Meromorphic functions sharing two small functions with its derivative

Weihong Yaoa,b,*, Ping Lic

a Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China
b Department of Mathematics, Wuhan University, Wuhan 430072, PR China
c Department of Mathematics, The University of Sci. and Tech. of China, Hefei, Anhui 230026, PR China

Received 3 June 2005
Available online 12 October 2005
Submitted by J. Mawhin

Abstract

In this paper, we find all the forms of meromorphic functions $f(z)$ that share the value 0 CM∗, and share $b(z)$ IM∗ with $g(z) = a_1(z)f(z) + a_2(z)f'(z)$. And $a_1(z)$, $a_2(z)$ and $b(z)$ ($a_2(z), b(z) \neq 0$) be small functions with respect to $f(z)$. As an application, we show that some of nonlinear differential equations have no transcendental meromorphic solution.

Keywords: Meromorphic function; Value sharing; Small function

1. Introduction and results

Let f be a nonconstant meromorphic function in the complex domain. We shall adopt the standard notations in Nevanlinna’s value distribution theory of meromorphic functions such as the characteristic function $T(r,f)$, the counting function of the poles $N(r,f)$, and the proximity function $m(r,f)$ (see, e.g., [5]). We also denote $N_k(r,f)$ the counting function of the poles of f with multiplicities less than or equal to k, and $N_k(r,f)$ the counting function of the poles of f with multiplicities greater than or equal to k. The notation $S(r,f)$ is used to define any quantity satisfying $S(r,f) = o(T(r,f))$ as $r \to \infty$ possibly outside a set of r of finite linear measure
A meromorphic function $a \neq \infty$ is called a small function with respect to f provided that $T(r,a) = S(r,f)$. Note that the set of all small functions of f is a field. Let f and g be nonconstant meromorphic functions, and b a small function with respect to f and g. We say that f and g share b IM (CM) provided that $f - b$ and $g - b$ have the same zeros ignoring (counting) multiplicities. Denote by $\tilde{N}(r,f = b = g)$ the reduced counting function of the common zeros of $f - b$ and $g - b$ ignoring the multiplicities, and $\tilde{N}_E(r,f = b = g)$ the reduced counting function of the common zeros of $f - b$ and $g - b$ with the same multiplicities. We say that f and g share b IM* provided that

$$\tilde{N}\left(r, \frac{1}{f-b}\right) - \tilde{N}(r,f = b = g) = S(r,f)$$

and

$$\tilde{N}\left(r, \frac{1}{g-b}\right) - \tilde{N}(r,f = b = g) = S(r,g).$$

Similarly, we say that f and g share b CM* provided that

$$\tilde{N}\left(r, \frac{1}{f-b}\right) - \tilde{N}_E(r,f = b = g) = S(r,f)$$

and

$$\tilde{N}\left(r, \frac{1}{g-b}\right) - \tilde{N}_E(r,f = b = g) = S(r,g).$$

Obviously, if f and g share b IM (CM), then they share b IM* (CM*).

In 1976, Rubel and Yang [10] proved that if f is an entire function and shares two finite values CM with f', then $f \equiv f'$. Mues and Steinmetz [9], and Gundersen [4] improved this result and proved the following theorem.

Theorem A. Let f be a nonconstant meromorphic function, a and b be two distinct finite values. If f and f' share the values a and b CM, then $f = f'$.

Frank and Weissenborn [1] further improved Theorem A and obtained the following result.

Theorem B. Let f be a nonconstant meromorphic function. If f and $f^{(k)}$ share two distinct values a and b CM, then $f = f^{(k)}$.

An example given in [8] shows that the “CM” in Theorem B cannot be replaced by “IM.” However, if 0 is a Picard exceptional value of f and $f^{(k)}$, Zheng and Wang [12] proved the following theorem.

Theorem C. Let $f(z)$ be a nonconstant meromorphic function, and $k \geq 2$ be an integer. If 0 is a Picard exceptional value of both f and $f^{(k)}$, and in addition, f and $f^{(k)}$ share a nonzero finite value IM, then $f(z) = e^{Az + B}$, where A and B are constants satisfying $A^k = 1$.

Gundersen [3] gave an example as follows, which shows that the condition $k \geq 2$ in Theorem C cannot be replaced by $k \geq 1$, i.e., $k \neq 1$.

Example (I). Let \(f(z) = 2A/(1 - Be^{-2z}) \), where \(A \neq 0 \) is a constant. It is easy to verify that 0 is the Picard value of \(f \) and \(f' \). \(A \) is a shared value of \(f \) and \(f' \) IM, and \(f \neq f' \).

The following result indicates that Gundersen’s example is unique in some sense.

Theorem D. [11] Let \(f \) be a nonconstant meromorphic function, and \(b \) be a nonzero finite value. If \(f \) and \(f' \) share the value 0 CM, and share \(b \) IM, then \(f = f' \), or \(f(z) = 2b/(1 - ce^{-2z}) \), where \(c \) is a nonzero constant.

In the present paper, we shall prove the following results.

