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Abstract

We investigate (n + 1)-dimensional cosmology with varying speed of light. After solving corresponding Wheeler–DeWitt equation, we obtain
exact solutions in both classical and quantum levels for (c−Λ)-dominated Universe. We then construct the “canonical” wave packets which exhibit
a good classical and quantum correspondence. We show that arbitrary but appropriate initial conditions lead to the same classical description. We
also study the situation from de-Broglie Bohm interpretation of quantum mechanics and show that the corresponding Bohmian trajectories are in
good agreement with the classical counterparts.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

In recent years the varying speed of light theories (VSL) has
attracted much attentions [1–18] (for a comprehensive review
see [19]). These theories proposed by Moffat [1] and Albrecht
and Magueijo [2], in which light is traveling faster in the early
periods of the existence of the Universe, could be considered
as an alternative to the inflation scenario. It has been shown
that the horizon, flatness, and cosmological constant problems
can be solved in these models. Moreover, homogeneity and
isotropy problems may find their appropriate solutions through
this mechanism [2]. Recently, an interesting discussion on the
foundations of VSL theories and the conceptual problems aris-
ing from the meaning of varying speed of light have been done
by Ellis, Magueijo and Moffat [20,21].

It is shown that it is possible to generalize these ideas to pre-
serve the general covariance and local Lorentz invariance [22].
They have the merit of retaining only those aspects of the
usual definitions that are invariant under unit transformations
and which can therefore represent the outcome of an experi-
ment. This can be done by introducing a time-like coordinate x0
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which is not necessarily equal to ct . In terms of x0 and �x,
we have local Lorentz invariance and general covariance. The
physical time t , can only be defined when dx0/c is integrable.

Some authors have studied quantum cosmological aspects of
VSL models [23–25]. In particular, Shojai et al. [25] have con-
sidered FRW quantum cosmological models with varying speed
of light in the presence of cosmological constant. They solved
the corresponding Wheeler–DeWitt (WDW) equations exactly
and found the eigenfunctions. Then, they used these eigenfunc-
tions to construct the Bohmian trajectories via de-Broglie Bohm
interpretation of quantum mechanics. As they have truly stated,
the Bohmian trajectories highly depend on the wave function of
the system and various linear combinations of eigenfunctions
lead to different Bohmian trajectories.

On the other hand, a legitimate question which arises is,
how we can construct a specific wave packet which completely
corresponds to its unique classical counterpart? First let us ex-
plain what we expect from classical–quantum correspondence.
A good classical–quantum correspondence means that the wave
packet centered around the classical path, the crest of the wave
packet should follow as closely as possible the classical path,
and to each distinct classical path there should correspond a
wave packet with the above properties. The first part of this con-
dition implies that the initial wave function should consist of a
few localized pieces. Secondly, one expects the square of the
wave packet describing a physical system to possess a certain
degree of smoothness.
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Here, we use the method that is presented in Ref. [26] to
construct the wave packets with the above properties which
so-called “canonical” wave packets. Furthermore, we use
de-Broglie Bohm interpretation to find its corresponding
Bohmian trajectories and compare them with the classical ones.
We will show that the resulting Bohmian trajectories which
are obtained from canonical wave packets, are in good agree-
ment with the classical counterparts. It is worth to mention that
since time is absent in quantum cosmology, some other meth-
ods like Schutz’s formalism also can be used to recover the
notion time [27,28].

The Letter is organized as follows: in Section 2, we present
the action in n + 1 dimensions and reduce it to a more sim-
pler form using appropriate transformations. In Section 3, we
quantize the model and obtain the exact solutions of WDW
equation. Then we construct the canonical wave packets using
the prescription stated in Ref. [26]. In Section 4, we find the
corresponding Bohmian trajectories and compare the classical
and quantum mechanical solutions. In Section 5, we state our
conclusions.

2. The model

Let us start from the Einstein–Hilbert action for varying
speed of light theory [19,22,25] generalized in n + 1 dimen-
sions

S =
∫

dn+1x
√−g

(
eαψ

(
R− 2Λ(ψ) − κ∇μψ∇μψ

)

(1)+ eβψLm(φi, ∂μφi)
)
,

where ψ = log(c/c0) is the scalar field and c0 is a constant
velocity. Units are chosen such that the factor 16πG/c4

0 be-
comes equal to one. We have also consider a dynamical term for
the velocity of light with a dimensionless coupling constant κ ,
and φi represent matter fields. Note that for n = 3, α = 4, and
β = 0 this theory is nothing but a unit transformation applied
to Brans–Dicke theory [19]. Particle production and second
quantization for this model have been discussed in [22] and
black hole solutions are also studied [29]. Fock–Lorentz space–
time [30,31] as the “free” solution, and fast-tracks as solutions
driven by cosmic strings [22] are other interesting issues which
have been investigated. In this formalism, we use an “x0” co-
ordinate, with dimension of length rather than time. With this
choice, c appears nowhere in the usual definitions of differen-
tial geometry, which may therefore still be used. In fact, x0 is
not equal to ct and since c is a field, c dt is not necessarily in-
tegrable. Therefore, definition of physical time is only possible
when dx0/c is integrable [22].

