u, av) 

where ~ e R. 

(ii) dagger of L: L+ = <{&(E + vu)}, u, v).  

This  L + is defined only when uv = O. 

(iii) transpose of L: L t = ({Air}, v t, u~>. 

We define new 1.a.'s f rom l .a .L of (9.1) as follows: 

(9.19) 

(9.20) 

(9.21) 

LEMMA 9.3. I f  we denote the output function of L by f ,  then the output 
functions of ~L and L t are af  and f R, respectively. And  i f  f (e) -~ O, then the 
output function of L + is f +. 

Proof. As to oiL, it is obvious, and as to L t, it has been already proved in 
Lcmma  7.2 of Section 7.3. Here we will give the proof for L +. Denoting the 
output function o f L  + by g, we have 

g(w) = uA,~(E + vu) Ai~(E + vu) ... A,~(E + vu)v (9.22) 

for w = cri r~i~ "'" ~i~ ~ 2" .  Since uv = 0 and (E + vu)v =- v, we obtain 

g(w) = uA,~(E + vu) Ai~(E + vu) ... A,z_I(E - / v u )  Aqv.  (9.23) 

Expanding the fight hand side of (9.23), this term is represented by the 
summation of (9.18) over all k 's  and k-tuples w 1 , w 2 ,..., wk such that their 
concatenation is equal to w. Thus,  by L e m m a  9.2, we know that g = f + .  

Q.E.D. 

This  lemma gives the following theorem. 
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THEOREM 9.2. I f  f e ~ then af e ~ and f R e  ~ .  Moreover, if  f(e) = O, 
then f + ~ ~P. 

Now, for a subset S of 27", we denote the characteristic function of S by 
Xs, that is, 

ll0 for w ~ S  
Xs(W) = for w 6 S (9.24) 

TI-IEOREM 9.3. Let f be a real function over Z*. The necessary and sufficient 
condition that f ~ oW is that f can be obtained from X{d , X{%} ,..., X{,p by finite 
numbers of applications of sum, convolution, dagger and multiplication by 
constant. In other words, oW is the minimal family of real functions over Z* 
which is closed under the operations of sum, convolution, dagger and multiplica- 
tion by constant. 

Proof. The necessity is proved by Sugino, Inagaki and Fukumura (1968). 
The sufficiency can be shown as follows. In fact, there exist l.a.'s of which 

output functions are X{a, X{ol} ,'", X{@- For example, 1.a. whose output 
function is equal to X{,I} can be obtained by determining At's , u and v as 
follows: 

A I = ( ~  10), A2 = A ~ - -  - - A t = O ,  

. = ( ,  0) v=(7) 

Thus, X(d, X{o 1} ,..., X{op ~ ~ .  
This fact and Theorems 9.1 and 9.2 establish the sufficiency. Q.E.D. 

THEOREM 9.4. XS ~ 5¢ if  and only if  S is regular. 

Proof. Since any finite automaton can be considered as l.a. by representing 
it by use of matrices, the characteristic function Xs of the regular set S is 
contained in ~ .  

Conversely, assume that Xs a 5¢. Then, f = Xs -- ½ Xz* ~ oW. It can be 
easily known that this function f is to be such that 

½ for w E S  
f(w) = __½ for w ¢ S .  

Thus, f is bounded and the cutpoint 0 is isolated. Therefore, by Theorem 8.1, 
S is regular. Q.E.D. 



L I N E A R  SPACE A U T O M A T A  473 

The above discussions give a solution of the problem to specify the quasi- 
regular function, that is, to answer the question what real functions over Z'* 
can be realized by 1.a.'s. The algebraic properties of ~qo are detailed in Inagaki, 
Sugino and Fukumura (1970). 

Here, we present some examples of the quasi-regular functions. 

EXAMPLE 9.1. Examples of the quasi-regular functions; 

(1) The function giving the length l(w) of a tape w. This can be realized 
by 

A I = A  s =  " " = A ~ =  ( I  ~], u = ( 1 , 0 ) ,  v = (?). 
\ U  11 \ 1 1  

(2) The function f s (w)  giving the number of elements which are con- 
tained in a given regular set S and which also are subwords of tape w. 

I f  the set S is regular, then Xs e 5P. Therefore, f = X~* ° Xs ° Xz* is an 
element of cp and then the desired function. Here we should notice that the 
function l(w) of (1) is a special case o f f s ( w )  and l(w) may be represented by 
l : x,v, o x.v o x.,v, . 

Next let us refer to output functions of modified p.a.'s and denote the set 
of all the output functions of modified p.a.'s by ~ ' .  

THEOREM 9,5. The set ~ '  is closed under the operations o f  sum ( + ) ,  

product ('), multiplication by constant and reverse. 

