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A simple energy method is put forward to determine the prestress distribution for symmetric tensegrity
structures with multiple states of self-stress and a class of prismatic tensegrities with additional cables
are introduced to show the accuracy of presented method. For the purpose of modifying structural shape
as well as mechanical properties, a cable-controlled reconfiguration procedure is subsequently proposed
for these structures. By defining the length adjustments as the control parameters, the reconfiguration
procedure is regarded as a quasi-static process, consisting of a sequence of equilibrium configurations
with varying control parameters. Then the nonlinear iterative algorithm based on the tangent stiffness
of the structure is presented to simulate and follow this reconfiguration process. By way of example, a
particular class of reconfigurations coined symmetrical reconfigurations are investigated carefully and
the key features as well as the potential applications are given.
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1. Introduction

In 1947, a young artist named Kenneth Snelson invented and
built a novel framework that he called floating compression. Later,
Fuller (1962) called Snelson’s structure a tensegrity, and since
then, this nomenclature has been dominant in the scientific
community.

A tensegrity is a lightweight space structure consisting of
compression members (called struts) surrounded by a network of
tension members (called cables). The rigidity of a tensegrity is
the result of a self-stressed equilibrium between cables and struts.
Therefore tensegrities need to have special geometrical configura-
tions that lead to, at least, one state of self-stress in the absence of
external forces. The representative and well-known examples for
them are a set of prismatic ones composed of v struts and 3v cables,
requiring special twist angles h between the top and bottom poly-
gons to maintain the self-equilibrium shapes. Depending on the
value of v and the offset between vertices connected by strut, h
has been determined through a simple analytical approach
(Connelly and Terrell, 1995) as
h ¼ 180� � 1
2
� j

v ð1Þ
where j is an integer smaller than v and represents the offset
between vertices connected by strut. The top views of some classic
prismatic tensegrities as well as the corresponding twist angles are
shown in Fig. 1.

These structures are excellent samples with single state of
self-stress, whose initial prestress distribution can be determined
easily through the linear-algebraic treatment of equilibrium
matrix (Pellegrino, 1993; Pellegrino and Calladine, 1986).
However, for tensegrity structures with multiple states of self-
stress, the further work of finding a suitable linear combination
of independent states of self-stress need to be performed (hence
the term force-finding or force-design sometimes used). In most
of the existing methods, the shape and member forces of tenseg-
rity structures are to be determined simultaneously in order to
discover novel shapes, which is called form-finding (the recent
review related to this topic can be found in Tibert and
Pellegrino, 2011 and Juan and Mirats Tur, 2008). However, so
far only a few studies have been carried out to determine the
prestress distribution for a given structure with multiple states
of self-stress.
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Fig. 1. Top views of some classic prismatic tensegrities.
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In practical situations, tensegrity structures usually have sym-
metric properties, i.e. invariance conditions by reflection with
respect to some planes and/or rotation around some axes, which
should be taken into account for the determination of prestress
distribution. Connelly and Back (1998) have previously considered
the effect of symmetry on equilibrium relationships, in which the
equilibrium only needs to be checked for one reference node of
each ‘‘orbit’’ (symmetrically located nodes are said to belong to
the same orbit). Sultan et al. (2001) derived the general prestress-
ability conditions for tensegrity structures from the principle of
virtual work and gave the analytical solutions including the state
of self-stress for particular classes of symmetrical prestressable
configurations. Kangwai and Guest (2000), Zhang et al. (2009)
and Chen and Feng (2012) employed group representation theory
to block-diagonalise the equilibrium matrix of a symmetric struc-
ture. Then the work done on the linear-algebraic analysis of equi-
librium matrix, e.g. Calladine (1978), Pellegrino and Calladine
(1986), Pellegrino (1993) is equally applicable to these submatrix
blocks to gain the symmetric states of self-stress. Although this
method can be extended to the structures with any type of symme-
try systematically, it has been described in the terminologies of
mathematics based on group representation theory and a more
comprehensible approach might be favorable to engineering
researchers. Hence a practical method based on the group division
of members was presented by Yuan and Dong (2003). In that paper,
the symmetrically located members were packed into same groups
and the constraint that all members in each group have the same
stress was imposed on the general expression of self-stress states.
A discussion on proper division of member groups for the purpose
of existence of the single symmetric state of self-stress has been
explicitly given in Tran and Lee (2010). Most recent study employ-
ing grouping scheme in force-finding of tensegrity structures can
be found in Lee et al. (2014) where a genetic algorithm was also
used. However, because the member groups are directly assigned
by designers in terms of geometric symmetry of the structure, this
approach would suffer from difficulties or make mistakes when
applied to, for example, the structures where the topological rela-
tionships of members are complicated and the symmetric proper-
ties cannot be observed readily.

In the first part of this article, a simple energy method making
use of eigenvalue analysis is proposed to determine the prestress
distribution for symmetric tensegrity structures with multiple
states of self-stress. Essentially, it is to achieve a special orthonor-
mal basis spanning the space of integral symmetric states of self-
stress, which satisfy the stationary condition of initial strain energy
simultaneously. Since the effect of symmetry is not considered
directly in this method, certain symmetry-related operations per-
formed in previous works, e.g. grouping members are avoided.
Thus it is more convenient to treat the structures with large num-
ber of members and complicated topology. By way of example, a
class of prismatic tensegrities with additional cables, which are
the variations on the classic ones shown in Fig. 1, are introduced
to show the validity and accuracy of the presented method.

