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Abstract

We calculate the form factors and the coupling constant in the o D* D* vertex in the framework of QCD sum rules. We evaluate the three point
correlation functions of the vertex considering both p and D* mesons off-shell. The form factors obtained are very different but give the same
coupling constant: g, p+ px = 6.60 & 0.31. This number is 50% larger than what we would expect from SU(4) estimates.

© 2007 Elsevier B.V. Open access under CC BY license.
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1. Introduction

Charmonium production is a very useful source of informa-
tion in heavy ion collisions. The knowledge of the J /v produc-
tion rate can improve our understanding of these collisions and
help us to know if there was a “color glass condensate” in the
initial state. Charmonium production is very sensitive to the ex-
istence and to the properties of the intermediate “quark—gluon
plasma” [1]. All the interesting effects happening in these initial
and intermediate phases can be blurred by interactions in the
final stage of these collisions, when charmonium states inter-
act with other comovers such as pions, p mesons and nucleons,
which form a hot hadronic gas. Since these interactions occur at
an energy of the order of magnitude of the temperature (>~100-
150 MeV), their study has to be made with non-perturbative
methods. These can be QCD sum rules [2], quark models and
the effective Lagrangian approach [3,4]. This last approach has
been developed for almost ten years now and a great progress
in the understanding of the interactions of charmed mesons
with light mesons and nucleons has been achieved. Part of this
progress is due to a persistent study of the vertices involving
charmed mesons, namely D* D [5,6], DDp [7], DDJ /v [8],
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D*DJ/vy [9,10], D*D*x [11,12], D*D*J /v [13], DyD*K,
D} DK [14] and D Dw [15]. More specifically, it is very impor-
tant to know the precise functional form of the form factors in
these vertices and even to know how this form changes when
one or the other (or both) mesons are off-shell. This careful de-
termination of the charm form factors has been done bit by bit
over the last seven years in the framework of QCD sum rules,
which are the best tool to give a first principles answer to this
problem.

Understanding charmonium production in heavy ion colli-
sions would be already a good reason to study of hadronic
charm form factors. However, since 2003, due the precise mea-
surements of B decays performed by Belle, BES and BaBar
Collaborations, this subject gained a new relevance. In B de-
cays new particles have been observed, such as the D;;(2317)
and the X (3872). These particles very often decay into an in-
termediate two body state, which then undergoes final state in-
teractions, with the exchange of one or more virtual mesons. As
an example of specific situation where a precise knowledge of
the p D*D* form factor is required, we may consider the decay
X (3872) — J /v +p. As suggested in [16], this decay proceeds
in two steps. First the X decays into a D—D* intermediate state
and then these two particles exchange a D* producing the final
J /¢ and p. This is shown in Figs. 1b and 1f of [16]. In order to
compute the effect of these interactions in the final decay rate
we need the p D* D* form factor.
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In the present Letter we calculate this form factor with
QCDSR. The pD*D* vertex is similar to the J /vy D* D* vertex
treated in [13]. As before, because there are three vector par-
ticles involved, the number of Lorentz structures is very large
and we have to choose a reliable one to perform the calcula-
tions. Here we introduce the pole-continuum analysis and im-
pose the pole dominance as a criterion to reduce the freedom in
the choice of the Borel parameter. In the next section, for com-
pleteness we describe the QCDSR technique and in Section 3
we present the results and compare them with results obtained
in other works.

2. The sum rule for the p D* D* vertex

Following our previous works and especially Ref. [13], we
write the three-point function associated with the p D*D* ver-
tex, which is given by

n%)w.p'.a) = / dixdtye?TeiaY

x OIT {2 e TP T o)) )

for an off-shell o™ meson, where ¢ = (p’ — p), and
. p.q =/d4xd4yei”/'xe_i"'y

< (OIT {2 @2 it T o}10). @

for an off-shell D*~ meson. Since there are two independent
momenta and three Lorentz indices, the general expression for
the vertices (1) and (2) has fourteen independent Lorentz struc-
tures. Therefore, we can write 1,4, in terms of fourteen invari-
ant amplitudes associated with each one of these structures in
the following form:
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3)
However, not all of these fourteen invariant amplitudes,
Fi(pz, p’2,q2), are independent. Due to current conserva-
tion p* Iy, (p, p’,q) = 0 for an off-shell D*~ meson, and
q*Tyau(p. p',q) = 0 for an off-shell p™ meson. Current con-
servation introduces five constraints among these fourteen in-
variant amplitudes, such that only nine of them are indepen-
dent. As an example, in the case of an off-shell D*~ me-
son, the invariant amplitudes I's and [y are related through:
Iy = —TI5/p?, in such a way that these two terms in Eq. (3)
can be written in a form manifestly current conserving as:

Is(p?, p'2, qZ)qv (8ua — papﬂ/pz). However, since the four-
teen Lorentz structures appearing in Eq. (3) are indeed inde-
pendent, we can write one sum rule for each one of these
fourteen Lorentz structures. The kind of relation given above
tell us that from these fourteen sum rules, only nine of them
are independent, but these relations do not change the sum
rules.