Let us consider an (n+1)-dimensional FRW Universe, since
we want to deal with the cosmological problem. In this situa-
tion, the Lagrangian (1) becomes

L= aneαψ

[
−n(n − 1)

(
ȧ

a

)2

− 2αnψ̇

(
ȧ

a

)
+ n(n − 1)

k

a2

(2)− κψ̇2 − 2Λ(ψ)

]
+ aneβψLm(φi, ∂μφi),
where a is the scale factor and the constant k is the spatial cur-
vature constant which can be k = +1,−1,0 for spatially closed,
open and flat cosmological models, respectively. Since recent
observations are in agreement with the assumption of flat Uni-
verse, we assume k = 0.

To simplify the Lagrangian we can use the change of vari-
able b = e−ϕ which leads to

(3)ψ = ln(b), ψ̇ = ḃ

b
.

In terms of a and b, the Lagrangian for a (c − Λ)-dominated
Universe (Lm = 0) can be written as

L= −bα

[
n(n − 1)ȧ2an−2 − 2αn

ḃ

b
ȧan−1

(4)+ κ

(
ḃ

b

)2

an + 2anΛ(b)

]
.

Now, we define new variables

(5)u + v = Aaα′
bβ ′

,

(6)u − v = aγ ′
bη′

,

where α′, β ′, γ ′, η′ and A are constants. Since we are interested
to decouple the variables in the Lagrangian, we choose the con-
stants to reduce the kinetic part of the Lagrangian to u̇2 − v̇2.
This means

u̇2 − v̇2 = A
[
α′γ ′aα′+γ ′−2bη′+β ′

ȧ2

+ (α′η′ + β ′γ ′)aα′+γ ′−1bη′+β ′−1ȧḃ

+ β ′η′aγ ′+α′
bη′+β ′−2ḃ2]

= bα

[
−n(n − 1)ȧ2an−2 − 2αn

ḃ

b
ȧan−1

(7)− κ

(
ḃ

b

)2

an

]
.

Which leads to the following equations

(8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α′ + γ ′ = n,

β ′ + η′ = α,

Aα′γ ′ = −n(n − 1),

Aη′β ′ = −κ,

A(α′η′ + β ′γ ′) = −2αn.

Finally, in terms of u and v the Lagrangian (4) takes the form

(9)L= u̇2 − v̇2 − 2

A

(
u2 − v2)Λ(u,v).

The corresponding Hamiltonian can be easily obtained as

(10)H = p2
u − p2

v

4
+ 2

A

(
u2 − v2)Λ(u,v),

where pu = ∂L
∂u̇

and pv = ∂L
∂v̇

. Therefore, the classical equations
of motion for u and v directions are

(11)ü = 1

A

[
2u + (

u2 − v2) ∂

∂u

]
Λ(u,v),

(12)v̈ = 1
[

2v + (
v2 − u2) ∂

]
Λ(u,v),
A ∂v
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(13)0 = u̇2 − v̇2 + 2

A

(
u2 − v2)Λ(u,v),

where the last equation is zero energy condition. For ψ in-
dependent cosmological constant (Λ(ψ) = Λ), these equa-
tions represent a two-dimensional Simple Harmonic Oscillator
(SHO) with the same frequency in each direction. In this case,
the classical trajectories are circles with arbitrary radius (i.e. ξ )
in configuration space.

3. Quantum cosmology and wave packets

Let us now turn to the study of quantum cosmology of the
model presented above. The Hamiltonian can then be obtained
upon quantization pu → −i ∂

∂u
, etc., one arrives at the WDW

equation describing the corresponding quantum cosmology

HΨ (u, v) =
{
− ∂2

∂u2
+ ∂2

∂v2
+ ω2(u2 − v2)}Ψ (u,v) = 0,

(14)

where ω =
√

8Λ
A

. Note that the appropriate transformations (5),
(6) prevent us from facing factor ordering problem which usu-
ally arises [25]. This equation is separable in the minisuper-
space variables and a solution can be written as

(15)Φn(u, v) = ψn(u)ψn(v),

where

(16)ψn(x) =
(

ω

π

)1/4[
Hn(

√
ωx)√

2nn!
]
e−ωx2/2.

In these expressions Hn(x) is a Hermite polynomial and the
orthonormality and completeness of the basis functions follow
from those of the Hermite polynomials.

