
 Procedia Computer Science 52 (2015) 278 – 285

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2015.05.081

ScienceDirect
Available online at www.sciencedirect.com

6th International Conference on Ambient Systems, Networks and Technologies
(ANT 2015)

Set partition and trace based verification of Web service composition

Gopal N. Raia,b, G. R. Gangadharana,∗

aIDRBT, Masab Tank, Hyderabad-500057, India
bUniversity of Hyderabad, Gachibowli, Hyderabad-500046, India

Abstract

Designing and running Web services compositions are error-prone as it is difficult to determine the behavior of web services during

execution and their conformance to functional requirements. Interaction among composite Web services may cause concurrency

related issues. In this paper, we present a formal model for reasoning and verifying Web services composition at design level. We

partition the candidate services being considered for composition into several subsets on the basis of their service invocation order.

We arrange these subsets to form a Web services set partition graph and transform to a set of interacting traces. Then, we propose

a novel methodology for service interaction verification that uses service description (from WSDL file) to extract the necessary

information and facilitates the process of modeling, analyzing, and reasoning the composite services. As a part of verification

technique, we use two levels of modeling. This includes abstract modeling that further leads to detailed modeling if required,

thereby reducing the computation time and modeling complexity.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Web service composition; Web service interaction; formal verification; modeling

1. Introduction

Service composition is perceived as the federation of a service with other remote services, specifying the partici-

pating services, the invocation sequence of services and the methods for handling exceptions1. Designing and running

Web services compositions are error-prone because a single service may have several dependencies with other ser-

vices to perform their tasks correctly and the developers may not know the identity of those services that would fulfill

the request. Analogous to other distributed systems based on asynchronous communication, it is difficult to anticipate

how Web service compositions behave during execution and whether they conform to the functional requirements2.

Interaction among composite Web services through messages opens the space for concurrency related issues3. These

concurrency bugs are difficult to be found out by testing, since they tend to be non-reproducible or are not covered by

test cases. Furthermore, the asynchronous nature of communications complicates the scenario and it becomes very

difficult to reason about and debug. Existing approaches including model checking, Petri net, π calculus, genetic

∗ Corresponding author. Tel.: +91-40-2329-4184; fax: +91-40-2353-5157.

E-mail address: geeyaar@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82325549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.081&domain=pdf

279 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

algorithms, Temporal Logic of Actions (TLA), Alternating-time Temporal Logic based reasoning, and case-based

reasoning achieve the aspect of interaction verification by modeling, planning, and verifying the Web service compo-

sition. However, these approaches have their disadvantages like involvement of intermediate languages, inability to

capture recursive composition, and higher space and time complexity.

In this paper, we present a formal model for reasoning and verifying dynamic Web services composition at design

level. Our aim is to provide a methodology that takes a set of candidate Web services, their respective WSDL files,

and their interaction specifications as input and provides the output whether an interaction specification is satisfied or

not. Furthermore, if the interaction specification is not satisfied, then the counterexample is produced. The salient

contributions of our paper are as follows:

• A novel concept of Web services set partitioning technique that makes a set of candidate Web services being

considered for a composition scenario into a number of subsets based on service invocation possibility and

thereby generating a Web services set partition (WSSP) graph.

• Formal definitions of trace related terminologies for modeling and reasoning interactions of a Web service

composition

• A novel methodology for service interaction verification using WSSP and trace concepts. As a part of verifi-

cation technique, we use abstract modeling in the beginning that further leads to detailed modeling if required.

This technique reduces the computation time and modeling complexity.

The rest of the paper is organized as follows: Section 2 discusses various approaches for verification of Web

services composition. In section 3, we propose Web services set partitioning concept. Section 4 describes trace

related definitions related to Web service composition. Our proposed service interaction verification methodology is

presented in Section 5. Section 6 illustrates the evaluation of Web service interaction verification using an example,

followed by concluding remarks in Section 7.

2. Related work

Foster et al. 4 present a model-based verification approach to verify Web service composition. The approach sup-

ports verification of the specification models to confirm the expected results for both the designer and the implementer.

The specifications of the design are modeled in UML in the form of message sequence charts and mechanically com-

piled into the finite state process notation to concisely describe and reason about the concurrent programs.

Fu et al. 5 present a set of tools and techniques for analyzing the interactions of composite Web services that are

specified in BPEL and communicate through asynchronous XML messages. They present a framework where BPEL

specifications of Web services are translated to an intermediate representation, followed by the translation of the

intermediate representation to a verification language.