On the other hand, as flexible structures, tensegrities are capa-
ble of large displacement so that they provide innovative possibil-
ities for physically integrated structure and controller design.
Moreover, the control systems can be easily embedded in the
structures since the elastic components can carry both sensing
and actuating functions. Early work on this topic has been per-
formed by Djouadi et al. (1998) to control the vibrations of a can-
tilever beam formed by four tensegrities modules. Sultan et al.
(2000) formulated control techniques and illustrated it with the
example of an aircraft motion simulator. Skelton et al. (2001)
developed an explicit analytical model of nonlinear dynamics for
shape control of a shell class of tensegrity structures. Fest et al.
(2003, 2004) focused on maintaining serviceability through active
control and tested a full-scale prototype of an adjustable tenseg-
rity. Sultan et al. (2002) controlled the height of the upper level



4296 P. Zhang et al. / International Journal of Solids and Structures 51 (2014) 4294–4306
under loading using symmetrical motion based on Lagrangian
dynamics. Controlling larger movements in tensegrity structures
also provided interesting perspectives in the field of deployable
structures (Sultan and Skelton, 2003).

In the second part of this article, based on the structures intro-
duced in the first part, a cable-controlled reconfiguration proce-
dure is put forward, in which only added cables are assumed to
be adjustable and provide the driving force to change the shape
as well as mechanical properties of the structures. By defining
the length adjustments as the control parameters, this reconfigura-
tion procedure is regarded as a quasi-static process, consisting of a
sequence of equilibrium configurations with varying control
parameters. In order to determine these configurations (i.e. simu-
late and follow this reconfiguration process), a governing equation
relating nodal displacements and imposed length change of mem-
bers is derived and the corresponding nonlinear iterative program
based on Newton–Raphson method is also developed. Moreover,
the Moore–Penrose generalized inverse of tangent stiffness matrix
is used within each corrective iteration to treat the situation that
the structure is free-standing. From a practical perspective, a par-
ticular class of reconfigurations coined symmetrical reconfigura-
tions are investigated carefully combining with numerical
examples and the key features as well as the potential application
are also given.
2. Integral symmetric states of self-stress

2.1. Definition for a class of prismatic tensegrity structures with
specific additional cables

In this section, a class of prismatic tensegrities are designed,
which are the variations on the classic ones shown in Fig. 1. To
guarantee the existence of multiple states of self-stress, v vertical
cables have been added to connect certain pairs of nodes so that
these structures consists of 2v nodes and 5v members, made up
of 4v cables and v struts. The nodes are arranged in two horizontal
circles of radius R around the vertical z-axis. Within each circle,
each node is connected by horizontal cables to two adjacent nodes.
The two planes containing the nodes are at z = 0 and z = H respec-
tively, where H is the height of structures. Each node in top circle is
not only connected by a vertical cable to the corresponding node in
bottom circle, but also connected by an additional cable to the
adjacent node in bottom circle. Each node in bottom circle is con-
nected by a strut to the adjacent node in top circle, i.e., correspond
to the case of j = 1 in Eq. (1). A graphical illustration for the topol-
ogy rule of member connection is shown in Fig. 2.

For the sake of clarity, Fig. 3 shows the triangular and quadran-
gular prismatic tensegrities with specific additional cables
Fig. 2. Connectivity of members.
described above, where the added cables are denoted by dot lines.
Certainly, other cases with different arrangement of added cables
also can be analyzed by the following scheme similarly if
necessary.

Consider this type of tensegrity structures floating in three-
dimensional space without any kinematic constraints. The self-
equilibrium equations at nodes can be written in the form (see
Pellegrino and Calladine, 1986)

An ¼ 0 ð2Þ

where A is the equilibrium matrix of the structure containing the
orientations of members, n is the vector consists of the tension in
each member. Its right-hand side is equal to a zero vector, since this
equation describes equilibrium of nodes without any external loads.
Then the number of independent states of self-stress s and internal
inextensional mechanisms m can be calculated by following equa-
tions, as described in calladine, 1978 and Pellegrino and Calladine,
1986, etc

s ¼ 5v � r & m ¼ 3 � ð2vÞ � r � 6 ð3Þ

where r is the rank of A. We compare the calculation results of s and
m between the structures with added cables and the corresponding
classic ones (up to 7 struts). It can be seen from Table 1 that the
addition of v cables add to the states of self-stress to give s = 3
in each case, i.e., the existence of multiple states of self-stress is
guaranteed for this class of tensegrity structures.

Actually, the Nullspace of A is precisely the space of self-stress
states (i.e. represents all states of self-stress of the assembly), an
orthonormal basis of which can be computed by using singular
value decomposition for A (Pellegrino, 1993). Thus a general self-
stress state n can be written as follows by any linear combination.

n ¼ s1a1 þ s2a2 þ � � � þ Ssas ¼ Sa ð4Þ

where si (i = 1, . . .,s) are s independent states of self-stress, that is an
orthonormal basis of the Nullspace of A; S is the self-stress matrix
arranged by S = [s1 s2 . . .ss]; a is the vector consists of combination
coefficients ai which are free to take any values theoretically and
need to be determined further.

2.2. Integral symmetric states of self-stress

In practical situations, tensegrity structures usually have sym-
metric properties, i.e. invariance conditions by reflection with
respect to some planes and/or rotation around some axes, which
should be taken into account for the determination of prestress
distribution. For instance, it should be noted that the class of pris-
matic tensegrities designed in previous section have rotational
symmetric properties, e.g. satisfy the invariance condition to rota-
tion around z-axis by 2ip/v (i = 1, . . .,v-1). Accordingly, the mem-
bers can be divided into four groups totally, i.e., horizontal
cables, vertical cables, added cables and struts, because all mem-
bers in each group are located at symmetrical positions – one
member in each group can be transformed to any other member
of that group by a proper rotational operation. Therefore, the same
prestressing force should be assigned to members in the same
group, which can be regarded as constraints on prestress distribu-
tion deriving from symmetric property. Yuan and Dong (2003)
defined it as integral symmetric state of self-stress.

Denote the space of self-stress states (i.e. the Nullspace of A) by
Uss. In this section, it will be proved that integral symmetric states
of self-stress also span a vector space which is the subset of Uss.
Meanwhile, the computation of the vectorial bases for that
subspace is also discussed.

Considering a tensegrity structure with g groups of members,
an integral symmetric state n

_
should has the form as (Yuan and

Dong, 2003)



Fig. 3. The arrangement of added cables.