Theorem 1. Let \(f(z) \) be a nonconstant meromorphic function, and \(a_1(z), a_2(z) \) and \(b(z) \) \((a_2(z), b(z) \neq 0)\) be small functions with respect to \(f(z) \). If \(f(z) \) and \(g(z) = a_1(z)f(z) + a_2(z)f'(z) \) share 0 CM*, and share \(b(z) \) IM*, then \(f(z) = g(z) \) or \(f(z) \) takes one of the following two forms:

(i) \(f = b/(h - 1) \) and \(a_1b + a_2b' = -b \), where \(h \) satisfies \(h'/h = -1/a_2 \);

(ii) \(f = 2b/(1 - h) \) and \(a_1b + a_2b' = 0 \), where \(h \) satisfies \(h'/h = -2/a_2 \).

Example (II). Let \(f(z) = A/(Be^{-z} - 1) \), where \(A \neq 0 \) is a constant. It is easy to verify that 0 is the Picard value of \(f \) and \(f' \). \(A \) is a shared value of \(f \) and \(f' \) IM, and \(f \neq f' \).

Note: (I) is an example of case (ii) in Theorem 1, while (II) is an example of case (i) in Theorem 1.

Corollary 1. Suppose that \(a_i(z) \) \((i = 1, 2, 3)\), and \(b(z) \) are meromorphic functions, and \(a_2a_3b \neq 0 \). Then any of the following three equations:

\[
b(a_1f + a_2f' - f)^2 = f(a_1f + a_2f')(f - b),
\]

\[
(a_1f + a_2f')^2(f - b) = a_3f^3(a_1f + a_2f' - b),
\]

\[
(a_1f + a_2f')(f - b)^3 = a_3f(a_1f + a_2f' - b)^2
\]

has no nonconstant meromorphic solution \(f \) satisfying \(T(r, a_i) = S(r, f) \) \((i = 1, 2, 3)\), and \(T(r, b) = S(r, f) \).

Hence, the above three equations have no transcendental meromorphic solutions provided that \(a_i(z) \) \((i = 1, 2, 3)\) and \(b(z) \) are rational functions with \(a_2a_3b \neq 0 \).

Corollary 2. Let \(f \) be a nonconstant meromorphic function, and \(b (\neq 0, \infty) \) be a small function of \(f \). If \(f \) and \(f' \) share 0 CM*, and share \(b \) IM*, then \(f = f' \) or \(b \) is constant and \(f(z) = 2b/(1 - ce^{-2z}) \), where \(c \) is a nonzero constant.

Theorem 2. Let \(f \) be a nonconstant meromorphic function, and \(b(z) (\neq 0, \infty) \) be a small function of \(f \). If \(f \) and \(f^{(k)} \) \((k \geq 2)\) share \(b(z) \) IM*, and in addition,

\[
N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f^{(k)}}\right) = S(r, f),
\]

then \(f(z) = ce^{\lambda z} \), where \(c \) and \(\lambda \) are nonzero constants and \(\lambda^k = 1 \).
Obviously, Corollary 2 is a generalization of Theorem D, and Theorem 2 is a generalization of Theorem C.

2. Lemmas

Before proving the main results, we present some existing results in the following three lemmas, which will be used in the proofs of Theorems 1 and 2.

Lemma 1. [6] Let f be a nonconstant meromorphic function, and f_1, \ldots, f_n ($n \geq 2$) be nonzero meromorphic functions satisfying $T(r, f_i) \leq O(T(r, f))$, and suppose

$$\bar{N}(r, f_i) + \bar{N}(r, \frac{1}{f_i}) = S(r, f)$$

for $i = 1, 2, \ldots, n$. Further, if $f_i \neq 1$ for $i = 1, \ldots, n$, and $f_1 + f_2 + \cdots + f_n = 1$, then at least two (all, if $n \leq 3$) f_i satisfy $T(r, f_i) = S(r, f)$.

Lemma 2. [7] Let f_1 and f_2 be two nonconstant meromorphic functions satisfying

$$\bar{N}(r, f_i) + \bar{N}(r, \frac{1}{f_i}) = S(r), \quad i = 1, 2.$$

If $f_1^s f_2^t - 1$ is not identically zero for all integers s and t $(|s| + |t| > 0)$, then for any positive number ε, we have

$$N_0(r, 1; f_1, f_2) \leq \varepsilon T(r) + S(r),$$

where $N_0(r, 1; f_1, f_2)$ denotes the reduced counting function of f_1 and f_2 related to the common 1-points and $T(r) = T(r, f_1) + T(r, f_2)$, $S(r) = o(T(r))$ as $r \to \infty$, except for a set of r of finite linear measure.

Lemma 3. [2] If f is a transcendental meromorphic function, and k is a positive integer, then the following inequality

$$(k - 1)\bar{N}(r, f) \leq (1 + \varepsilon)N\left(r, \frac{1}{f^{(k)}}\right) + (1 + \varepsilon)(N(r, f) - \bar{N}(r, f)) + S(r, f)$$

holds for any positive number ε.

3. Proof of the results

Now we shall use a generalized version of Nevanlinna’s Second Fundamental Theorem (see, e.g., [5, p. 47]) to prove our main results, Theorems 1 and 2.