Egs. (1) and (2) can be calculated in two different ways: us-
ing quark degrees of freedom (the theoretical or QCD side)
or using hadronic degrees of freedom (the phenomenological
side). In the QCD side the correlators are evaluated using the
Wilson operator product expansion (OPE). The OPE incorpo-
rates the effects of the QCD vacuum through an infinite series
of condensates of increasing dimension. On the other hand,
the representation in terms of hadronic degrees of freedom is
responsible for the introduction of the form factors, decay con-
stants and masses. Both representations are matched invoking
the quark—hadron global duality.

2.1. The OPE side

In the OPE or theoretical side each meson interpolating field
appearing in Egs. (1) and (2) can be written in terms of the
quark field operators in the following form:

i) =d)yux) 4)
and
JPT @) =e)yud ), 5)

where u, d and c are the up, down and charm quark field, re-
spectively. Each one of these currents has the same quantum
numbers of the associated meson.

For each one of the invariant amplitudes appearing in Eq. (3),
we can write a double dispersion relation over the virtualities p?
and p’?, holding Q? = —¢? fixed:

(2 12 2__L]O 7 pi (s, u, Q%)
LW p™ Q) ==5 [ ds | du— 30— 5

Smin Umin

i=1,..., 14, (©6)

where p; (s, u, 0?) equals the double discontinuity of the am-
plitude I} (p?, p’?, 0?), calculated using the Cutkosky’s rules.
The invariant amplitudes receive contributions from all terms
in the OPE. The first one of those contributions comes from the
perturbative term and it is represented in Fig. 1.

We can work with any structure appearing in Eq. (3), but we
must choose those which have less ambiguities in the QCD sum
rules approach, which means, less influence from the higher di-
mension condensates and a better stability as a function of the
Borel mass. We have chosen the g,,q, structure. In this struc-
ture the quark condensate (the condensate of lower dimension)
contributes in the case of D* meson off-shell.
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Fig. 1. Perturbative diagrams for the p off-shell (left) and D* off-shell (right) correlators.

The corresponding perturbative spectral densities which en-
ter in Eq. (6) are

o) =5 5| (5 -en) (557

+2(J—1)+%(2m§—u—s)—D] %

for p off-shell, and

)= () ()

T 2
—2(1+J)+5(u+s+2mc)+D 8)

for D* off-shell. Here A = A(s,u, 1) = s% 4+ 12 + u? — 25t —
2su—2tu,s =p>,u=p'’,t=—0>and A, B, D, I and J are
functions of (s, ¢, u), given by the following expressions:
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with n =1 for p off-shell and n = —1 for D* off-shell.

The contribution of the quark condensate which survives af-
ter the double Borel transform is represented in Fig. 2 for the
D* off-shell case and is given by

me{qq)

oY _ _ ,
p*(p'* —m3)

= (14)
where (gq) is the light quark condensate. For the p off-shell
there is no quark condensate contribution.

We expect the perturbative contribution to dominate the
OPE, because we are dealing with heavy quarks. In Refs. [5,10]
the gluon condensate contribution to the D* Dz and J /v D*D

au) -

he
—~0

Fig. 2. Contribution of the ui condensate to the D* off-shell correlator.

vertices was evaluated, and the authors showed that its contri-
bution was negligible as compared with the perturbative one.
For this reason, we do not include the gluon and quark—gluon
condensates in the present work.

The resulting vertex functions in the QCD side for the struc-
ture g, q, are written as

S0 uo
1 PP (s, u, Q%)
r(m,’:——/d/d L 15
(p, p) P 2 s u(s—pZ)(u—p/Z) (15)
m

mi+t

for p off-shell and

S0 uo
(%) 2
rop, o) = - /ds/du P u Q) &
0 t

+ 1
(s=pHu—-p? ¢

472

(16)

for D* off-shell, where, as usual, we have already transferred
the continuum contribution from the hadronic side to the QCD

side, through the introduction of the continuum thresholds sy
and ug [17].