Zheng et al. 6 propose Web Service Automaton (WSA) that transforms BPEL into the input language (Promela or

SMV) for a model-checker (SPIN or NuSMV). This approach generates test cases using counterexamples to perform

conformance tests on BPEL and using WSDL to test Web service operations. Zhu et al. 7 propose an effective ap-

proach to describe and compose semantic Web services using UML. However UML cannot be used for verifying the

correctness of Web service composition.

Separation of operational and control behaviors of Web services makes better service design and verification. This

practice is adopted in8. Sheng et al. 9 propose a Web service model for the dependable development of Web services.

In this model, service behaviors are separated into operational behavior and control behavior and coordination between

them is facilitated or achieved through conversational messages. Elkohly et al. 10 propose extended branching-time

temporal logic with temporal modalities to specify commitments in Web services interaction and their fulfillments.

A considerable amount of work based on modeling and analyzing Web services using Petri net has been already

done11,12,13. Schlingloff et al. 14 combine Petri net and model checking for modeling and verification of a composite

service. The authors illustrate how to model Web services with Petri net and study the automated verification according

to abstract correctness criterion. Further, they relate the correctness of Web service models to the model checking

problem for alternating temporal logics.

280 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

In comparison to earlier works, our approach is better in the following aspects: It does not employ any interme-

diate language. Faulty Web services and isolated Web services can be easily detected. The set based mathematical

articulation of Web service composition enhances the process of automation of service interaction verification.

3. Web services set partition (WSSP)

LetW = {w1, · · · ,wm} be a finite set of Web services being considered for a composition scenario. Throughout

the paper, we considerW in the same meaning unless stated otherwise.

Definition 3.1 (Service invocation possibility set (SIPS)). Let ‘�→’ be a symbol to represent service invocation pos-

sibility. (wi �→ S x = {wj,wk} means that wi can directly invoke wj and wk.) Given a Web service wi ∈ W, the

service invocation possibility set for the service wi with respect to W is a set represented by S IPS (wi) such that

S IPS (wi) ∈ 2W and wi �→ S IPS (wi).

Definition 3.2 (Service invocation chain igniter). A Web service wi ∈ W is called as a service invocation chain igniter

with respect toW if and only if S IPS (wi) � ∅ and �wj ∈ W : wi ∈ S IPS (wj).

Definition 3.3 (Isolated Web service). A Web service wi ∈ W is called as an isolated service with respect toW if

and only if S IPS (wi) = ∅ and �wj ∈ W : wi ∈ S IPS (wj).

Algorithm 1 Web Services Set Partition (WSSP)

Input:W = {w1,w2,w3, · · · ,wm}
Output: S = {S 1, S 2, S 3, · · · , S n}

1: let S = {S 1 ← ∅, · · · , S n ← ∅}, n = 2|W| − 1 be a

set

2: for all wi ∈ W do
3: if S IPS (wi) � ∅ and �wj ∈ W : wi ∈

S IPS (wj) then
4: S 1 ← wi

5: end if
6: end for
7: for all wi ∈ S 1 do
8: Temp←W
9: Temp← Temp\S 1

10: let P = {P1} be a set

11: n← 1

12: while (Pn � ∅) do
13: create a set Pn+1 ← ∅
14: P ← Pn+1

15: for all wi ∈ Pn do
16: for all wj ∈ Temp do
17: if wi �→ wj then
18: Pn+1 ← wj

19: end if
20: end for
21: end for
22: Temp← Temp\Pn

23: S n ← S n ∪ Pn

24: n← n + 1

25: end while
26: end for
27: for all S i ∈ S do
28: if S i = ∅ then
29: S ← S\S i

30: end if
31: end for

To analyze the setW, we partition it into n number of subsets S = {S 1, · · · , S n} using algorithm 1, where n < 2|W|

and S ⊂ 2W such that following properties hold

• P1. ∀S i ∈ S : S i � ∅ (No partition set is empty.)

• P2. ∀wi ∈ S 1 : {(S IPS (wi) � ∅) ∧ (�wj ∈ W : wj �→ wi)} (Partition set S 1 is the set of igniter Web services.)

• P3. |S 1| = 1→
(
∀S i, S j ∈ S : S i � S j → S i ∩ S j = ∅

)
. (Partition sets with respect to a single igniter are

pairwise disjoint.)