Table 1
The number of states of self-stress and independent mechanisms in prismatic tensegrities.1
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n
_
¼fb1 b1 b1 � � � bi bi bi � � �bg bg bgg
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1 0 0 0 0
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.
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.

1

2
666666664

3
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>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

g�1

ð5Þ
where bi is the tension of members associated with i-th group.

For simplification, Eq. (5) can be rewritten as

n
_
¼ ½e1 e2 � � � eg � b ð6Þ

in which b = {b1. . .bi. . .bg}T is the tension vector of g groups; and ei is
the basis vector composed of a unit in i-th group and zero in other
groups which has the form:

ei ¼ ½0 � � �0 1 � � �1|fflfflffl{zfflfflffl}
ith group

0 � � �0�T ð7Þ

Herein it is recommended to normalize the basis vectors
ei (i = 1,2, . . .,g) in advance as
1 The figures in Table 1 just show the top view of the structures. Added cables are
denoted by dot lines. For the cases of v = 6 and v = 7, since added cables degenerate to
dots or be too short to see from top view, they are marked out by circles particularly
.
ei ¼ ei=
ffiffiffiffiffiffiffiffiffi
eT

i ei

q
ð8Þ

After that, an integral symmetric state n
_

can also be expressed
as

n
_
¼ ½ e1 e2 . . . eg � b ð9Þ

The major difference of Eq. (9) with respect to Eq. (6) is that the
matrix ½ e1 e2 . . . eg � consisting of normalized vectors satisfies the
following equation

½ e1 e2 . . . eg �T ½ e1 e2 . . . eg � ¼ Ig�g ð10Þ

which will provide substantial advantage for computation as shown
later.

However, we do not have a free choice for b as this vector
should guarantee n

_
satisfy Eq. (5) simultaneously. Hence substitut-

ing Eq. (9) into Eq. (5) gives

A ½ e1 e2 . . . eg � b ¼ 0 ð11Þ

which will be used to determine the variable vector b. The
coefficient matrix A½ e1 e2 . . . eg � in Eq. (11) is a (3n � g) matrix of
rank r’ and can be regarded as a reduced form of A constrained by
the symmetry conditions. Similarly, all solutions to this linear
homogeneous system lie in the Nullspace of A½ e1 e2 . . . eg � and
have a general form as a linear combination
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b ¼ ½b1 b2 . . . bh� g ð12Þ

where h = g � r’ represents the dimension of the Nullspace of
A½ e1 e2 . . . eg �; bi (i = 1, . . .,h) is an orthonormal basis of this sub-
space, which can be obtained by using singular value decomposi-
tion on A½ e1 e2 . . . eg �; g is an arbitrary vector of h real coefficients.

When Substitute Eq. (12) into Eq. (9), the general form of
integral symmetric states of self-stress n

_
is given by

n
_
¼ ½ e1 e2 . . . eg � ½b1 b2 . . . bh� g ð13Þ

And Eq. (13) can be further simplified as

n
_
¼ s

_

1 s
_

2 . . . s
_

h

h i
g ð14Þ

where s
_

i ¼ ½ e1 e2 . . . eg � bi (i = 1,2, . . ., h) are linearly independent
vectors since the following equations hold (Eq. (10) is used to get
following relationship)

s
_T

i s
_

j ¼ bi ½ e1 e2 . . . eg �T ½ e1 e2 . . . eg � bj ¼ bT
i bj ¼

1 i ¼ j
0 i–j

�
ð15Þ

It indicates that all integral symmetric states of self-stress
precisely constitute a vector space spanned by s

_

i (i = 1,2, . . .,h).
We denote it as Uiss (Compare to the Nullspace of A denoted as
Uss, which contains all states of self-stress). Since each n

_
2 Uiss

certainly belong to Uss (i.e. satisfy the condition of n
_
2 Uss), Uiss is

the subset of Uss, i. e.

Uiss # Uss & hð¼ g � r0Þ 6 sð¼ b� rÞ ð16Þ

which indicates that the total number of variables in initial self-
stress design is reduced by taking into account the symmetric
properties of the structures.

2.3. Energy method for the determination of integral symmetric
prestress

An algorithm to compute the vectorial bases associated with
integral symmetric states of self-stress has been described in pre-
vious section. Very similar approach also can be found in Yuan and
Dong (2003) and Tran and Lee (2010). The common feature of them
is that the correct group division of members is required to guaran-
tee the accuracy of results, i.e., the final results are sensitive to
grouping. However, because the member groups are directly
assigned by designers in terms of geometric symmetry of the struc-
tures, this approach may suffer from difficulties or make mistakes
when applied to, for example, the structures where the topological
relationships of members are complicated and the symmetric
properties cannot be observed readily. In this section, a set of
self-stress states satisfying the stationary condition of initial strain
energy are first obtained by using eigenvalue analysis of a certain
matrix. Further discussion shows that an orthonormal basis span-
ning the space of integral symmetric states of self-stress are
included automatically without using any additional constraint
deriving from symmetric property, e.g. the classification of mem-
bers as previous works.