Now, we can use the method that is developed in Ref. [26]
to construct the “canonical” wave packets. The canonical wave
packets contain all desired properties to have a good classical
and quantum correspondence. The general wave packet which
satisfies above equation can be written as

Ψ (u,v) =
∑

n=even

Anψn(u)ψn(v) + i
∑

n=odd

Bnψn(u)ψn(v).

(17)

Since the potential term is symmetric, the eigenfunctions are
separated in two even and odd categories. The initial wave func-
tion and its initial derivative take the form

(18)Ψ (u,0) =
∑

n=even

Anψn(u)ψn(0),

(19)
∂Ψ (u, v)

∂v

∣∣∣∣
v=0

= i
∑

n=odd

Bnψn(u)ψ ′
n(0).

Therefore, the An coefficients determine the initial wave func-
tion and Bn coefficients determine the initial derivative of the
wave function. As a mathematical point of view, since the un-
derling differential equation (14) is second order, Ans and Bns
are arbitrary and independent variables. On the other hand, if
we are interested to construct the wave packets which simulate
the classical behavior with known classical positions and ve-
locities, these coefficients will not be all independent yet. It is
obvious that the presence of the odd terms of v does not have
any effect on the form of the initial wave function but they are
responsible for the slope of the wave function at v = 0, and
vice versa for the even terms. Near v = 0 the differential equa-
tion (14) takes the form

(20)

{
− ∂2

∂u2
+ ∂2

∂v2
+ ω2u2

}
ψ(u, v) = 0.

This PDE is also separable in u and v variables, so we can write

(21)ψ(u, v) = ψ(u)χ(v).

By using this definition in (20), two ODEs can be derived

(22)
d2χn(v)

dv2
+ Enχn(v) = 0,

(23)−d2ψn(u)

du2
+ ω2u2ψn(u) = Enψn(u),

where Ens are separation constants. These equations are
Schrödinger-like equations with Ens as their ‘energy’ levels.
Eq. (22) is exactly solvable with plane wave solutions

(24)χn(v) = αn cos(
√

Env) + iβn sin(
√

Env),

where αn and βn are arbitrary complex numbers. Eq. (23)
is Schrödinger equation for SHO with the well-known solu-
tions (16). Now, the general solution to Eq. (20) can be written
as

ψ(u, v) =
∑

n=even

A∗
n cos(

√
Env)ψn(u)

+ i
∑

n=odd

B∗
n sin(

√
Env)ψn(u).

As stated before, this solution is valid only for small v. The
general initial conditions are

(25)ψ(u,0) =
∑
even

A∗
nψn(u),

(26)ψ ′(u,0) = i
∑
odd

B∗
n

√
Enψn(u),

where prime denotes the derivative with respect to v. Obvi-
ously a complete description of the problem would include the
specification of both these quantities. However, since we are
interested to construct the wave packet with all classical prop-
erties, we need to assume a specific relationship between these
coefficients. The prescription is that the functional form of un-
determined coefficients, i.e., B∗

n for n odd, are equal to the func-
tional form of determined coefficient, i.e., A∗

n for n even [26]

(27)B∗
n = A∗

n for n odd.

Therefore, in terms of Ans and Bns (17) we have

(28)Bn = i
√

En

ψ ′
n(0)

ψn(0)An for n odd.

Note that ψn(0)An for n odd, are defined to have the same
functional form as for n even. We will see that this choice of
coefficients leads to a good classical and quantum correspon-
dence. Fig. 1 shows the resulting wave packet for a particular
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Fig. 1. Left, the square of the wave packet |ψ(u, v)|2 for A∗(n) = χn√
2nn! e

−χ2/4 and χ = 5. Right, the classical (dashed line) and Bohmian (solid line) trajectories.

Fig. 2. Left, the square of the wave packet |ψ(u, v)|2 for A∗(n) = nχn√
2nn! e

−χ2/4 and χ = 5. Right, the classical (dashed line) and Bohmian (solid line) trajectories.
choice of initial condition (A∗(n) = χn√
2nn!e

−χ2/4). These co-
efficients are chosen such that the initial state consists of two
well separated peaks and this class of problems is the ones
which are also amenable to a classical description. As can be
seen from Fig. 1, the wave function is smooth and its crest
follows the classical trajectory. In fact, we are free to choose
any other appropriate initial condition. Fig. 2 shows the result-
ing wave packet with different initial condition. We see that
this wave packet also contains the same behavior as the pre-
vious one. Note that the two initial conditions correspond to
two different classical descriptions with radii ξ = 5 (Fig. 1) and
ξ = 5.364 (Fig. 2), respectively. In the next section, to make
the connection between quantum mechanical and classical so-
lutions more clear, we study this issue from Bohmian point of
view.