Proof of Theorem 1. Since f and g share $0, b, \infty$ IM*, it is easily seen from the Second Fundamental Theorem that

$$T(r, f) \leq 3T(r, g) + S(r, f), \quad (2)$$

$$T(r, g) \leq 3T(r, f) + S(r, g). \quad (3)$$
Hence, \(S(r, g) = S(r, f) := S(r) \). In particular, since \(f \) and \(g \) share 0 CM*, and \(g = a_1 f + a_2 f' \), we obtain \(\tilde{N}(r, f = g = 0) \leq \tilde{N}(r, 1/a_2) = S(r, f) \). Thus we have

\[
\tilde{N}\left(r, \frac{1}{f}\right) + \tilde{N}\left(r, \frac{1}{g}\right) = S(r).
\] (4)

Suppose \(f \neq g \). Otherwise, nothing needs to be proved. Since \(f \) and \(g \) share \(b \) IM*, it follows from the second fundamental theorem, the theorem on the logarithmic derivative and (4) that

\[
\begin{align*}
T(r, g) &\leq \tilde{N}(r, g) + \tilde{N}\left(r, \frac{1}{g}\right) + \tilde{N}\left(r, \frac{1}{g-b}\right) + S(r) \\
&= \tilde{N}(r, f) + \tilde{N}\left(r, \frac{1}{g-b}\right) + S(r) \\
&\leq \tilde{N}(r, f) + \tilde{N}\left(r, \frac{1}{g/f - 1}\right) + S(r) \\
&\leq \tilde{N}(r, f) + \tilde{N}\left(r, \frac{1}{a_2 f'/f + a_1 - 1}\right) + S(r) \\
&\leq \tilde{N}(r, f) + T\left(r, \frac{f'}{f}\right) + S(r) \\
&\leq \tilde{N}(r, f) + m\left(r, \frac{f'}{f}\right) + \tilde{N}(r, f) + \tilde{N}\left(r, \frac{1}{f}\right) + S(r) \\
&= 2\tilde{N}(r, f) + S(r) \\
&\leq N(r, g) + S(r) \\
&\leq T(r, g) + S(r).
\end{align*}
\]

Therefore, we get

\[
\begin{align*}
T(r, g) &= 2\tilde{N}(r, f) + S(r) = N(r, g) + S(r), \quad \text{(5)} \\
m(r, g) &= S(r). \quad \text{(6)}
\end{align*}
\]

Noting that \(N(r, g) = N(r, f) + \tilde{N}(r, f) \), we have

\[
N(r, f) = \tilde{N}(r, f) + S(r), \quad \text{(7)}
\]

which clearly shows that \(\tilde{N}(r, f) = S(r) \), and thus

\[
\tilde{N}\left(r, \frac{1}{g-b}\right) = \tilde{N}\left(r, \frac{1}{f-b}\right) + S(r) = \tilde{N}(r, f) + S(r). \quad \text{(8)}
\]

By the inequalities before (5), we have \(T(r, f'/f) = \tilde{N}(r, f) + S(r) \). Then (4) and (8) together imply that

\[
\begin{align*}
\tilde{N}\left(r, \frac{1}{g-f}\right) &= \tilde{N}\left(r, \frac{1}{g/f - 1}\right) + S(r) \\
&\leq T\left(r, \frac{f}{f}\right) + S(r) \\
&= \tilde{N}(r, f) + S(r) \\
&= \tilde{N}\left(r, \frac{1}{g-b}\right) + S(r).
\end{align*}
\]
Since \(f \) and \(g \) share \(b \) \(\text{IM}^* \), we have
\[
\tilde{N}(r, \frac{1}{g-b}) \leq \tilde{N}(r, \frac{1}{g-f}) + S(r).
\]
Therefore,
\[
\tilde{N}(r, \frac{1}{g-f}) = \tilde{N}(r, \frac{1}{g-b}) + S(r). \tag{9}
\]

Let
\[
\alpha = \frac{g'}{g} - 2 \frac{f'}{f}. \tag{10}
\]
Consider the poles of \(f \). Simple poles of \(f \) are not poles of \(\alpha \), and multiple poles of \(f \) can be neglected in view of (7). It follows from (4) and the lemma of logarithmic derivative that
\[
T(r, \alpha) = S(r). \tag{11}
\]
Since \(f \) and \(g \) share \(b \) \(\text{IM}^* \), we see from (9) that \(f-b, g-b \) and \(g-f \) share 0 \(\text{IM}^* \).