For a tensegrity structure made up of b members, the axial
flexibility matrix is defined as F = diag (l1/(E1A1), . . ., lb/(EbAb)),
where Ek, Ak, lk denote Young’s modulus, cross-sectional area and
length of k-th member respectively. Even if Ek and Ak are unknown,
we can also suppose that the product of them is equal to a unit and
hence the expression of axial flexibility matrix is simplified as
F = diag (l1, . . ., lb). Then the total initial strain energy of the struc-
ture, which is the sum of strain energy for each member, can be
expressed as

P ¼
Xb

i¼1

n2
i � li

2EiAi
¼ 1

2
nTFn ð17Þ
Substituting Eq. (4) into Eq. (17) gives

PðaÞ ¼ 1
2
aTSTFSa ð18Þ

Since the minimum initial strain energy indicates the least
external work produced by tensioning equipment, we consider
finding certain a which satisfy the stationary condition of func-
tional g. However, it can be seen from Eq. (18) that the smaller
the Euclidean norm of a is, the smaller the value of g is. To elimi-
nate this effect, the normalization condition aTa = 1 is introduced
into Eq. (18) by using Lagrange multiplier method and the follow-
ing functional is obtained

Pða; kÞ ¼ 1
2
aTSTFSa� 1

2
kðaTa� 1Þ ð19Þ

Herein we use k/2 to represent the Lagrange multiplier, which
has no influence on subsequent analysis but make k just corre-
spond to the eigenvalue of a certain matrix as shown later. The sta-
tionary condition of Eq. (19) with respect to the undetermined
vector a is given as

@Pða; kÞ
@a

¼ 0 ð20Þ

which yields

STFSa ¼ k a ð21Þ

Eq. (21) indicates that the eigenvectors of the matrix STFS are
the solution of Eq. (20). Noting that STFS is a real symmetric matrix
of s order, it has s orthonormal eigenvectors which can be obtained
through eigenvalue decomposition as

STFS ¼ ½a1 � � � as� diagðk1 � � � ksÞ ½a1 � � � as�T ð22Þ

Moreover the half of each eigenvalue ki/2 (i = 1, . . .,s) corre-
sponds to initial strain energy associated with ai since the follow-
ing equation holds by replacing k, a with ki, ai in Eq. (21) and left
multiplying ai

T/2 in both sides

PðaiÞ ¼
1
2
aT

i STFSai ¼ ki=2 ð23Þ

So far, we have got s states of self-stress satisfying the station-
ary condition of functional g denoted as Sa1, Sa2, . . .,Sas which are
orthogonal with each other. Next we intend to show that among
them the independent states of self-stress satisfying integral sym-
metry are always included automatically. One may doubt about it
since no additional conditions associated with integral symmetry
are considered directly to obtain the results above. However, the
relation between the symmetric properties of structures and eigen-
value analysis of STFS, which is not immediately obvious, will be
revealed below.

According to the discussion of Section 2.2, any integral symmet-
ric state n

_
should satisfy Eq. (4) and Eq. (9) simultaneously, i. e.

n
_
¼ ½ e1 e2 . . . eg � b ¼ Sa ð24Þ

To guarantee the existence of a solution for vector b, the vector
a containing combination factors should satisfy the following
equations based on linear-algebraic theory

ðIb�b � ½ e1 e2 . . . eg �½ e1 e2 . . . eg �þÞSa ¼ 0 ð25Þ

where Ib�b is b � b identity matrix and the superscript ‘‘ + ’’ repre-
sents Moore–Penrose generalized inverse. Since ½ e1 e2 . . . eg � is of
full column rank, it is straightforward to prove the following rela-
tionship by applying Eq. (10)

½ e1 e2 . . . eg �þ ¼ ð½ e1 e2 . . . eg �T ½ e1 e2 . . . eg �Þ
�1
½ e1 e2 . . . eg �T

¼ ½ e1 e2 . . . eg �T ð26Þ
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Hence Eq. (25) can be tidied up as

½ e1 e2 . . . eg �½ e1 e2 . . . eg �T Sa ¼ Sa ð27Þ

And the following equation is obtained by left multiplying ST in
both sides of Eq. (27)

ST ½ e1 e2 . . . eg �½ e1 e2 . . . eg �T Sa ¼ a ð28Þ

Eq. (28) demonstrates that we can employ the eigenvectors of

ST½ e1 e2 . . . eg �½e1 e2 . . . eg �T S (particularly, the eigenvectors should
correspond to eigenvalue of 1) as the combination coefficients
vector a to obtain the symmetric states of self-stress. But actually
the eigenvectors of STFS rather than the ones of ST½ e1 e2 . . . :eg �
½ e1 e2 . . . :eg �T S were employed to gain the results before. Recalling
this, the distinct parts of these two matrices are extracted and be
compared as follows.

It can be easily verified that the matrix ½ e1 e2 . . . eg �½ e1 e2 . . . eg �T

has the block-diagonal form as

½ e1 e2 . . . eg �½ e1 e2 . . . eg �T

¼

1
c1
� onesðc1Þ

. .
.

O
1
ci
� onesðciÞ

O . .
.

1
cg
� onesðcgÞ

2
6666666664

3
7777777775

ð29Þ

where each submatrix block is associated with a member group and
ci is the total number of members in i-th group. The symbol ‘‘ones
(ci)’’ represents a square matrix of order ci, in which each entry is
a unit, i. e.

onesðciÞ ¼
1 � � � 1
..
.
� � � ..

.

1 � � � 1

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ci�ci

ð30Þ

On the other hand, because the members in each group have the
same length as well as axial flexibility (denoted by (l/EA)i for i-th
group), the diagonal matrix F may has the following form

F ¼

l
EA

� �
1 � Ic1�c1

. .
.

O
l

EA

� �
i � Ici�ci

O . .
.

l
EA

� �
g � Icg�cg

2
6666666664

3
7777777775

ð31Þ

which can also provide the information of geometric symmetry of
the structures, i.e. play the similar role as matrix
½ e1 e2 . . . eg �½ e1 e2 . . . eg �T . Therefore the independent symmetric
states of self-stress are always included in the results obtained
through eigenvalue analysis of STFS.

The key feature of this approach is that we do not consider the
effect of symmetry directly so that some symmetry-related
operations performed in previous works, e.g. grouping members
are avoided. Hence it may have the potential advantage over
existing methods when applied to, for example, the structures
where the topological relationships of members are complicated
and the symmetric properties cannot be observed readily. Mean-
while the obtained symmetric states of self-stress also satisfy the
stationary condition of initial strain energy, which is more accept-
able for us from practical perspective. Finally, the full procedure of
this approach is summarized as follows:
(1) Compute the independent states of self-stress si (i = 1, . . .,s)
through singular value decomposition of A and arrange them
by columns to obtain the self-stress matrix S;

(2) Assemble the axial flexibility matrix as F = diag (l1/(E1A1),
. . ., lb/(EbAb)). If Ek and Ak are unknown, make the simplifica-
tion of F = diag (l1, . . ., lb);

(3) Perform eigenvalue decomposition for symmetric matrix
STFS and employ s orthonormal eigenvectors as combination
coefficients vector a to get s independent states of self-stress
as Sa1, Sa2, . . .,Sas, which satisfy the stationary condition of
initial strain energy;

(4) Select the states satisfying integral symmetry from the
results obtained in step (3).

