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Abstract

Certain trace inequalities related to matrix logarithm are shown. These results enable us to
give a partial answer of the open problem conjectured by A.S. Holevo. That is, concavity of
the auxiliary function which appears in the random coding exponent as the lower bound of the
quantum reliability function for general quantum states is proven in the case of 0 � s � 1.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In noncommutative (quantum) communication theory, the concavity of the auxil-
iary function of the quantum reliability function has remained as an open question [6]
and unsolved conjecture [8]. The auxiliary function E(s), (−1 < s � 1) is defined
by
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E(s) ≡ − log

{
Tr

[(
a∑
i=1

πiS
1

1+s
i

)1+s]}
, (1)

where each Si is the density matrix and each πi is nonnegative number satisfying∑a
i=1 πi = 1. See [2,6] for details on quantum reliability function theory. For the

above problem, we gave the sufficient condition on concavity of the auxiliary func-
tion in the previous paper [4].

Proposition 1.1 [4]. If the trace inequality

Tr

[
A(s)s

{
a∑
j=1

πjS
1

1+s
j

(
log S

1
1+s
j

)2
}

− A(s)−1+s
{

a∑
j=1

πjH

(
S

1
1+s
j

)}2]

� 0 (2)

holds for any real number s (−1 < s � 1), any density matrices Si (i = 1, . . . , a)
and any probability distributions π = {πi}ai=1, under the assumption that A(s) ≡∑a
i=1 πiS

1
1+s
i is invertible, then the auxiliary function E(s) defined by Eq. (1) is

concave for all s (−1 < s � 1).WhereH(x) = −x log x is the matrix entropy intro-
duced in [7].

We note that our assumption “A(s) is invertible” is not so special condition, be-
cause A(s) becomes invertible if we have one invertible Si at least. Moreover, we
have the possibility such that A(s) becomes invertible even if all Si is not invertible
for all πi /= 0.

In the present paper, we show some trace inequalities related to matrix logarithm,
and then give a partial solution of the open problem in noncommutative communi-
cation theory as an application of them.

2. Main results

In the previous section, we found that in order to prove the concavity of the aux-
iliary function Eq. (1), we have only to prove the sufficient condition Eq. (2) for
any a, s (−1 < s � 1) and any density matrices Si . For this purpose, we consider

the simple case a = 2 and then we put A = S
1

1+s
1 , B = S

1
1+s
2 and π1 = π2 = 1

2 for
simplicity. Thus our problem can be deformed as follows:

Problem 2.1. Prove

Tr
[
(A+ B)s{A(logA)2 + B(logB)2} − (A+ B)−1+s(A logA+ B logB)2

]
� 0 (3)

for any s, (−1 < s � 1) and two positive matrices A � I and B � I .
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Theorem 2.2. For two positive matrices A � I and B � I, Eq. (3) holds in the
case of s = 1 :

Tr
[
(A+ B){A(logA)2 + B(logB)2} − (A logA+ B logB)2

]
� 0.

Proof of Theorem 2.2. Eq. (3) can be directly calculated by

Tr
[
(A+ B)s{A(logA)2 + B(logB)2}]
− Tr

[
(A+ B)−1+s(A logA+ B logB)2

]
= Tr

[
(A+ B)−1+s(A+ B){A(logA)2 + B(logB)2}]

− Tr
[
(A+ B)−1+s(A logA+ B logB)2

]
= Tr

[
(A+ B)−1+s{A2(logA)2 + AB(logB)2

+BA(logA)2 + B2(logB)2}]− Tr
[
(A+ B)−1+s{A2(logA)2

+A logAB logB + B logBA logA+ B2(logB)2}]
= Tr

[
(A+ B)−1+s{AB(logB)2 + BA(logA)2}]

− Tr
[
(A+ B)−1+sA logAB logB

]
− Tr

[
(A+ B)−1+sB logBA logA

]
= Tr

[
(A+ B)−1+sAB(logB)2

]+ Tr
[
(A+ B)−1+sBA(logA)2

]
− 2Re Tr

[
A logA(A+ B)−1+sB logB

]
. (4)

Eq. (4) is further calculated for s = 1 such as

Tr[AB(logB)2] + Tr[BA(logA)2] − 2Re Tr[A logAB logB]
= Tr[AB(logB)2] + Tr[BA(logA)2]

− 2Re Tr[B1/2A1/2 logAA1/2B1/2 logB]
� Tr[AB(logB)2] + Tr[BA(logA)2]

− 2
(
Tr[BA(logA)2])1/2(Tr[AB(logB)2])1/2

= {
(Tr[BA(logA)2])1/2 − (Tr[AB(logB)2])1/2}2 � 0.

Cuachy–Schwarz inequality:

|Tr[X∗Y ]|2 � Tr[X∗X]Tr[Y ∗Y ]
for the matrices X and Y , has been applied in the above calculation. �

Remark 2.3. After the manner of Theorem 2.2, we can prove Eq. (2) in the case
of s = 1 for any density matrices Si and any probability distributions π = {πi},
(i = 1, 2, . . . , a), since the left hand side of Eq. (2) can be directly calculated in the
following
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]}
.

