RESEARCH LETTER

Rapid Aneuploidy Diagnosis by Array Comparative Genomic Hybridization Using Uncultured Amniocytes in a Pregnancy With Fetal Nuchal Edema and Mild Ascites

Chih-Ping Chen1,2,3,4,5,6*, Yi-Ning Su7, Pei-Chen Wu1, Chen-Chi Lee1, Chen-Wen Pan1, Wayseen Wang2,8

1 Department of Obstetrics and Gynecology, Mackay Memorial Hospital, 2 Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan, 3 Department of Biotechnology, Asia University, 4 School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, 5 Institute of Clinical and Community Health Nursing, National Yang-Ming University, 6 Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, 7 Department of Medical Genetics, National Taiwan University Hospital, and 8 Department of Bioengineering, Tatung University, Taipei, Taiwan.

Received May 13, 2011; accepted May 19, 2011
Available online July 7, 2011

A 37-year-old, Gravida 2 Para 0, woman was referred for genetic counseling at 14 weeks of gestation because of an increased nuchal thickness (Fig. 1). Prenatal ultrasound at 16 weeks of gestation showed nuchal edema and mild fetal ascites (Fig. 2). Amniocentesis was performed, and 28 mL amniotic fluid was aspirated, of which 16 mL of amniotic fluid was applied for array comparative genomic hybridization (aCGH) using uncultured amniocytes, and 10 mL was applied for conventional cytogenetic analysis using cultured amniocytes. Within 1 week, oligonucleotide-based aCGH analysis using Oligo HD Scan (CMDX, Irvine, CA, USA) showed the result of trisomy 21 (arr cgh 21q11.2q22.3 [13,339,394-46,944,323] × 3) (Fig. 3). Conventional cytogenetic analysis later revealed a karyotype of 47,XY,+21 (Fig. 4). The pregnancy was terminated at 18 weeks of gestation, and a 226-g edematous fetus was delivered.

Bacterial artificial chromosome (BAC)-based aCGH and oligonucleotide-based aCGH have been successfully applied for rapid aneuploidy diagnosis (RAD) of both partial aneuploidy [1] and full aneuploidy [2]. RAD refers to the applications of interphase fluorescence in situ hybridization, quantitative fluorescent polymerase chain reaction, multiplex ligation-dependent probe amplification, and aCGH for rapid prenatal diagnosis of aneuploidies [3]. The aCGH has the advantage of achieving a rapid genome-wide analysis without the need for cell culture. It has been shown that...
the results of aCGH can be available within an average of 6 days for uncultured cells [4]. However, aCGH has difficulty in detecting low-level mosaicism, balanced translocation, inversion, and polyploidy [5].

The present case was associated with Down syndrome, nuchal edema, and mild fetal ascites. Snijders et al [6] found that nuchal edema was diagnosed in 38% of fetuses with trisomy 21. About one-third of the fetuses with nuchal edema have chromosome abnormalities, mainly trisomies 21, 18, and 13 [7]. Snijders et al [6] found that hydrops fetalis was diagnosed in 20% of the fetuses with trisomy 21 (n = 155). Jauniaux et al [8] reported chromosome abnormalities in 15.7% (94/600) of the fetuses with nonimmune hydrops fetalis, and about 38.3% (36/94) of the aneuploid hydropic fetuses were diagnosed with trisomy 21.

In conclusion, prenatal diagnosis of fetal nuchal edema with mild ascites should alert one to the possibility of chromosomal abnormalities, and aCGH has the advantage of RAD.
Acknowledgments

This work was supported by research grants NSC-97-2314-B-195-006-MY3 and NSC-99-2628-B-195-001-MY3 from the National Science Council and MMH-E-100-04 from Mackay Memorial Hospital, Taipei, Taiwan.

References


Fig. 3. Oligonucleotide-based array comparative genomic hybridization analysis using uncultured amniocytes shows a duplication of chromosome 21 (arrow) consistent with the diagnosis of trisomy 21.

Fig. 4. Conventional cytogenetic analysis using cultured amniocytes shows a karyotype of 47,XY,+21.