P r o @  As for product and multiplication by constant, the theorem is 
obvious. As for sum, by using ½u 1 @ ½u2 and 2v 1 @ 2v 2 instead of u 1 @ u 2 
and v 1 @ v~ in (9.5), respectively, we know that there exists a modified p.a. 
of which output function is the sum of two modified p.a.'s functions. Finally, 
as for reverse, refer to Nasu and Honda (1968). Q.E.D. 

Remark  9.1. We should notice that the set ~ '  is not closed under oper- 
ations of o and +. In fact, Xz and Xz* are in ~ '  but the function l cited in 
Example 9.1 (2), which is represented by l = Xz* ° Xz ° Xx* is not in ~ '  
because it is not bounded. As for the operation +, the characteristic function 
of 27* - -  e is in ~ '  but the function obtained by applying the operation + 
to it is not bounded. 
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10. AN APPLICATION OF QUAsi-REGULAR FUNCTIONS AND SETS 
OF TAPES ACCEPTED BY 1.a.'s 

In this section, we discuss some properties of the family of languages 
accepted by 1.a.'s by using the quasi-regular functions. 

TI-IEOI~lVl 10.1. Let S be an arbitrary regular set and L be an arbitrary 1.a. 
Then there exist 1.a.'s L' andL" such that S u T(L) -~ T(L')  and S (~ T(L) -~ 
T(L"), i.e., the family of languages accepted by 1.a.'s is closed under the operations 
of union and intersection with the regular set. 

Proof. Although this theorem is obvious from Theorem 44 of Paz (1966), 
we prove here this theorem by using quasi-regular functions. 

Denoting the output function of L by f,  we have 

S w T(L) = (w I&(w) > 0), 

where gl is represented by gl = Xs + (Xz* - -  Xs) " f  and this is in ~LP. Next, 
defining g2 by g2 ~ f "  Xs we know S n T(L) = {w ] g2(w) > 0). Q.E.D. 

THEOREM 10.2. Let f and g be real functions over Z*  which assume only 
nonnegative values, and define 

$1 = {w E Z*  I f (w)  > O) and S 2 = {w ~ Z*  I g(w) > 0). 

Then f + g, f " g, f o g, f+ and f R are also nonnegative-valued real functions 
and the sets of tapes for which these functions assume positive values are 
S 1 U S~,  S 1 (~ $2,  S 1 • $2,  S 1 • $1" and St  R respectively, where f +  can be 
taken into consideration only when f (~) = O. 

The proof is obvious and omitted. 

COROLLARY 10.1. The family of tape sets defined by S -~ {w I f (w)  C: 0} 
for some f e ~ is closed under the operations u ,  ~ ,  ., * and reverse R 

Proof. If f e  ~c¢, then f . f e  ~¢. Therefore, S : {w [f(w) :/: 0) = 
{w I f f (w )  > 0). Thus S is the set of tapes for which the nonnegative real 
function f f  assumes positive values. Therefore, Theorem 10.2 asserts that 
this theorem holds for n ,  U, • and R. 

Here we prove it for the operation *. Putg = f i e  ~ andg' = g --  g(E) • X{d- 
g' is a nonnegative real function and g'(E) ~ 0 and hence 

(w i g ' (w) > o) = {w I g(w) > o) - {~) = s - { d .  
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Thus,  h = g'+ + X{~} is also a nonnegative real function and {zv l h(w) > 0} = 
{w I g'+ + x{~}(w) > o} = s .  s *  w {~} = s* .  Q.E.D. 

EXAMPLE 10.1. Examples of constructions of 1.a.'s accepting the given 
tape sets: 

(1) Put  27 ----- {el ,  %} and let S be the set of tapes w which contains 
more al 's  than %'s. Let  us construct 1.a. which accepts S. In  order to do this, 
it is sufficient to construct 1.a. having output function g = 2 z~ - -  2 z~. Such 
1.a. certainly exists. In  fact, 1.a. L with the output function g may be obtained 
as follows. L = ( { a l l ,  d2} , u, v ) ,  where 

(2) The  set {%~%l I l >/0} is accepted by l.a. of which output function 
is given by 

f = X~1,o2.[1 - -  (2~ - -  2~02], 

where l 1 and 12 is the functions giving the numbers  of ~r 1 and % in the tape, 
respectively. 

(3) The  sets {elz%z% ~ [ l >~ 0} and {~1a%~ t [ l >~ 0} are also acceptable 
for some 1.a.'s. 

11. OPERATIONS UNDER ~THICH ~ IS NOT CLOSED 

DEFINITION 1 1.1. Let  f and g be real functions over 27*. We define two 
functions f v g and f ^ g as follows: 

f v g(w) = max{f  (w), g(w)}, 

f ^ g(w) = min{f(w), g(w)}. 

(11.1) 

(11.2) 

THEOREM 1 1.1 ~ is not closed under operations v and A. 

Proof. Putting 27 = {%, %}, we denote the number  of az contained in 
~v e 27* by Iz(w ) and the number  of ~r~ contained in w by 12(w ). Here we 
consider the following functions f and g.  

f = (½)zl _ (½)~L (11.3) 

g = 0. (11.4) 
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Since g is the characteristic function of the empty  set, which is a regular 
set, we know from Theorem 9.4 that g e ~ ' .  