2.4. Application

Consider the set of prismatic tensegrity structures defined in
Section 2.1 (up to 7 struts). It is assumed herein that the radius
of the horizontal circle and the height of the structure satisfy
R = 5 and H = 10 respectively. After step (1) and step (2) listed in
previous section, the symmetric matrix STFS of s order can be
obtained for each case. Obviously, it has three eigenvalues totally
since each case contains three independent states of self-stress
according to Table 1. When eigenvalue decomposition is carried
out for STFS as follows

STFS ¼ ½a1 a2 a3� diagðk1 k2 k3Þ ½a1 a2 a3�T ð32Þ

three eigenvalues ki (i = 1,2,3) and corresponding eigenvectors ai

(i = 1,2,3) are obtained. By adopting ai (i = 1,2,3) as the combina-
tion coefficients vector, we get three orthogonal states of self-
stress as Sa1, Sa2, Sa3 respectively. Next we remark that one of
them satisfies the integral symmetry naturally, i.e., members at
symmetrical positions have the same prestress. The results are
shown in Table 2.

In order to verify the accuracy of the proposed method, the
approach based on the classification of members (see Section 2.2)
is also carried out for the same structures to determine their
prestress distribution. Noting that all members can be packed
into four groups in terms of geometric symmetry of the
structures (see also Section 2.2), we form four normalized basis
vector ei (i = 1, . . .,4) (each one corresponds to a certain member
group) through Eq. (7) and Eq. (8), and arrange them by columns
to assemble the matrix ½ e1 . . . e4�. Then it is ascertained that the
rank of A½ e1 . . . e4� is equal to three, i.e., r’ = 3. Thus the sym-

metric state of self-stress n
_

can be computed by

n
_
¼ ½ e1 . . . e4� b1g according to Eq. (13), where b1 is the single

basis of the Nullspace of A ½ e1 . . . e4� and g degenerate to the
factor of prestress level. Indeed, it coincides exactly with the
results shown in Table 2.

It can be seen from Table 2 that the prestressing force in
added cables is zero for each case. Accordingly, the prestressing
forces in other members would coincide with the single state of
self-stress of corresponding classic ones. It is clear that the
added cables could be put into the assembly in a state of tension
by imagining that each of them is a little shorter than the
distance between the two joints which it is to connect, and that
tension is necessary to provide the small elastic elongation
which is required to make the added cables fit. Then the
conditions of equilibrium would require other members to
change stress also, meanwhile the shape as well as the mechanical
properties of the structures are modified. It motivates us to
propose a special scheme in next section for the purpose of
structural control.



Table 2
Integral symmetric prestress of prismatic tensegrities with added cables.

v = 3 v = 4 v = 5 v = 6 v = 7

Eigenvalue (k) 12.0648 11.7274 11.4890 11.3216 11.2001
Eigenvector (a) 0:9344

0:0428
0:3537

0
@

1
A 0:0292

�0:8754
�0:4826

0
@

1
A �0:0563

�0:9581
�0:2808

0
@

1
A �0:4483

�0:2420
�0:8605

0
@

1
A 0:4017

0:4577
0:7932

0
@

1
A

Symmetric State of Self-stress (Sa) Horizontal Cables 0.1543 0.1336 0.1195 0.1091 0.1010
Vertical Cables 0.3188 0.2862 0.2625 0.2440 0.2288
Added Cables 0 0 0 0 0
Struts �0.4291 �0.3639 �0.3202 �0.2887 �0.2647
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3. A cable-controlled reconfiguration procedure

3.1. A two stage scheme for reconfiguration

Consider now the following scenario: firstly (i) form the classic
prismatic tensegrities with certain prestress level; then (ii) addi-
tional cables, the lengths of which are assumed to be adjustable,
are used to pull pairs of nodes closer together and modify the
geometry and self-stress in the system. Actually such scenario
was employed in the construction of a full-scale model with trian-
gular prismatic form, mainly for the improvement of structural
stiffness (Kawaguchi and Lu, 2002, Kawaguchi, 2003) and certainly
can be extended to other forms of this class, e.g. quadrangular pris-
matic tensegrity shown in Fig. 4. Furthermore, it should be noted
that the modification of cable lengths can be accomplished by
motors attached, for example, at the middle of the cables. We con-
sider that these motors work in the following way: the motor pulls
a cable and rolls it over a small wheel that its active length is short-
ened. In such a way, the part of the cable which is rolled over the
motor wheel no longer contributes to the cable tension. Hence this
control procedure works as if the rest-length of the cable would be
shortened.

There are two advantages at least to employ this two-stage
scheme for structural control: firstly, (i) it’s not so difficult to intro-
duce the prestress into each classic prismatic tensegrity due to its
single state of self-stress; secondly, (ii) since the prestressing rigid-
ity of the structure has already been established in the first stage,
the structure just evolves from initial equilibrium configuration to
a new equilibrium configuration during the second stage, which is
defined as reconfiguration in Sultan et al. (2002). By adopting the
imposed length change as the control parameters and shortening
added cables slowly enough, this reconfiguration procedure can
(a) Stage 1

Fig. 4. A two stage scheme for reconfigurat
be regarded as a quasi-static process, consisting of a sequence of
equilibrium configurations with varying control parameters.