Suppose that \(z_0 \) is a double zero of \(g-f \), which is a zero of both \(f-b \) and \(g-b \), but not a zero or pole of \(a_1, a_2 \) or \(b \). Then we have \(\alpha(z_0) = \alpha_1(z_0) = (a_1(z_0) - 1)/a_2(z_0) \). If \(\alpha = (a_1 - 1)/a_2 \), then it follows from (10) that any common zero \(z \) of \(f-b \) and \(g-b \) must be multiple zero of \(g-f \) provided that \(z \) is not a zero or pole of \(a_1, a_2, b \). Therefore, by (9) and (4), we have
\[
\tilde{N}(r, \frac{1}{g-b}) = \tilde{N}(r, \frac{1}{g-f}) + S(r) \leq \frac{1}{2} N(r, \frac{1}{g-f}) + S(r)
\]
\[
= \frac{1}{2} N(r, \frac{f}{g-f}) + S(r) \leq \frac{1}{2} T(r, \frac{g}{f}) + S(r)
\]
\[
= \frac{1}{2} N(r, \frac{f'}{f}) + S(r) = \frac{1}{2} \tilde{N}(r, f) + S(r),
\]
and thus the estimates (8) and (9) imply \(\tilde{N}(r, f) = S(r) \). However, on the other hand, (2) and (5) yield \(T(r, f) = S(r) \), a contradiction. Hence \(\alpha \neq (a_1 - 1)/a_2 \), leading to
\[
\tilde{N}(r, \frac{1}{g-f}) \leq \tilde{N}(r, \frac{1}{\alpha - (a_1 - 1)/a_2}) + S(r) = S(r). \tag{12}
\]

If \(bg = f^2 \), then \(b(g-b) = (f-b)(f+b) \). Note that \(f \) and \(g \) share \(b \) \(\text{IM}^* \). We get \(\tilde{N}(r, 1/(f+b)) = S(r) \). Let \(h_1 = (f+b)/f \). Then \(\tilde{N}(r, h_1) + \tilde{N}(r, 1/h_1) = S(r) \). Therefore, \(T(r, h_1')/h_1 = S(r) \). From \(bg = f^2 \) and the definition of \(g \), we have \(f' = f(f-a_1b)/(b_2a_2) \), which is inserted into \(h_1' = (b'f - b f')/(f(f+b)) \) yields \(h_1' = (a_1b + a_2b' + b)/(a_2(f+b)) = -1/a_2 \). If \(a_1b + a_2b' + b \neq 0 \), then we get \(T(r, f) = S(r) \), a contradiction. Thus \(a_1b + a_2b' + b = 0 \), then \(h_1' = -1/a_2 \), and \(f = b/(h_1 - 1) \). Hence \(f \) assumes the first form in Theorem 1.

In the following, we assume
\[
bg \neq f^2. \tag{13}
\]
If \(-b(g-f)^2 = f(f-b)(g-b) \), then
\[
\frac{b^2}{f} = -g + 3b \frac{g}{f} - b \left(\frac{g}{f} \right)^2.
\]
Since every zero of \(f \) is a double pole of the right-hand side of the above equation, except for the zeros and poles of \(b, a_1, a_2 \), we have \(N(r, 1/f) = 2\bar{N}(r, 1/f) + S(r) = S(r) \).

From the above equation and the lemma of logarithmic derivative, together by using \(m(r, g) = S(r) \) from (6), we get
\[
m(r, \frac{1}{f}) = S(r).
\]
Therefore, \(T(r, f) = S(r) \), a contradiction. Hence
\[
-b(g - f)^2 \neq f(f - b)(g - b).
\] (14)

If \(g(f - b)^2 = f^2(g - b) \), then \(2fg = bg + f^2 \), which implies \(\bar{N}(r, f) = S(r) \). It follows from (2) and (5) that \(T(r, f) = S(r) \), a contradiction. Hence
\[
g(f - b)^2 \neq f^2(g - b).
\] (15)

If
\[
-b(g - f)^2 = f^2(g - b),
\] (16)
then \(-bg = f(f - 2b) \). Since \(\bar{N}(r, 1/g) = S(r) \), we have \(\bar{N}(r, 1/(f - 2b)) = S(r) \). Let \(h_2 = (f - 2b)/f \). It is easy to see that \(T(r, h_2'/h_2) = S(r) \). Since \(g = a_1 f + a_2 f' \), we get
\[
-b(a_1 f + a_2 f') = f(f - 2b),
\]
from which we obtain
\[
\frac{f'}{f} = -\frac{a_1}{a_2} - \frac{f - 2b}{a_2 b}.
\]
Hence,
\[
\frac{h_2'}{h_2} = \frac{-2b' f + 2bf'}{f(f - 2b)} = -\frac{2}{a_2} - \frac{2(a_1 b + a_2 b')}{a_2 (f - 2b)}.
\]
If \(a_1 b + a_2 b' \neq 0 \), then the above equation leads to \(T(r, f) = S(r) \), a contradiction. Thus \(a_1 b + a_2 b' = 0 \), then \(h_2'/h_2 = -2/a_2 \), and so \(f \) can be expressed as \(2b/(1 - h_2) \), which is the second form in Theorem 1.

To complete the proof of Theorem 1, we need to show that
\[
-b(g - f)^2 \neq f^2(g - b)
\] (17)
always leads to a contradiction by distinguishing two cases below.