That is, the extended version of Theorem 2.2 holds, by applying Cuachy–Schwarz
inequality to the third term in the brace of the above, after we slightly performed
changes as similar as the proof of Theorem 2.2.

Theorem 2.4. For two positive matrices A � I and B � I, Eq. (3) holds in the
case of s = 0:

Tr
[{A(logA)2 + B(logB)2} − (A+ B)−1(A logA+ B logB)2

]
� 0.

To prove Theorem 2.4 we require the following lemma.

Lemma 2.5 [1,5]. For the continuous function f : [0, α)→ R, (0 < α � ∞), the
following statements are equivalent.

(i) f is operator convex and f (0) � 0.
(ii) For the bounded linear operatorsKi, (i = 1, 2, . . . , n) satisfyingσ(Ki) ⊂ [0, α),

where σ(Z) represents the set of all spectrums of the bounded linear operator Z,
and the bounded linear operators Ci, (i = 1, 2, . . . , n) satisfying

∑n
i=1 C

∗
i Ci �

I, we have

f

(
n∑
i=1

C∗
i KiCi

)
�

n∑
i=1

C∗
i f (Ki)Ci.

Proof of Theorem 2.4. For C1 = A1/2(A+ B)−1/2 and C2 = B1/2(A+ B)−1/2,
we have C∗

1C1 + C∗
2C2 = I . Note that A � I and B � I . Then we set f (t) = t2,

K1 = − logA and K2 = − logB and then apply Lemma 2.5. Thus we have{
(A+ B)−1/2A1/2(− logA)A1/2(A+ B)−1/2

+ (A+ B)−1/2B1/2(− logB)B1/2(A+ B)−1/2}2

� (A+ B)−1/2A1/2(− logA)2A1/2(A+ B)−1/2

+(A+ B)−1/2B1/2(− logB)2B1/2(A+ B)−1/2.

Since [A1/2, logA] = 0 and [B1/2, logB] = 0, we have{
(A+ B)−1/2(−A logA− B logB)(A+ B)−1/2}2

� (A+ B)−1/2{A(− logA)2 + B(− logB)2
}
(A+ B)−1/2.
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That is,

(A+ B)−1/2(A logA+ B logB)(A+ B)−1(A logA+ B logB)(A+ B)−1/2

� (A+ B)−1/2{A(logA)2 + B(logB)2}(A+ B)−1/2.

Thus we have

(A logA+ B logB)(A+ B)−1(A logA+ B logB)

� A(logA)2 + B(logB)2. (5)

Therefore, if we take the trace in the both sides, then the proof is completed. �

Remark 2.6. After the manner of Theorem 2.4, we can prove Eq. (2) in the case of
s = 0 for any density matrices Si and any probability distributions π = {πi}, (i =
1, 2, . . . , a), since Lemma 2.5 is available for any finite number n. Indeed, we can
apply Lemma 2.5 by putting Ki = − log Si , Ci = π1/2

i Si
1/2
(∑a

k=1 πkSk
)−1/2 for

i = 1, 2, . . . , a and f (t) = t2.

Question 2.7. From Eq. (5), the matrix inequality holds in the case of s = 0.
However, we do not know whether the following matrix inequalities:

(A+ B)1/2{A(logA)2 + B(logB)2
}
(A+ B)1/2 � (A logA+ B logB)2

(6)

or {
A(logA)2 + B(logB)2

}1/2
(A+ B){A(logA)2 + B(logB)2

}1/2

� (A logA+ B logB)2 (7)

corresponding to the case of s = 1 for any two positive matrices A � I and B � I
hold or not. We have not yet found any counter-examples, namely the examples that
the matrix inequalities both Eqs. (6) and (7) are not satisfied simultaneously, for
some positive matrices A � I and B � I .

Theorem 2.8. Suppose A and B are 2 × 2 positive matrices. Then for any 0 � s �
1 we have

Tr
[
(A+ B)s{A(logA)2 + B(logB)2

}− (A+ B)−1+s(A logA+ B logB)2
]

� 0.

Proof of Theorem 2.8. We consider the Schatten decomposition of A+ B as
follows:

A+ B =
∑
n

tn|φn〉〈φn|, (8)
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where {tn} are the eigenvalues of A+ B, {|φn〉} are the corresponding eigenvectors.
Then we have

Tr
[
(A+ B)s{A(logA)2 + B(logB)2

}]
=
∑
n

〈φn|(A+ B)s/2{A(logA)2 + B(logB)2}(A+ B)s/2|φn〉

=
∑
n

〈φn(A+ B)s/2|{A(logA)2 + B(logB)2}|(A+ B)s/2φn〉

=
∑
n

tsn〈φn|{A(logA)2 + B(logB)2}|φn〉

=
∑
n

tsnan.