In next section, the governing equation relating nodal
displacements and imposed length change of members, as well
as the corresponding nonlinear iterative program based on
Newton–Raphson method is developed, in order to determine the
equilibrium configuration corresponding to each discrete control
parameter point, i.e. simulate and follow the process of
reconfiguration (Table 3).

3.2. Predictive model

3.2.1. Fundamental assumptions
In this section, the tangent stiffness matrix K will be derived for

two purposes: 1. establish the relationship between nodal dis-
placements (to first order) and driving force caused by imposed
adjustments of member lengths so that provide a means for
predicting the structural response during the process of reconfigu-
ration; 2. the smallest eigenvalue of K is used subsequently to
evaluate the rigidity of the structures since it is associated with
the most flexible mode of displacements (Guest, 2011). Before that,
the fundamental assumptions are first stated as follows:

(a) Members are connected by pin joints;
(b) Both cables and struts are assumed to have linear elastic

stress–strain relationship;
(c) Self-weight of the structure is neglected;
(d) Both local and global buckling are not considered.

3.2.2. Matrix formulation of tangent stiffness
The tangent stiffness formulation appeared in Argyris and

Scharpf (1972), and has been used in much work since; an
(b) Stage 2 

ion (g is the factor of prestress level).



Table 3
Structural size and material properties.

Member type Initial length (m) Material properties, etc.

Horizontal Cables 7.071 EAc = 6.283 � 107N
Vertical Cables 10.707
Added Cables 10.707
Struts 13.615 EAs = 1.571 � 109N
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equivalent but extended derivation in the setting of large displace-
ment and large strain has been given by Murakami (2001), using
the powerful tools of continuum mechanics. Most recently, similar
formulation was derived from the Hessian of the potential elastic
energy by Sultan (2013).

In this section, the tangent stiffness matrix K is found by differ-
entiating equilibrium expressions at nodes of the structure with
respect to nodal positions. This derivation approach is certainly
not new, which has already been described in Guest (2006). How-
ever, a novel feature in this paper is to use matrix form directly for
an entire structure during the derivation, rather than Guest (2006)
where the tangent stiffness was initially found for a single bar and
then be assembled together for the whole structure. Another fea-
ture is that we also formulate the driving force for the procedure
of reconfiguration combining with the derivation of K, which can
consider the effects of imposed length change readily.

It is assumed herein that a tensegrity structure consists of n
nodes and b members, unrestrained in three dimensions. The equi-
librium equations at nodes of the structure can be written in the
form

An ¼ f ð33Þ

where f is nodal loads vector made up of the x-, y-, and z-compo-
nents of the external forces applied at each node. Defining member
length vector, force density vector and member length matrix as
l ¼ flkg 2 Rb, t ¼ fnk=lkg 2 Rb and L ¼ diagðlÞ 2 Rb�b respectively,
the vector n containing the tension of members can be expressed by

n ¼ Lt ð34Þ
Substituting Eq. (34) into Eq. (33) gives

ðALÞt ¼ f ð35Þ

For the left-hand side of Eq. (35), Vassart and Motro (1999) sep-
arated the nodal coordinates from AL and gave the equivalent form
using Kronecher product notation ‘‘� ’’ as

ðALÞ � t ¼ ðI�XÞx ð36Þ

where I is three-order identity matrix for three-dimensional struc-
tures, x is the vector contains the x-, y-, and z-components of the
coordinates for each node and the symmetric matrix X can be writ-
ten directly from the force densities (Connelly and Terrell, 1995;
Vassart and Motro, 1999). The (i, j)-component X (i, j) of X is given by

Xij ¼

X
k

tik i ¼ j; node i and node k connect by a bar

�tij i–j; node i and node j connect by a bar

0 others

8>><
>>:

ð37Þ
For prestressed structures, it is clear that the tension of members

as well as the nodal coordinates may change to equilibrate any load
increment df. Hence the incremental form of Eq. (35) is given by
(similar formulation can be found in Tanaka and Hangai, 1986)

dðALÞ � tþ AL � dt ¼ df ð38Þ

Noting that the mathematical expression of each entry in
matrix AL only includes components of nodal coordinates or be
zero alternatively, d(AL) can be obtained by replacing coordinate
components with the corresponding incremental ones in AL. Com-
bining with Eq. (36), it is clear that the following equations hold
dðALÞ � t ¼ ðI�XÞ � dx ð39Þ

where dx is the vector of incremental coordinates, describing infin-
itesimal movements of nodes. Obviously, the matrix I�X is equiv-
alent to the so-called geometric stiffness matrix KG in conventional
finite element formulation since it corresponds to the stiffness due
to the reorientation of stressed members. For simplicity, Eq. (39) is
rewritten as

dðALÞ � t ¼ KG � dx ð40Þ

Next let us expand the second term in the left side of Eq. (38)
further

AL � dt ¼ AL � dðL�1nÞ ¼ AL � dðL�1Þ � nþ A � dn ð41Þ

in which the relationship t ¼ L�1n is used. Considering that the dif-
ferential of L�1 yields

dðL�1Þ ¼ �L�1 � dL � L�1 ð42Þ

the following equation holds

AL � dðL�1Þ � n ¼ �A � dL � t ð43Þ

Defining the force density matrix as T ¼ diagðtÞ 2 Rb�b, we also
have the relationship

dL � t ¼ T � dl ð44Þ

where dl is the elongation vector, containing infinitesimal extension
of each member. Substitution of Eq. (44) into Eq. (43) yields

AL � dðL�1Þ � n ¼ �A � T � dl ð45Þ

Noting that the kinematic compatibility equations relating dx and dl
hold as (Pellegrino and Calladine, 1986)

ATdx ¼ dl ð46Þ

where the contragradient relationship between equilibrium matrix
and compatibility matrix is used, Eq. (45) can be rewritten as

AL � dðL�1Þ � n ¼ �ðATATÞ � dx ð47Þ

On the other hand, considering that the elongation dl for each
member consists of two parts, (i) an inelastic part due to the
imposed length change e, and (ii) a linear-elastic part caused by
the change of axial force dn, dl and dn are related by

dl ¼ eþ F � dn ð48Þ

where the vector e contains the imposed elongation e of each mem-
ber. Hence Eq. (46) can be written in the form