4. Bohmian trajectories

To make the connection between the classical and quantum
results more concrete, we can use the ontological interpretation
of quantum mechanics [32,33]. Moreover, since time is absent
in quantum cosmology we can recover the notion of time using
this formalism.

In ontological interpretation the wave function can be writ-
ten as

(29)Ψ (u,v) = ReiS,

where R = R(u, v) and S = S(u, v) are real functions and sat-
isfy the following equations

−∂2R

∂u2
+ ∂2R

∂v2
+ R

(
∂S

∂u

)2

− R

(
∂S

∂v

)2

+ ω2(u2 − v2)R = 0,

(30)

(31)R
∂2S

∂u2
− R

∂2S

∂v2
+ 2

∂R

∂u

∂S

∂u
− 2

∂R

∂v

∂S

∂v
= 0.

To write R and S, it is more appropriate to separate the real and
imaginary parts of the wave packet

(32)Ψ (u,v) = x(u, v) + iy(u, v),
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Fig. 3. Plot of u(t) for classical (dashed line) and Bohmian (solid line) trajectories where A∗(n) = χn√
2nn! e

−χ2/4 (left), A∗(n) = nχn√
2nn! e

−χ2/4 (right) and χ = 5.
Fig. 4. Initial velocity (v̇(0)) via classical (dashed line) and de-Broglie Bohm
interpretation of quantum mechanics (solid line).

where x, y are real functions of u and v. Using Eq. (29) we
have

(33)R =
√

x2 + y2,

(34)S = arctan

(
y

x

)
.

On the other hand, the Bohmian trajectories, which determine
the behavior of the scale factor, are governed by

(35)pu = ∂S

∂u
,

(36)pv = ∂S

∂v
,

where the momenta correspond to the classical related La-
grangian (L(q) = q̇2 − V (q)). Therefore, the equations of mo-
tion take the form

(37)u̇ = 1

2

1

1 + (
y
x
)2

d

du

(
y

x

)
,

(38)v̇ = −1

2

1

1 + (
y
x
)2

d

dv

(
y

x

)
.

Using the explicit form of the wave packet (29), these differen-
tial equations can be solved numerically to find the time evolu-
tion of u and v. In the right part of Figs. 1, 2, we superimposed
the classical and Bohmian trajectories for two different choices
of initial conditions. The coincidence between these two tra-
jectories is apparent from the figures. Moreover, the obtained
Bohmian position versus time (i.e. u(t)) coincides well with its
classical counterpart (Fig. 3). In particular, Fig. 4 shows the ini-
tial velocity at v = 0 versus classical radius from classical and
de-Broglie Bohm points of view. As can be seen from the figure,
the classical–quantum correspondence is manifest for large ξ ,
where ξ is the classical radius of motion. In fact, the difference
between classical and Bohmian results for small ξ is due to the
interference between the parts of the wave function and can be
reduced by making the wave function more localized over the
classical path [26].

5. Conclusions

We have studied (n + 1)-dimensional cosmology with vary-
ing speed of light. We have obtained exact solutions in both
classical and quantum levels for (c − Λ)-dominated Universe.
We then constructed the wave packets via canonical proposal
which exhibit a good classical–quantum correspondence. This
method proposes a particular relation between even and odd ex-
pansion coefficients which construct the initial wave functions
and the initial derivative of the wave functions, respectively. In
other words, canonical prescription defines a particular connec-
tion between position and momentum distributions which at the
same time correspond to their classical quantities and respect
the uncertainty relation. We have also studied the situation us-
ing de-Broglie Bohm interpretation of quantum mechanics. In
fact, Bohmian trajectories highly depend on the wave function
of the system and various linear combinations of eigenfunctions
lead to different Bohmian trajectories. Therefore, the inconsis-
tency between classical and Bohmian trajectories is natural in
most cases. In this Letter, using canonical prescription, we have
tried to construct the wave packets which peak around the clas-
sical trajectories and simulate their classical counterparts. Us-
ing Bohmian interpretation we quantified our purpose of classi-
cal and quantum correspondence and showed that the Bohmian
positions and momenta coincide well with their classical val-
ues upon choosing arbitrary but appropriate initial conditions.
It is worth mentioning that the classical and quantum corre-
spondence issue has been attracted much attention in the litera-
ture [34]. In particular, Hawking and Page [35] and Kiefer [36]
have also studied the same WDW equation and discussed the
situations where the resulting wave packets exhibit classical
properties. But since the Kiefer’s proposal of initial condition
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result in a real wave function, it does not correspond to any clas-
sical trajectory. In summary, canonical proposal can be consid-
ered as a general, simple and efficient method to construct wave
packets with a complete classical behavior for various physical
models where we encounter with WDW-like equations.
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