• P4. S n ⊆
⋃
∀wi∈S n−1

S IPS (wi), where n > 1. (Each successor partition set (except than the first set S 1) S n ∈ S is

subset or equal to union of service invocation possibility sets for each element of the predecessor partition set.)

281 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

• P5. |
⋃n

i=1 S i| < |W| ⇔ ∃wi ∈ W : wi � S j,where1 ≤ j ≤ n. (Non exhaustive partition ofW implies existence

of isolated services inW. A service that does not participate in partition is isolated service.)

3.1. Web services set partition graph (WSSP graph)

A WSSP graph represents all the subsets and service invocation possibilities in a partitioned Web services set

resulting from the WSSP algorithm. In WSSP graphs, each S i ∈ S behave as multi-element nodes and we interpret

the service invocation possibility into directed edges from a Web service to another Web service. Two types of directed

edges are being used for this graph: dashed arrow and solid arrow. A dashed arrow infers that a particular service

that is on the arrow-head side is available on this chain but cannot directly be invoked by an arrow-tail side service.

A solid arrow infers that the service on the arrow-head side can be invoked directly by the service on the arrow-tail

side. Fig.1 is an example of WSSP graph. In Fig.1, two order subscripts are used to name the Web services (for ease

of representation). WSSP graph can be perceived in two different manners as per requirement: consolidated view and

distinguished view.

Consolidated view. A consolidated view is an overall view with all igniters being placed in the first set S 1. Fig.1

depicts a consolidated view for a Web service composition scenario. All the services that can be invoked by any

service in the subset S 1 will be in the second subset with their respective directed edges and so on. A service could

be repeated in several subsets. It is also possible that a service could invoke a service from its own set. Even though a

service is invoking a service from its own set, an arrow must not be there within the subset.

Distinguished view. A distinguished view is an extracted view of a consolidated view. For this, we perceive

the whole scenario from the point of view of a specific igniter from the first set. Fig. 2 is a typical depiction of a

distinguished view with w1 j as an igniter. A distinguished view always forms a tree with an igniter as a root node and

a consolidated view may or may not form a tree.

Fig. 1: Consolidated view of a Web service composition scenario Fig. 2: Distinguished View (w1 j as Composition Chain Igniter)

4. Trace inclusion and merging

A trace is a unidirectional tree 〈V, E〉 where vertices represent Web services, edges represent service invocation

possibilities, and arrow head shows the direction of workflow provided that each vertex is connected with exactly two

edges (one is input and another is output) except first (root) and last (leaf) vertices. In other words, a trace is a linear

Web services composition workflow path.

Trace inclusion. Trace inclusion refers to the containment of a trace by another trace(s). There are two classes of

trace inclusion as follows:

Total trace inclusion is a condition where the root of a trace (for example wi) is present in a trace that is generated

from another root (for example wj). In this way, wj contains all the traces generated by wi. By computing total trace

282 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

inclusion, we avoid redundant traces in searching for or performing some actions over traces.

Given two or more traces generated by different igniters, a partial trace inclusion occurs if a trace-fraction is found

common in all traces. Trace fraction from wrl to wnl is common in all trees generated by igniters Ig2, Ig3, and Ig4

(Fig.1). By computing partial trace inclusion, the best-time complexity of a verification process could be improved.

The occurrence of a trace inclusion is possible only in a consolidated view because of the existence of more than one

igniter.

Trace merging. Trace merging is a condition where two or more traces originated from different igniters conjunct

at a point. Trace merging can be classified into two classes: total merging and partial merging. For an igniter, a total
merging situation occurs when all the traces originated from an igniter get merged at a point that lies on the trace

generated from another igniter. In Fig.1, for an igniter Ig3, Pm2 is a total merging point as the only trace originated

from Ig3 is merged here.

For an igniter, a partial merging situation occurs if some traces get merged but not all. In Fig.1, for Ig1 and Ig2, Pm1

is a merging point where each individual traces from both igniters conjunct. These are not the only traces from Ig1

and Ig2. Besides these traces, there are some other traces which do not get merged. Merging points are very critical

points and play an important role in our proposed service interaction verification methodology.

5. Service interaction verification and deadlock avoidance

The process of service interaction verification includes modeling of the system, writing the specification, and

applying the verification technique. In our approach, we follow a model-based approach for verifying a system.