ATdx ¼ eþ F � dn ð49Þ

which can be tidied up as

dn ¼ F�1 ATdx� e
	 


ð50Þ

Substituting Eqs. (47) and (50) into Eq. (41) yields

AL � dt ¼ ð�ATATÞ � dxþ ðAF�1AÞ
T
� dx� AFe ð51Þ

To simplify the notations further, we denote the coefficient
matrices -ATAT and AF�1AT by KT and KE respectively, giving

AL � dt ¼ KT � dxþ KE � dx� AF�1e ð52Þ

where KE corresponds to the material stiffness matrix in conven-
tional finite element formulation and KT usually can be neglected
compared with KE since the axial force is generally far less than
axial stiffness for each member. Then substitute Eqs. (52) and (40)
into Eq. (38) and tidy up as follows

ðKE þ KG þ KTÞ � dx ¼ df þ AF�1e ð53Þ
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When the tangent stiffness matrix K is given by

K ¼ KE þ KG þ KT ð54Þ

Eq. (53) can be written in simpler form as

K � dx ¼ df þ AF�1e ð55Þ
Fig. 5. Flowchart of the nonlinear iterative program.
3.2.3. Nonlinear iterative program
It can be observed from Eq. (55) that the nodal displacements

are not only caused by an additional load df but also by the
imposed elongation e. Considering that there only exists e during
the reconfiguration procedure described in Section 3.1, df could
be zero and Eq. (55) becomes

K � dx ¼ AF�1e ð56Þ

the right-hand side of which is defined as driving force for the pro-
cedure of reconfiguration caused by e. Herein we denote it by df0

since it can be treated identically as an additional load df applied
at nodes.

However, noting that the structures considered in this paper are
free-standing, i.e., six rigid-body motions are not constrained, the
tangent stiffness matrix K is singular. One of the simplest ideas
to overcome this problem is making use of Moore–Penrose gener-
alized inverse to compute the nodal displacements dx as

dx ¼ Kþ � AF�1e ð57Þ

After that, the deformed configuration can be obtained by
updating nodal coordinates as follows

x2 ¼ x1 þ dx ð58Þ

where the nodal coordinate vectors x1 and x2 are associated with
initial configuration and deformed configuration respectively. Then
the member length vector l and equilibrium matrix A are also cor-
rected based on the new location x2.

In addition, recalling that the imposed length adjustment is
accomplished as if the rest-length of the cable would be changed
(see Section 3.1), the current member tension vector n can be com-
puted as

n ¼ F�1ð1� 10 � eÞ ð59Þ

where l0 is the vector containing rest-length l0 of each member
before the imposed contraction is acted upon. l0 is approximately
equal to the initial length when the prestressing level is low. For
the new location, the equilibrium equations (33) are usually not
satisfied precisely since the derivation of K is based upon linear-
elasticity hypothesis. Considering zero external load applied to
the joints, i.e., f = 0, the out-of-balance forces are given as

df 0 ¼ f � An ¼ �An ð60Þ

Then a nonlinear program based on Newton–Raphson method
which uses the Moore–Penrose generalized inverse of K within
each corrective iteration is presented to eliminate out-of-balance
forces df0. The location is corrected iteratively, unless the 2-norm
of df0 is less than the allowable error n. Finally the deformed config-
uration and member tensions are obtained. The algorithm is sum-
marized by the flowchart in Fig. 5.

3.3. Example

Consider now the reconfiguration procedure proposed in
Section 3.1 for quadrangular prismatic tensegrity with additional
cables. The upper part of Fig. 6 gives the initial equilibrium config-
uration in which additional cables are not yet in tension (Actually
it shows the same structure drawn in Fig. 4, but with a coordinate
system and node numbering scheme). Note that part of geometric
information of this configuration was given in previous section as
h = 45�, R = 5 and H = 10. The section size and material properties,
which are also necessary for analysis, are complemented as fol-
lows: the cross-sectional shape of each member is assumed to be
a circle, whose radius is 0.01 m for cables and 0.05 m for struts;
Young’s modulus of the material is 200e9 Pa. Thus the products
of Young’s modulus E and cross-sectional area Ac (or As) are equal
to 6.283 � 107 N for cables and 1.571 � 109 N for struts
respectively.

When the normalized symmetric state of self-stress shown in
Table 2 for the case of v = 4 is denoted by s

_
, the initial prestress

distribution n
_

can be given as (see Eq. (14))

n
_
¼ g � s

_
ð61Þ

where the prestress level coefficient g is assumed to be determined
as

g ¼ E � Ac=3000 ð62Þ

In addition, the following assumptions have been stated before the
investigation:

(a) The aim of this numerical analysis is not conventional mod-
eling of structures, but answering questions such as how the
structural configuration will vary under imposed lengths
change of added cables. Therefore the yield as well as strain
limit of structural material are not considered;

(b) Generally we want to change the initial configuration to
another symmetrical configuration, which is defined as sym-
metrical reconfiguration in Sultan et al. (2002). Particularly,
the serviceability criteria of maintaining a zero slope for
both upper and lower cable planes is hopefully to be guaran-
teed from a practical perspective (for example, we can imag-
ine a potential application in which the upper level attaches
the covering material and the lower level is located on the



Fig. 6. Deformed configurations for different value of imposed length decrement (Dot 1’ is the projection in bottom cable plane from Node 1).

Fig. 7. The development of z-component of nodal coordinates with imposed length
decrement.
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base directly). In order to meet such criteria, the length
adjustments for every added cable are assumed to be equal
and also be acted upon simultaneously throughout the
reconfiguration procedure.

To guarantee the approximation with quasi-static process,
consider that the imposed contraction e for each added cable is
performed slowly. Thus the reconfiguration process can be
regarded as consisting of a sequence of equilibrium configurations
with varying e. Then the nonlinear iterative algorithm proposed in
previous section is employed to determine these configurations,
i.e. to simulate and follow the process of reconfiguration.