Case 1. Suppose that the following condition holds:
\[
\alpha = \frac{b'}{b} - 2\frac{1 - a_1}{a_2}.
\] (18)

If \(a_1 b + a_2 b' = b \), then by (10) and (18), we have
\[
\frac{g'}{g} - 2\frac{f'}{f} + \frac{b'}{b} = 0.
\]
By integrating the above equation, we know that \(bg/f^2 \) is a nonzero constant. From (5), (8), we have
\[
\bar{N}\left(r, \frac{1}{g - b}\right) = \frac{1}{2} T(r, g) + S(r),
\] (19)
and note that \(b(z)g(z)/f^2(z) = 1 \) holds for any common zero of \(f - b \) and \(g - b \) provided that it is not any zero or pole of \(b \). If \(f - b \) and \(g - b \) have a common zero (which is not a zero or
pole of \(b \) then we can conclude \(bg = b^2 \). If there does not exist a common zero, from the fact that \(f \) and \(g \) share \(b \) IM* we would deduce \(\tilde{N}(r, 1/(g - b)) = S(r) \) which together with (19) and (2) implies \(T(r, f) = S(r) \), a contradiction. Consequently, \(a_1 b + a_2 b' \neq b \). Suppose that \(z \) is a common zero of \(f - b \) and \(g - b \), but not any zero or pole of \(a_1, a_2 \) or \(b \). We have \(a_1(z) b(z) + a_2(z) b'(z) = b(z) \) provided that \(z \) is a multiple zero of \(f - b \). Therefore,

\[
\tilde{N}(r, \frac{1}{f - b}) \leq \tilde{N}(r, \frac{1}{a_1 b + a_2 b' - b}) + S(r) = S(r). \tag{20}
\]

Suppose that \(z_1 \) is a common zero of \(f - b \) and \(g - b \), but not any zero or pole of \(a_1, a_2 \) or \(b \). By (10), (18) and \(g = a_1 f + a_2 f' \), we get \(g'(z_1) - b'(z_1) = 0 \), which implies that \(z_1 \) is a multiple zero of \(g - b \). Hence,

\[
\tilde{N}_{11}(r, \frac{1}{g - b}) = S(r). \tag{21}
\]

From Eq. (21), together with (5) and (8), we deduce that

\[
\tilde{N}(r, f) = \tilde{N}(r, \frac{1}{g - b}) + S(r) \leq \frac{1}{2} N(r, \frac{1}{g - b}) + S(r) \\
\leq \frac{1}{2} T(r, g) + S(r) = \tilde{N}(r, f) + S(r).
\]

Therefore, \(N(r, 1/(g - b)) = 2 \tilde{N}(r, 1/(g - b)) + S(r) \), and thus, with the aid of (21),

\[
N_{3}(r, \frac{1}{g - b}) = S(r). \tag{22}
\]

Let

\[
f_1 = \frac{g(f - b)^2}{f^2(g - b)}, \quad f_2 = \frac{bg}{f^2}, \quad f_3 = -\frac{b(g-f)^2}{f^2(g - b)}.
\]

Then we have \(f_1 + f_2 + f_3 = 1 \). By (4), (7), (12), (21), (22) and (20), we obtain

\[
\tilde{N}(r, f_i) + \tilde{N}(r, \frac{1}{f_i}) = S(r), \quad i = 1, 2, 3.
\]

Further, by (13), (15) and (17), we get \(f_i \neq 1, i = 1, 2, 3 \). Therefore, by Lemma 1, we have \(T(r, f_i) = S(r) \). Note that \(f_1(z) = 1 \) holds for any pole of \(f \) provided that it is not any zero or pole of \(a_1, a_2 \) or \(b \). Hence we get

\[
\tilde{N}(r, f) \leq \tilde{N}(r, \frac{1}{f_1 - 1}) + S(r) \leq T(r, f_1) + S(r) = S(r).
\]

However, it follows from (2) and (5) that \(T(r, f) = S(r) \), which indicates that the above conclusion is not possible. Hence, Case 1 is ruled out.

Case 2. Suppose that (18) is not true, i.e.,

\[
\alpha \neq \frac{b'}{b} - 2\frac{1-a_1}{a_2}. \tag{23}
\]

If \(z_2 \) is a multiple zero of \(g - b \), which is a zero of \(f - b \) but not any zero or pole of \(a_1, a_2 \) or \(b \), then by a simple manipulation, we get

\[
\alpha(z_2) = \left(\frac{b'}{b} - 2\frac{1-a_1}{a_2}\right)(z_2).
\]
Therefore,
\[
\tilde{N}(2, \frac{r}{g - b}) \leq \tilde{N}(r, \frac{1}{\alpha - b'/b + 2(1 - a_1)/a_2}) + S(r)
\leq T(r, \alpha) + S(r) = S(r). \tag{24}
\]

Let
\[
\beta = \frac{g' - f'}{g - f} - \frac{g' - b'}{g - b}. \tag{25}
\]

Then by noting (7), a simple calculation shows that \(\beta(z) = 1/a_2(z)\) holds for “almost all” poles of \(f\). Since \(\tilde{N}(r, f) \neq S(r)\), we have \(\beta = 1/a_2\), i.e.,
\[
\frac{g' - f'}{g - f} - \frac{g' - b'}{g - b} = \frac{1}{a_2}. \tag{26}
\]

Again, a simple computation shows that any multiple zero of \(f - b\) must be zero of \(a_1b + a_2b' - b\) provided that it is also a zero of \(g - b\), but not any zero or pole of \(a_1, a_2\) or \(b\). If \(b \neq a_1b + a_2b'\), then we have
\[
\tilde{N}(2, \frac{1}{f - b}) = S(r). \tag{27}
\]