2.2. The phenomenological side

The pD*D* vertex can be studied with hadronic degrees
of freedom. The corresponding three-point functions, Eqgs. (1)
and (2), will be written in terms of hadron masses, decay con-
stants and form factors. This is the so-called phenomenological
side of the sum rule and it is based on the interactions at the
hadronic level, which are described here by the following ef-
fective Lagrangian [3]

ﬁpD*D* = ing*D*[((auD*”)? . Dj - D*v? . BMD:) . ,B’u
+ (D*T . 3upy — 8, DT . p) D*H
+ D**(7 . 5", D} — (7 .9,8")D})], (17

from where one can extract the matrix element associated with
the pD*D* vertex. The meson decay constants, f, and fp+,
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are defined by the following matrix elements:

(O1j 1 p(p)) =m, foek (p) (18)
and
(01;L"|D*(p)) = mp+ fpreli(p), (19)

where €}, and €}), are the polarization vectors of the p and D*
mesons, respectively. Saturating Egs. (1) and (2) with the p and
two D* states and using Eqs. (18) and (19) we arrive at

2 2
F(P) — () fD*fme*mp

- * )* 2 \/5
Hve 8pp*D (©7) (P2+m%*)(Q2+m%)(P/2+m%*)

/A
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D* D*
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0
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— (2p _ p/)ﬂlgﬂl/l),]7 (20)

when the p is off-shell, with a similar expression for the D* oft-
shell:
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The contractions of x/, v and &’ in the above equation will lead
to the fourteen Lorentz structures appearing in Eq. (3). We can
see from Eq. (20) that the form factor g/(f;))* D (Qz) is the same
for all the structures and thus can be extracted from sum rules
written for any of these structures. The resulting phenomeno-
logical invariant amplitudes associated with the structure gy, gy
are

) (p2 2 A2
ry(p% P2, 0%
2
V2 fpmipemp @ = 58)
(P24 mp)(Q2 +mp) (P2 + mi.)
for the p off-shell, and

= - (0?) (22)

(D*) ( p2 2 2
Iy '(P% P2, 0%
[ fomDem,(Q? + 4m3,.)
(P2 +m)(Q% + my ) (P2 + m2)«/2m3,.
(23)

= 85p'p(07)

for D* off-shell.

In order to improve the matching between the two sides of
the sum rules we perform a double Borel transformation [17]
in the variables P2 = —p?> — M? and P> = —p'?> - M’?, on
both invariant amplitudes I" and Ip,. Equating the results we
get the final expressions for the sum rules which allow us to ob-
tain the form factors g/()TD)* D (0% appearing in Egs. (22)—(23),
where T is p or D*. In this work we use the following relations

2 m?
between the Borel masses M2 and M'?: 1{;’,2 = mT” for a D*
D*

off-shell and M? = M’'? for a p off-shell.

3. Results and discussion

Table 1 shows the values of the parameters used in the
present calculation. We used the experimental value for f, =

Z—Z, with g, =4.79 [18], and took fp~ from Ref. [19]. The

continuum thresholds are given by so = (m + A S)Z and ug =
(m 4+ A,)?, where m is the mass of the incoming meson. Using
As = A, =0.5 GeV for the continuum thresholds and fixing
0? =1 GeV?, we found a good stability of the sum rule for
gf)pD)* p+ for M? in the interval 1 < M? <9 GeV?, as can be
seen in Fig. 3. Within this interval we need to choose the best
value of the Borel mass to extract the coupling constant of the
vertex. It is well known in QCDSR that if we choose a too small
value of the Borel variable M2, then the sum rule will be dom-
inated by the pole, but the convergence of the OPE is poor. On
the other hand, if M? is too large, then the OPE convergence is
good but the sum rule is dominated by the continuum. The best
value of the Borel mass is the one with which both criteria are
reasonably satisfied.

In Fig. 4 we show the pole contribution (solid line) and the
continuum contribution (dashed line) divided by their sum as a

Table 1
Parameters used in the calculation

me (GeV) mpx (GeV) mp (GeV)  fpx (GeV) fp (GeV) (qq) (GeV)3
1.35 2.01 0.778 0.240 0.161 (—0.23)3

1.GeV?)

9o (@=

M%(GeV?)

Fig. 3. gL‘B*D* (Q2 =1.0 GeVz) as a function of the Borel mass M2.



M_.E. Bracco et al. / Physics Letters B 659 (2008) 559-564 563

1.0

0.94

0.8

0.7+

064

Pole

0.5 - - - - Continuum
0.4 ,

0.3 !

Relative contributions

0.2 ’

0.1 ’

00 +——r—

M%(GeV?)
Fig. 4. Pole (solid line) and continuum (dashed line) contribution to

g;‘B*D* (Q2 =1GeVZ, Mz), as a function of the Borel mass M2.
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Fig. 5. g,ﬁ:%*)D* (Q2 =1 GeVz) as a function of the Borel mass. We show the
perturbative contribution (dashed line), quark condensate contribution (dotted
line) and total (solid line).

function of Borel mass. In the case of p off-shell, we see that
the pole contribution is bigger than the continuum one in the
Borel window 1 < M? < 3 GeV?. The best Borel mass seems
to be M? = 2.0 GeV>. Also for this value of M? the coupling o,
is approximately 0.2 and this suggests that perturbative correc-
tions are small. .