In a model-based approach, the system is represented by a model M for an appropriate logic. The specification is

represented by a formula φ and the verification method consists of computing whether a model M satisfies φ (M |= φ).
Modeling the system. Given a setW of candidate Web services being considered for composition, the Web Ser-

vices Set Partition algorithm in section 3 provides the partitioned subsets of Web services setW on the basis of the

service invocation order of the candidate Web services. The WSSP graph satisfying disjointness and orthogonality

results in a WSSP graph representing an abstract model of the system. The abstract model works as a base model

against which the interaction specification has to be verified. This abstract model captures an abstract view of the

system. In the abstract model, the activities of Web services are not considered.

To model subtleties regarding the system, we are extracting two types of information from a given WSDL file: ac-

tivities within Web services and communication pattern. The abstract model becomes more detailed after specifying

these sets of information. Interaction specification. Interaction specifications are the properties about interaction

among Web services written formally that need to be verified against the intended model. We formalize the interac-

tion specifications using temporal logic. We select Linear Temporal Logic (LTL)15 and Computational Tree Logic

(CTL)15 to write specifications and interpret their meaning over the model in the process of verification. We write the

interaction specifications in terms of the activities of Web services.

Verification technique. Our approach differ from classical model-based scheme at modeling phase and at veri-

fication phase. Specification writing phase is same as in classical scheme. The verification process begins with the

analysis of specification formulae. Consistency among specifications are checked as explained in15. Algorithm 2

presents our service interaction verification methodology.

In LTL model checking, before applying a verification technique, LTL properties must be negated. Here we do not

negate the property and do not perform any kind of product between property specification and model specification

because we check all possible traces explicitly.

We consider the interaction specification formulae written in LTL/CTL from the set of specifications Φ and extract

the activities of Web services. After the extraction of activities, we map the activities to their respective owner Web

services and inflate Web services with its activities. Use of the concept of inflation and deflation in verification tech-

nique reduces the chances of state explosion. However, in worst case, if the activities from all the candidate Web

services are involved in a single interaction specification formula, the deflation is not useful. We deflate the services

if the services are not in use. After inflation, we explore all the possible communication patterns among the involved

Web services. To explore the possibilities, we consider one of the following four communication types: one-way,

solicit-response, request-response, and notification. The set of constraints based on the model reduces the number of

possible communication patterns.

283 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

Algorithm 2 Service Interaction Verification

Input:W, S, WSDL files, abstract model M, spec-

ification formulae set Φ = {φ1, · · · , φp}
Output: yes or no with counter trace

1: ACT (wi) : Set of all activities of wi

2: ATOM(φi) : Set of all atoms in φi

3: for all φi ∈ Φ do
4: let Wφi ← ∅ be a set of Web services

5: for all wj ∈ W do
6: if ACT (wj) ∩ ATOM(φi) � ∅ then
7: Wφi ← wj

8: end if
9: end for

10: T(w j) : Set of traces generated by igniter wi

11: D(wi) : Set of all services in distinguished

view of igniter wi

12: S 1 ∈ S : Set of igniters

13: for all wj ∈ S 1 do
14: if Wφi ⊆ D(wj) then

15: if any trace-constraint exists then
16: apply over T(wj)

17: end if
18: FLAG = FALS E
19: for all Ti ∈ T(wi) do
20: if Ti �|= φi then
21: Ti is a counter example

22: FLAG ← TRUE
23: end if
24: end for
25: if FLAG=FALSE then
26: d(wi) |= φi

27: end if
28: else φi is not relevant

29: end if
30: end for
31: deflate the services

32: end for

We match each trace generated by with the intended interaction specification formulae. If there is a match, then the

property (interaction specification) is satisfied within the trace, otherwise violation exists. A trace which does not

follow the property specification is considered as a counter example. With the help of a counter example, the designer

corrects the model. We use trace concepts to optimize the computation process and search space. This technique

behaves in a correct manner for any number of involved services.

Theorem 5.1. A WSSP graph G for the set W of Web services, satisfying the properties P1-P5 cannot lead to a
communication deadlock.

Proof. Assume, to the contrary, that G |= (P1 − P5) and deadlock is possible in G.

Let invocation orders wi �→ wj, wj �→ wk, and wk �→ wi forms a deadlock cycle in G. Since we have considered that

wi �→ wj and wk �→ wi, wi works as a non-igniter service. Let wig be an igniter such that wi lies on a trace generated

by wig. This implies that wj, wk, and wl fall on same trace as we have assumed wi �→ wj, wj �→ wk, and wk �→ wi.