Similarly, let
\[
g_1 = \frac{g(f - b)}{f(g - b)}, \quad g_2 = \frac{b(g - f)}{f(f - b)}, \quad g_3 = -\frac{b(g - f)^2}{f(f - b)(g - b)}.
\]

We have \(g_1 + g_2 + g_3 = 1\). From (4), (7), (12), (24) and (27), we get
\[
\tilde{N}(r, g_i) + \tilde{N}(r, \frac{1}{g_i}) = S(r), \quad i = 1, 2, 3.
\]

Since \(f \neq g\), we have \(g_1 \neq 1\). Further, from (13) and (14), we obtain \(g_2 \neq 1\) and \(g_3 \neq 1\), respectively. Then it follows from Lemma 1 that \(T(r, g_1) = S(r)\). Note that \(g_1(z) = 1\) holds for “almost all” poles of \(f\). Hence \(\tilde{N}(r, f) = S(r)\), which together with (2) and (5) implies \(T(r, f) = S(r)\). This is impossible.

In the following, we assume that
\[
a_1b + a_2b' = b, \tag{28}
\]

which, together with \(g = a_1f + a_2f'\), shows that any common zero of \(f - b\) and \(g - b\) must be multiple zero of \(f - b\) provided that it is not any zero or pole of \(a_1, a_2\) or \(b\). Therefore,
\[
\tilde{N}(1, \frac{1}{f - b}) = S(r). \tag{29}
\]

From (29), (4), (8) and the second fundamental theorem, we can deduce that
\[
2\tilde{N}(r, f) = 2\tilde{N}(r, \frac{1}{f - b}) + S(r) \leq N(r, \frac{1}{f - b}) + S(r)
\leq T(r, f) + S(r) \leq \tilde{N}(r, f) + \tilde{N}(r, \frac{1}{f}) + \tilde{N}(r, \frac{1}{f - b}) + S(r)
\leq 2\tilde{N}(r, f) + S(r).
\]
Hence,

\[T(r, f) = 2\tilde{N}(r, f) + S(r) = N\left(r, \frac{1}{f - b}\right) + S(r) = 2\tilde{N}\left(r, \frac{1}{f - b}\right) + S(r). \]

(30)

Next, let

\[F_1 = \frac{g - b}{g - f} \quad \text{and} \quad F_2 = \frac{bg}{f^2}. \]

Then by (4), (7), (12) and (24), we have \(\tilde{N}(r, F_i) + \tilde{N}(r, 1/F_i) = S(r), \ i = 1, 2. \) Therefore, \(T(r, F'_i/F_1) = S(r), \) and

\[
m\left(r, \frac{1}{F_1 - 1}\right) = m\left(r, \frac{1}{F_1 - 1} + 1\right) + S(r) = m\left(r, \frac{F_1}{F_1 - 1}\right) + S(r) \leq m\left(r, \frac{F'_1}{F_1 - 1}\right) + m\left(r, \frac{F_1}{F'_1}\right) + S(r) = S(r).
\]

If \(z_0 \) is a zero of \(f - b \) with multiplicity \(k \geq 1 \) (but not a zero or a pole of \(a_1, a_2, b \), then it is a zero of \(g - b \) with multiplicity \(k - 1 \) (i.e., for \(k = 1 \) it is not a zero of \(g - b \) at all). Hence by (30), we get

\[
T(r, F_1) = N\left(r, \frac{1}{F_1 - 1}\right) + S(r) = N\left(r, \frac{g - f}{f - b}\right) + S(r) = \tilde{N}(r, f) + \tilde{N}\left(r, \frac{1}{f - b}\right) + S(r) = T(r, f) + S(r).
\]

Then from (26), (28) and \(g = a_1 f + a_2 f', \) eliminating \(f' \) yields

\[((a_1 + 1)g + a_2 g' - 2b)f = 2g^2 - (a_2 b' + 2b)g + a_2 bg'.\]

(31)

Noting (4), we have

\[N\left(r, \frac{1}{g}\right) = N\left(r, \frac{1}{f}\right) + \tilde{N}\left(r, \frac{1}{g}\right) + S(r) = N\left(r, \frac{1}{f}\right) + S(r). \]

(32)

On the other hand, from \(N(r, F_2) = N(r, 1/f) + \tilde{N}(r, 1/f) + S(r) \) and (4), we obtain \(N(r, F_2) = N(r, 1/f) + S(r). \) Thus \(m(r, F_2) \leq m(r, 1/f) + S(r) \) due to \(g = a_1 f + a_2 f'. \) Now rewriting (31) as

\[
\frac{2b}{f} = \left(a_1 + 1 + a_2 g'\frac{g'}{g}\right)\frac{g}{f} - 2\left(\frac{g'}{f}\right)^2 + \left(a_2 \frac{b'}{b} + 2 - a_2 \frac{g'}{g}\right)F_2,
\]