In the case of gl()%*)D* the interval for stability is 1 < M? <

10 GeVz, as can be seen in Fig. 5. In order to choose the Borel
mass we proceed in the same way as before and we analyze
the pole and continuum contributions. As indicated in Fig. 6 in
the window 0.5 < M? < 1.5 GeV? the pole contribution domi-
nates. We choose M2 = 1.5 GeV?>.

Having determined M? we calculated the Q2 dependence

of the form factors. We present the results in Fig. 7, where the
circles correspond to the g'ffg* D (0?) form factor in the interval

where the sum rule is valid. The squares are the result of the sum
rule for the gf)%*) D (0?) form factor.

08 Pole

- - - - Continuum

0.7+
064

054

04+

Relative contributions

0.3 !

0.2 !

00 05 1.0 1.5 20 25 3.0 35 40 45
M?(GeV?)

*
Fig. 6. Pole versus continuum contributions to g;f[))*)[)*(Q2 =1 GeVz) as a

function of the Borel mass M?2.
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metrizations of the QCDSR data with the two forms mentioned in the text.

(p)

Fig. 7. 85D

* (circles) and g (squares) QCDSR form factors as a

In the case of an off-shell p meson, our numerical results can
be fitted by the following exponential parametrization (shown
by the solid line in Fig. 7):

_ 2
gD pe(Q?) =5.22e7 /20, (24)
As in our previous works [7-10,12,13], we define the coupling
constant as the value of the form factor at Q% = —m?2,, where

my, is the mass of the off-shell meson. Therefore, using Q2 =
—mf) in Eq. (24), the resulting coupling constant is:

8 pD* D* =6.55. (25)

For an off-shell D* meson, our sum rule results can also be
fitted by an exponential parametrization, which is represented
by the dashed line in Fig. 7:

* 2
g\ (0%) =4.95¢7 /133, (26)
Using 0% = —sz* in Eq. (26) we get:

gpp+p* =6.70, (27)
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Q%(GeV?)

Fig. 8. Dependence of the form factor on the continuum threshold for the p
off-shell case. The dashed curve corresponds to Ag ;, = 0.5 GeV, the solid one
to Ag,y = 0.6 GeV and the dotted curve to Ag ;, = 0.4 GeV.

in a good agreement with the result of Eq. (25).

In order to study the dependence of our results with the con-
tinuum threshold, we vary Ag, between 0.4 GeV < A, <
0.6 GeV in the parametrization corresponding to the case of an
off-shell p. As can be seen in Fig. 8, this procedure gives us an
uncertainty interval of 6.40 < g,p+p+ < 6.92 for the coupling
constant.

Concluding, the two cases considered here, off-shell p or
D*, give compatible results for the coupling constant, evaluated
using the QCDSR approach. Considering the uncertainties in
the continuum thresholds we obtain:

8pD*D* =6.60£0.31. (28)

This generic value of the coupling constant can be easily related
to the couplings of the specific charge states. From Eq. (17) we
arrive at:

. gp_D*OD*+ _ gp+ D*0 p*+
8pD*D* = N NG

= _ngD*+ D+ = ngD*OD*O . (29)

From Egs. (24) and (26) we can also extract the cut-off
parameter, A, associated with the form factors. We get A ~
1.64 GeV for an off-shell p meson and A ~ 3.65 GeV for an
off-shell D*. The cut-off values obtained here follow the same
trend as observed in Refs. [7-10]: the value of the cut-off is di-
rectly associated with the mass of the off-shell meson probing
the vertex. The form factor is harder if the off-shell meson is
heavier.

As for the value of g,p+p=, this coupling has not been dis-
cussed in the literature as much as those involving the J /¢
and there are only few works presenting estimates for it. The
starting point in these estimates is always the SU(4) symmetry.
According to SU(4) we should expect:

8J/yD*D* = &J/yDD> (30)

8pD*D* = 8pDD 3D
and

V6
8pD*D* = = 81/yD*D*- (32)

From our previous works [8,13] we find that in QCDSR
Eq. (30) is satisfied. However, from [7] and from the present
work we conclude that Eq. (31) is not satisfied, since g,p*p+ =
6.60 + 0.31 whereas g,pp =3.04 &= 0.30." Eq. (32) is not true
either because g,y pxpr = 6.2 & 0.9. These relations are vio-
lated at the level of 50%. This is not surprising since the mass
difference starts to play an important role when we go from the
heavier vector mesons to p. As for the absolute value, the exist-
ing estimates, used in [3,4], lead to g,p*p+ = 2.52. Our result
is a factor two larger.
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