Let S 1, · · · , S n be partition sets with respect to igniter wig. Let wi ∈ S i, S IPS (S i) = S j, S IPS (S j) = S k, and

S IPS (S k) = S l. This implies that wi ∈ S l. But, we have already assumed that wi ∈ S i. This implies S i ∩ S l � 0. This

result contradicts the property P3. This contradiction establishes the proof.

6. Evaluating our service interaction verification approach

We implemented a travel agency scenario using Eclipse IDE for Java, XAMPP Apache Tomcat server, and MySql

database. Experiments were performed under Windows 8 64-bit operating system with Intel(R) Core(TM) i5 2.6 GHz

processor and 8GB RAM.

We present a detailed underlying description how our travel agency scenario implementation and verification

works. A customer, who wants to plan her travel, invokes the travel agency Web service at first. Then the travel

agency Web service invokes three Web services: car rental (CR), hotel booking (HB), and flight booking (FB) to book

the respective services.

284 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

Modeling. As discussed previously, we have four Web servicesW = TA, CR, HB, and FB. By applying algorithm

1 we have S = {S 1, S 2} where S 1 = {T A} and S 2 = {CR,HB, FB}. The WSSP graph for the set S represents a

distinguished view with TA as an igniter service. As this graph satisfies disjointness and orthogonality, no deadlock

is possible.

TA conveys two types of messages. The purpose of first type of messages (Car Avail?, Hotel Avail?, and

Flight Avail?) is to get information regarding availability. Recipient Web services (CR, HB and FB) reply Car Yes,

Hotel Yes, and Flight Yes respectively if availability is there. Otherwise Car No, Hotel No, and Flight No results

in response to the availability inquiry. After getting an affirmative answer regarding availability, TA requests for

booking by sending the second type of messages (Car Bk, Hotel Bk, and Flight Bk). On receiving a booking request

message from TA, the recipient services reply as Car Bkd, Hotel Bkd, and Flight Bkd if booking is done. Otherwise,

the recipient services reply ¬Car Bkd, ¬Hotel Bkd, and ¬Flight Bkd respectively. There may be several reasons for

failure of booking including technical errors.

Specification. Let→ be the logical implication. For writing specifications, we use the activities of Web services

as propositions. For this example, we consider following two interaction specification properties as LTL formulae

• φ1 = G((Hotel Yes ∧ Hotel Bk) → F(Hotel Bkd)). This property states that if hotel is available and TA
request to book the hotel then eventually hotel booking must be done.

• φ2 = G((Hotel Bkd) → F(Flight Bkd)). This property states that if hotel is booked then eventually flight
also must be booked (without flight booking there is no meaning of hotel booking).

For the above mentioned specifications, we do not have any inconsistencies.

Verification. At first, we consider the first LTL specification: φ1 = G((Hotel Yes∧Hotel Bk)→ F(Hotel Bkd)) to

verify against the model. By extraction, we find that the activities Hotel Yes, Hotel Bk, and Hotel Bkd constitute the

specification φ1. These activities belong to HB, TA, and HB respectively. Therefore, we inflate these services in the

abstract model. Since we do not have any activities from car rental service and flight booking service in specification

formulas, we do not inflate these services with activities.

We establish all communication patterns (shown in Fig.3) between TA and HB as the activities belong to these two

services. We find three traces between TA and HB. We verify each trace one by one and find out that the property φ1

gets violated in the following trace: T A→ Hotel Avail?→ Hotel Yes→ Hotel BK → ¬Hotel Bkd → HB.

Fig. 3: All possible communication patterns between TA and HB Fig. 4: Communication pattern where φ2 gets violated

Now, we consider the second LTL specification: φ2 = G((Hotel Bkd) → F(Flight Bkd)). By analyzing the said

specification formula, we extract two activities as follows: Hotel Bkd and Flight Bkd. These activities belong to HB

and FB. Activities involved in this specification belong to parallel traces. However, both traces are being generated by

the same igniter. One activity belongs to the trace from TA to FB and the other activity belongs to the trace from TA to

285 Gopal N. Rai and G.R. Gangadharan / Procedia Computer Science 52 (2015) 278 – 285

HB. Two traces alternative to each other cannot run at the same time while two parallel traces can run simultaneously.