N e x t f  is the output function of L~ defined as follows: 

where 

L~ = ({1:'1, P~), u, v) ,  (11.5) 

ti ° ot P ~ =  ; 1 , P 2 =  ½ ½ ,  
0 0 1/ 0 l /  

(2) . = ( ~ , ½ , 0 ) ,  v =  - . 

Thus,  f e ~¢. 
Here  we assume that there exists 1.a. L of which output function is f v g, 

and that this L has n-dimensional state space and is defined by 

L = (R ", {A1, A~}, u, v). (11.6) 

The  output of L for w = @ @  ~ 2 "  is given by 

~2 [i uA~ A s v = f v g ( w )  = max{(~-)' l  - (~)" ,  0} .  (11.7) 

Now, from this L, we can construct a new 1.a. L' with the set of input 
symbol, I '  = {al} having only one element, as follows: 

L '  = ( R  n, {B1} , u', v ' ) ,  (11.8) 

where B 1 = .4~, u' - -  uZ/2~, v'  -= v. Hence the output of L '  for w' = al z is 
given by 

u'Bl~v ' = uA2~Al~v = max{(½) ~ -  (½)~, 0}. (11.9) 

Therefore we know that 

I 7 0  for O ~ < l ~ < n ,  (11.10) 
u'BlZv' 0 for l / > n + l .  

On the other hand, the dimension of the state space of L '  is n and from 
(11.10), the outputs of L'  is equal to 0 for all tapes with length n or less. 
Therefore it follows from Theorem 4.2 that u' and 0 and not distinguishable. 
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Tha t  is, u'Bx~v ' ~- 0 for all l ~ 0. But this contradicts to (11.10). Therefore, 

f v g ~ , , L # .  
In  the same way we can prove t h a t f  ^ g 6 ~a. Q.E.D. 

Thus  we have known that ~ is not closed under the operations v and ^.  
But we can prove that if f and g are in ~ and bounded there exists the 
sequence of elements of ~ uniformly converging to f v g and f ^ g, respect- 
ively. For  this end, we prove the following lemma. 

LEMMA 11. l. Putting 0 ~ a <~ b <~ 1, we define the sequence {on) by 

q = ab and cn+t = c,  + (a - -  cn)(b - -  cn). 

Then  the sequence {c~) converges to min{a, b) at the rate not slower than 
the rate at which the following sequence {0n} converges to 0. 

01 ---- ¼, 0n+l = 0n - -  0~. 

T h e  proof is omitted since it is easily done. 
From Lemma  11.1, we obtain the interesting corollary. 

COROLLARY 11.1. Let f and g be real functions over Z*  and assume that 
f and g satisfy the conditions that 0 ~ f ( w )  ~ 1 and 0 ~ g ( w )  ~ 1 for all 
w ~ Z * .  Define the sequence ha, h z ,..., h~ ,... of real functions over Z*  as 
follows: 

h 1 = fg, h,+~ = h ,  + ( f -  h , ) (g  - -  hn). 

Then the sequence {hn} converges uniformly to f ^ g. 

THEOREM 11.2. I f  f ,  g ~ ~ are bounded, then there exist sequences of 
elements of  ~¢', which are bounded, converging uniformly to f v g and f ^ g, 
respectively. 

Proof. Assume that [f(w)l <~ M and [g(w)I <~ M for all w ~ Z * ,  and 
def inef '  and g '  as follows: 

1 1 
f ' ( w ) - - - - ~ - ~ f ( w ) + ~ ,  

1 1 
g'(w) = ~-Mg(w) -1- ~ . (11.11) 

Then,  we may easily verify t h a t f '  ~ ~ and g ' ~  .~,  and 0 ~ f ' ( w )  ~ 1 and 
0 <~ g'(w) ~< 1 for all w ~ Z*. 
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Here, we define the sequence {hn' ) by 

h x' = f ig '  and h'~+l ~- h~' + ( f '  --  h~')(g' --  ha' ). (11.12) 

F rom Corollary 11.1, this sequence {h~') converges uniformly to f ' A  g ' .  
On the other hand, as oL p is closed under  operations of sum, product  and 
multiplication by constant, h n' (n ~ 1, 2,...) are contained in ~c~. 

By defining the sequence (h~} as h~ ~ 2M(hn' --  ½), we see that {h~} 
converges uniformly to f A g  and hn (n ~ 1, 2 , . . )  are the elements of ~¢. 

Concerning f v g, we can also verify the statement of this theorem in the 
same way. Q.E.D. 

COROLLARY 11.2 The family ~ '  of the all output functions of the modified 
p.a.'s is not closed under the operations v and A. But i f  f ,  g E ~ ' ,  then there 
exist the sequences of elements of ~ '  converging to f v g and f A g, respectively. 
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