we can see that \(m(r, 1/f) \leq m(r, F_2) + S(r). \) Hence, \(m(r, F_2) = m(r, 1/f) + S(r). \) Therefore, we have \(T(r, F_2) = T(r, f) + S(r) = T(r, F_1) + S(r). \) Note that \(\tilde{N}(r, 1/(f - b)) = \frac{1}{2}T(r, f) + S(r), \) and “almost all” zeros of \(f - b \) are common 1-points of \(F_1 \) and \(F_2. \) By Lemma 2, there exist two integers \(s \) and \(t \) such that \(F'_i F'_2 = 1. \) It follows that \(|s|T(r, F_1) = |t|T(r, F_2) + O(1). \) Further, note that \(T(r, F_1) = T(r, F_2) + S(r), \) which implies that \(s = \pm t. \) Therefore, \(F_1 F_2 = c \)
or $F_1 = cF_2$, where c is a constant satisfying $c^{\mid s \mid} = 1$. The equation $\tilde{N}(r, 1/(f - b)) = \frac{1}{2}T(r, f) + S(r)$ implies that F_1 and F_2 have many common 1-points. Consequently, $c = 1$. And thus $F_1F_2 = 1$ or $F_1 = F_2$.

If $F_1F_2 = 1$, then $bg(g - b) = f^2(g - f) = f^2g - f^3$, i.e., $f^2 = fg = b(g - b)g/f$. Therefore, by (6), we get

$$2m(r, f) = m\left(r, fg - \frac{b(g - b)g}{f}\right) + S(r) = m(r, fg) + S(r) \leq m(r, f) + S(r).$$

Hence, $m(r, f) = S(r)$. By (7) and (30), we get $T(r, f) = S(r)$, a contradiction.

If $F_1 = F_2$, then $g = b(g/f - r_1)(g/f - r_2)$, where r_1 and r_2 are two roots of $z^2 - z + 1 = 0$.

By (4), we get

$$\tilde{N}\left(r, \frac{1}{g/f - r_i}\right) = S(r), \quad i = 1, 2.$$

It is easy to see that g/f is not a constant. Otherwise, if g/f was constant, then from $g = b(g/f - r_1)(g/f - r_2)$, we would obtain $T(r, g) = S(r)$, hence in view of (2) $T(r, f) = S(r)$.

By the second fundamental theorem, we have

$$T(r, g/f) \leq \tilde{N}\left(r, \frac{1}{g/f}\right) + \tilde{N}\left(r, \frac{1}{g/f - r_1}\right) + \tilde{N}\left(r, \frac{1}{g/f - r_2}\right) + S\left(r, \frac{g}{f}\right).$$

Since f and g/f have the same poles (except for the zeros and poles of a_1, a_2), we have $\tilde{N}(r, f) \leq \tilde{N}(r, g/f) + S(r) \leq T(r, g/f) + S(r) = S(r) + S(r, g/f) = S(r)$. Then by noting that $g = a_1f + a_2f'$ and $\tilde{N}(r, 1/g) = S(r)$, we get $\tilde{N}(r, f) = S(r)$. Further by (30), we obtain $T(r, f) = S(r)$, again a contradiction. Hence Case 2 is also ruled out. The proof of Theorem 1 is complete. □

Proof of Corollary 1. First, note that the cases of $f \equiv g$ and $g \equiv 0$ in applying Theorem 1 can be ruled out by the assumptions on f and a_1, a_2, a_3, b. If f is a nonconstant meromorphic solution of one of the equations in Corollary 1, and $T(r, a_i) + T(r, b) = S(r, f)$, $i = 1, 2, 3$, then it is easy to verify that f and $g = a_1f + a_2f'$ share 0 CM* and share b IM*. By Theorem 1, f assumes one of the forms in Theorem 1. If f takes the first form, then $a_1f + a_2f' = b/(h - 1)^2$. If f assumes the second form, then $a_1f + a_2f' = -4bh/(h - 1)^2$. Therefore, f cannot be the solution of any equation in Corollary 1. This completes the proof of Corollary 1. □

Proof of Corollary 2. Since $a_1 = 0$ and $a_2 = 1$, we have $h' = -h$ and $b' = -b$ provided that f assumes the first form in Theorem 1. Hence, b cannot be a small function of h, and thus cannot be a small function of f. This is impossible. If f assumes the second form in Theorem 1, then $b' = 0$ and $h' = -2h$. Hence b is a constant and $h \equiv ce^{-2z}$. The proof of Corollary 2 is finished. □

Proof of Theorem 2. Suppose that f and $f^{(k)}$ share b IM* and

$$\tilde{N}\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{f^{(k)}}\right) = S(r, f).$$

(33)

If $f = f^{(k)}$, then there exist constants c_1, \ldots, c_k such that

$$f(z) = c_1e^{\lambda_1z} + \cdots + c_ke^{\lambda_kz},$$

where \(\lambda_i, i = 1, \ldots, k \), are the roots of equation \(z^k = 1 \). Let \(\beta = f'/f \). Then \(\beta \neq 0 \). Note that \(N(r, f) = 0 \) and \(\tilde{N}(r, 1/f) = S(r, f) \). By the lemma on the logarithmic derivative, we have \(T(r, \beta) = S(r, f) \). Therefore, \(\beta \) is a small function with respect to \(e^{\lambda_j z}, j = 1, \ldots, k \). From the above equation, we have

\[
\lambda_1 c_1 e^{\lambda_1 z} + \cdots + \lambda_k c_k e^{\lambda_k z} = \beta \left(c_1 e^{\lambda_1 z} + \cdots + c_k e^{\lambda_k z} \right).
\]