For example, there are three traces from TA to HB. All are alternative to each other. Traces from TA to FB are parallel

to traces from TA to HB. We consider one-one relevant traces from TA to FB, TA to HB at a time and we find that

property φ2 is not satisfied. Fig.4 shows a communication pattern where specification φ2 gets violated.

7. Concluding remarks

In this paper we worked towards a formal verification methodology for Web services composition. We partition

the candidate Web services being considered for composition into several subsets on the basis of service invocation

order using web service partitioning algorithm. Arranging these subsets in a specific fashion results in a WSSP graph

that represents the abstract model of the system. Further, we transform this model into a set of interacting traces

that provides a strong formal basis to reason about the anticipated interaction specifications (properties) that a system

supposed to be have. We presented a service interaction verification methodology, that uses service description (from

a WSDL file) to extract the necessary information and facilitates the process of modeling, analyzing and reasoning

composite services. Using a WSSP graph satisfying disjointness and orthogonality, deadlocks are detected and re-

solved in Web services composition. Misbehaving Web services workflow can also be investigated with the help of

our proposed approach. Further, the distributed execution of composition pattern can be verified easily and isolated

services could be identified easily.

In our future work, we plan to verify the crucial properties like atomicity and recovery in service interactions.

Bisimulation study is useful when we wish to determine whether a service can substitute another service during

composition. We plan to extend our service interaction verification methodology with bisimulation and redundancy

checking.

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.. Web Services - Concepts, Architectures and Applications. Data-Centric Systems and

Applications. Springer; 2004.

2. Röglinger, M.. Verification of web service compositions: An operationalization of correctness and a requirements framework for service-

oriented modeling techniques. Business & Information Systems Engineering 2009;1(6):429–437.

3. Betin-Can, A., Bultan, T., Fu, X.. Design for verification for asynchronously communicating web services. In: Proceedings of the 14th
international conference on World Wide Web. ACM; 2005, p. 750–759.

4. Foster, H., Uchitel, S., Magee, J., Kramer, J.. Model-based verification of web service compositions. In: Proceedings of the 18th IEEE
International Conference on Automated Software Engineering. IEEE; 2003, p. 152–161.

5. Fu, X., Bultan, T., Su, J.. Analysis of interacting bpel web services. In: Proceedings of the 13th International Conference on World Wide
Web; WWW ’04. ACM; 2004, p. 621–630.

6. Zheng, Y., Zhou, J., Krause, P.. A model checking based test case generation framework for web services. In: 4th International Conference
on Information Technology (ITNG ’07). IEEE; 2007, p. 715–722.

7. Zhu, Z., Lan, R., Ma, R., Chen, Y.. Describing and verifying semantic web service composition with MDA. In: International Conference
on E-Business and Information System Security (EBISS ’09). IEEE; 2009, p. 1–6.

8. Bentahar, J., Yahyaoui, H., Kova, M., Maamar, Z.. Symbolic model checking composite web services using operational and control

behaviors. Expert Systems with Applications 2013;40(2):508–522.

9. Sheng, Q.Z., Maamar, Z., Yao, L., Szabo, C., Bourne, S.. Behavior modeling and automated verification of web services. Information
Sciences 2014;258:416–433.

10. El Kholy, W., Bentahar, J., El Menshawy, M., Qu, H., Dssouli, R.. Modeling and verifying choreographed multi-agent-based web service

compositions regulated by commitment protocols. Expert Systems with Applications 2014;41(16):7478–7494.

11. Hamadi, R., Benatallah, B.. A petri net-based model for web service composition. In: Proceedings of the 14th Australasian database
conference-Volume 17. Australian Computer Society, Inc.; 2003, p. 191–200.

12. Zhang, J., Chang, C., Chung, J.Y., Kim, S.. Ws-net: a petri-net based specification model for web services. In: Proceedings of the IEEE
International Conference on Web Services. IEEE; 2004, p. 420–427.

13. Tan, W., Fan, Y., Zhou, M.. A petri net-based method for compatibility analysis and composition of web services in business process

execution language. IEEE Transactions on Automation Science and Engineering 2009;6(1):94–106.

14. Schlingloff, H., Martens, A., Schmidt, K.. Modeling and model checking web services. Electronic Notes in Theoretical Computer Science
2005;126:3–26.

15. Baier, C., Katoen, J.P.. Principles of model checking. MIT press Cambridge; 2008.