As similarly, we have

Tr
[
(A+ B)−1+s(A logA+ B logB)2

]
=
∑
n

t−1+s
n 〈φn|(A logA+ B logB)2|φn〉

=
∑
n

t−1+s
n bn,

where we put an = 〈φn|{A(logA)2 + B(logB)2}|φn〉 and bn = 〈φn|(A logA+
B logB)2|φn〉. The proof is completed by using the following lemma. �

Lemma 2.9. Suppose the positive numbers t1, t2, a1, a2, b1 and b2 satisfy the fol-
lowing two conditions:

(i) t1a1 + t2a2 � b1 + b2
(ii) a1 + a2 � t−1

1 b1 + t−1
2 b2

Then for any 0 � s � 1 we have

t s1a1 + t s2a2 � t−1+s
1 b1 + t−1+s

2 b2.

Proof of Lemma 2.9. It is trivial for t1 = t2 so that we can suppose t1 > t2 without
loss of generality. From the condition (i), we then have the following:

t s1a1 + t s2a2 − t−1+s
1 b1 − t−1+s

2 b2 = t s1a1 − t−1+s
1 b1 + t s2a2 − t−1+s

2 b2

= t−1+s
1 (t1a1 − b1)+ t−1+s

2 (t2a2 − b2)

� t−1+s
1 (b2 − t2a2)+ t−1+s

2 (t2a2 − b2)

= (t−1+s
2 − t−1+s

1 )(t2a2 − b2).
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Since t−1+s
2 − t−1+s

1 � 0, if t2a2 − b2 � 0, then the lemma follows. On the other
hand, if t2a2 − b2 < 0, from the condition (ii) we then have

t s1a1 + t s2a2 − t−1+s
1 b1 − t−1+s

2 b2 = t s1a1 − t−1+s
1 b1 + t s2a2 − t−1+s

2 b2

= t s1(a1 − t−1
1 b1)+ t s2(a2 − t−1

2 b2)

� t s1(t−1
2 b2 − a2)+ t s2(a2 − t−1

2 b2)

= (ts1 − t s2)(t−1
2 b2 − a2) � 0. �

Remark 2.10. After the manner of Theorem 2.8, we can prove Eq. (2) for any 2 × 2
density matrices Si and any probability distributions π = {πi}, (i = 1, 2, . . . , a), by

considering the Schatten decomposition of the 2 × 2 positive matrix
∑a
k=1 πkS

1
1+s
k

as follows:

a∑
k=1

πkS
1

1+s
k =

∑
n

λn|φn〉〈φn|,

where λ1 and λ2 are the eigenvalues of
∑a
k=1 πkS

1
1+s
k , {|φ1〉} and {|φ2〉} are cor-

responding eigenvectors, respectively. Therefore it was shown the concavity of the
auxiliary function E(s) of the quantum reliability function for any 2 × 2 density
matrices Si and 0 � s � 1. Thus we gave a partial solution for the open problem
given in [6]. However, we still have the unsolved problems that E(s) is concave for
0 � s � 1 and n � 3, and also that E(s) is concave for −1 < s < 0.

Remark 2.11. We expect that our Lemma 2.9 can be extended to the general n � 3,
where n represents the number of the eigenvalues given in Eq. (8). However it is
impossible to prove it, because we have a counter-example for such a generalization.
For example, we take

s = 1

2
, t1 = 3, t2 = 2, t3 = 1, a1 = 2

3
,

a2 = 1, a3 = 3

2
, b1 = 1

2
, b2 = 4, b3 = 1.

Although it holds two conditions corresponding to the generalization of two condi-
tions (i) and (ii) in Lemma 2.9:

t1a1 + t2a2 + t3a3 = b1 + b2 + b3 = 11

2

and

a1 + a2 + a3 = t−1
1 b1 + t−1

2 b2 + t−1
3 b3 = 19

6
,
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the following calculations:

t s1a1 + t s2a2 + t s3a3 = 2
√

3

3
+ √

2 + 3

2
� 4.068914

and

t−1+s
1 b1 + t−1+s

2 b2 + t−1+s
3 b3 =

√
3

6
+ 2

√
2 + 1 � 4.1171021,

show that

t s1a1 + t s2a2 + t s3a3 � t−1+s
1 b1 + t−1+s

2 b2 + t−1+s
3 b3

does not hold. This means that our Lemma 2.9 cannot be extended to the general
case of n � 3. Therefore we must produce an another method to prove Theorem 2.8
for any n× n positive matrices A and B. Our Theorem 2.8 is constructed by a kind
of the interpolation between two conditions generated by Theorems 2.2 and 2.4. If
we extend this method to the case of n � 3, we may require the further conditions.

3. The related inequalities

We introduce the following symbol in the relation to quantum relative entropy.
For the positive matrices A and B, we define

D(A‖B) = A(logA− logB).

Then we have the next theorem.

Theorem 3.1.
(1) Tr[D(A‖B)D(B‖A)] � 0.
(2) Tr[(A+ B)−1D(A‖B)D(B‖A)∗] � 0.

Remark 3.2. The quantum relative entropy is defined by H(A‖B) = Tr[D(A‖B)]
for any density matrices A and B. The relative matrix entropy [3] is defined by

S(A‖B) = A1/2(logA−1/2BA−1/2)A1/2

for any invertible positive matrices A and B. Moreover, if A and B are commutative,
then we have D(A‖B) = −S(A‖B).
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