By Lemma 1, it is easy to prove that \(e^{\lambda_1 z}, \ldots, e^{\lambda_k z} \) are linearly independent over the field of small functions with respect to \(e^{\lambda_j z}, j = 1, \ldots, k \). Therefore, \(c_j (\lambda_j - \beta) \equiv 0, j = 1, \ldots, k \). It follows that only one of the constants in \(\{c_1, \ldots, c_k\} \) is not zero. Hence \(f(z) = c e^{\lambda z} \), where \(c \) and \(\lambda \) are nonzero constants and \(\lambda^k = 1 \).

If \(f \neq f^{(k)} \), then \(f^{(k)}/f \neq 1 \). Suppose that \(z_0 \) is a common zero of \(f^{(k)} - b \) and \(f - b \) ignoring the multiplicities, but not the zero of \(b \). Then, we have \(f^{(k)}(z_0)/f(z_0) = 1 \). Since \(f \) and \(f^{(k)} \) share \(b \) IM*,, we have

\[
\tilde{N} \left(r, \frac{f^{(k)}}{f} - b \right) \leq \tilde{N} \left(r, \frac{1}{f^{(k)/f} - 1} \right) + S(r, f) \leq T \left(r, \frac{f^{(k)}}{f} \right) + S(r, f)
\]

\[
\leq k \tilde{N} \left(r, \frac{1}{f} \right) + k \tilde{N}(r, f) + S(r, f)
\]

\[
= k \tilde{N}(r, f) + S(r, f).
\]

By the second fundamental theorem, we have

\[
T(r, f^{(k)}) \leq \tilde{N}(r, f^{(k)}) + \tilde{N}(r, 1/f^{(k)}) + \tilde{N} \left(r, \frac{1}{f^{(k)} - b} \right) + S(r, f^{(k)})
\]

\[
= \tilde{N}(r, f) + \tilde{N} \left(r, \frac{1}{f^{(k)} - b} \right) + S(r, f)
\]

\[
\leq \tilde{N}(r, f) + k \tilde{N}(r, f) + S(r, f)
\]

\[
\leq N(r, f) + k \tilde{N}(r, f) + S(r, f)
\]

\[
= T(r, f^{(k)}) + S(r, f).
\]

Therefore, we obtain

\[
N(r, f) = \tilde{N}(r, f) + S(r, f), \quad \text{(34)}
\]

\[
\tilde{N} \left(r, \frac{1}{f^{(k)} - b} \right) = k \tilde{N}(r, f) + S(r, f). \quad \text{(35)}
\]

Then again by the second fundamental theorem and note that \(f \) and \(f^{(k)} \) share \(b \) IM*, we get

\[
T(r, f) \leq \tilde{N}(r, f) + \tilde{N} \left(r, \frac{1}{f} \right) + \tilde{N} \left(r, \frac{1}{f - b} \right) + S(r, f)
\]

\[
= (k + 1) \tilde{N}(r, f) + S(r, f). \quad \text{(36)}
\]

Let

\[
\alpha = \frac{f^{(k+1)}}{f^{(k)}} - (k + 1) \frac{f'}{f}.
\]

Obviously, \(m(r, \alpha) = S(r, f) \) by the lemma on the logarithmic derivative. In view of (34), “almost all” poles of \(f \) are simple. But these simple poles of \(f \) are removable singularities of \(\alpha \). Therefore, \(N(r, \alpha) = S(r, f) \). Hence we have \(T(r, \alpha) = S(r, f) \).
If \(f \) is a rational function, then \(\alpha \) must be a constant. Therefore, \(f^{(k)}/f^{k+1} = ce^{\alpha z} \), where \(c \) is a nonzero constant. If \(\alpha \neq 0 \), then \(f^{(k)}/f^{k+1} \) is not rational. This contradicts the assumption. Hence \(\alpha = 0 \), and thus \(f^{(k)} = cf^{k+1} \). Since \(T(r, b) = S(r, f) \), \(b \) must be a nonzero constant. Since \(f^{(k)} \) and \(f \) share \(b \), we deduce that \(cf^{k+1} \) and \(f \) share \(b \). The equation \(w^{k+1} - b/c = 0 \) has \(k + 1 \) different roots. We can select a root \(w_0 \) of this equation such that \(w_0 \neq b \) and \(f \) assumes the value \(w_0 \), which is possible since \(k + 1 \geq 3 \) and \(f \) is rational. If \(z_0 \) is a zero of \(f(z) - w_0 \), then \(cf^{k+1}(z_0) = b \), and thus \(f(z_0) = b \). Therefore, \(w_0 = b \). This is impossible.

If \(f \) is a transcendental meromorphic function, then by (33), (34) and Lemma 3, we get \(\bar{N}(r, f) = S(r, f) \). From this and (36), we get \(T(r, f) = S(r, f) \), a contradiction. This completes the proof of Theorem 2.

Acknowledgment

The anonymous referee’s comments and suggestions are greatly acknowledged.

References