As representatives of the results, the lower part of Fig. 6 shows
four equilibrium configurations corresponding to different value of
e (the single control parameter e is non-dimensionalised by e/l0

here, where l0 represents initial length of added cable). The analy-
sis is terminated at the point of e/l0 = 0.486, since the tension in
vertical cables just vanish (it will be illustrated later).

By checking the structural geometries, it can be verified that the
successive symmetrical configurations the structure passes
through during the procedure maintain the initial rotational sym-
metric property described as the invariance condition to rotation
around z-axis by 2ip/v (i = 1, . . .,v-1). It means that the symmetri-
cally located members (e.g. all horizontal cables or all struts) in ini-
tial configuration are always at symmetrical positions throughout
the process and the polygons formed by horizontal cables are kept
to be regular polygons (herein they are squares). Thus these config-
urations can be described exactly by three parameters: the radius
of circumcircle – R, the height of the structure – H and the relative
rotation angle between two polygons – h ¼ \ 2o10 or the equiva-
lent one h0 ¼ \ 4o10 which are always connected by the following
equation (see Fig. 6)

h0 ¼ h� 360�

v ðherein v ¼ 4Þ ð63Þ

The evolution of H has been provided in Fig. 7, indicating that
the height of the structure is decreasing gradually with increasing
magnitude of e (the top cable plane translates downwards while



Fig. 8. The development of relative rotation angle with imposed length decrement.

Fig. 9. The development of axial forces with imposed length decrement.
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the bottom one translates upwards). Meanwhile, the correspond-
ing h(e/l0) as well as h0(e/l0) is plotted in Fig. 8, showing that the
twist angle between two polygons is increasing from h = 45� to
h = 90� during the complete procedure (the top polygon rotates
anticlockwise around z-axis while the bottom one rotates clock-
wise). It is noteworthy that the equilibrium configuration at the
final point of e/l0 = 0.486, characterized by R = 5.78, H = 6.91,
(a) v=5, j=2                 (b) v=6, j=

Fig. 10. Top view of the equilibrium configurations obtained by shortening
h = 90� (h’ = 0�), coincides with the equilibrium configuration given
by Eq. (1) for the case of j = 2. The evidence to verify this is twofold:
(1) the tension in vertical cables just vanish implying that they can
be eliminated from assembly; (2) h’ satisfy the Eq. (1) in the case of
v = 4 and j = 2.

The development of axial forces with imposed length decre-
ment is provided in Fig. 9 to ascertain that all cables are in tension
and all struts are in compression throughout the reconfiguration
process. The axial force n is non-dimensionalised by n/(EAc) for
cables and n/(EAs) for struts, which can be regarded as nominal
strain of members. Fig. 9 shows that the tensions in both of the
horizontal cables and added cables increase throughout the pro-
cess, while the tensions in vertical cables increase firstly, but then
decrease after e/l0 exceeds approximately 0.243, and finally vanish
at the point of e/l0 = 0.486. When we continue to increase the mag-
nitude of e, the conditions of equilibrium would require vertical
cables to carry compression, which is not physically feasible. That’s
why the analysis is terminated at the point of e/l0 = 0.486 as stated
before.

Actually, when the same symmetrical reconfiguration proce-
dure is acted upon on prismatic tensegrities in the cases of v = 5,
6, 7, similar results are obtained by using the predictive model pro-
posed before. The key features for this class of structures undergo-
ing such procedures can be summarized as follows. By shortening
added cables gradually, the structure evolves from the initial point,
where the axial force in added cables is zero, to the final point
where the tensions in vertical cables just vanish. Meanwhile, the
twist angle between two polygons increases from h = 180�(1/2–1/
v) to h = 90�. At the final point characterized by h = 90�, the follow-
ing equation holds according to Eq. (63)

h0 ¼ h� 360�

v ¼ 90� � 360�

v ¼ 180� � 1
2
� 2

v

� �
ð64Þ

It demonstrates that the initial equilibrium configuration corre-
sponding to j = 1 in Eq. (1) is transformed into the final equilibrium
configuration corresponding to j = 2 in Eq. (1) (see Fig. 10) through
the process of this symmetrical reconfiguration.

Another interesting situation in which this class of symmetrical
reconfigurations are very useful is when the structure is required to
improve its stiffness with the constraint of maintaining zero slope
for both of upper and bottom levels from a practical perspective
(for example, we can imagine an application in which the upper
level may attach the covering material and the lower level may
be located on the base directly). Consider that the smallest eigen-
value of the tangent stiffness matrix is associated with the most
flexible mode of displacements (Guest, 2011) and reflects the global
stiffness of the structure. A complete overview of the stiffness
2                 (c) v=7, j=2

the added cables gradually until the tensions in vertical cables vanish.



Fig. 11. The plots of the smallest eigenvalues of the tangent stiffness matrix for
varying values of e/l0.

Fig. 12. A full-scale model serving for the skeleton of a membrane structure in
Chiba Japan.
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change is provided by the plots of the smallest eigenvalues of K for
0 < e/l0 < 0.2 given in Fig. 11 (6 zero eigenvalues corresponding to
rigid body modes are certainly eliminated). To non-dimensionalise
the results also, the smallest eigenvalues kmin are plotted relative to
the initial prestress level factor g (=EAc/3000).

Fig. 11 shows that the structure becomes stiffer and stiffer grad-
ually. Even the decrement e is only 2% of the initial length l0, the
dimensionless parameter kmin/g changes from 0.040 to 0.289
which is approximately 7 times as large. In this way, they have
the potential to become part of an exhibition rather than merely
provide shelter for one. Indeed a full-scale laboratory prototype
has been built, serving as the skeleton of a real membrane struc-
ture (see Fig. 12). During the stiffness modification procedure,
22-ton prestress was introduced manually without any mechanical
power, making it meet the serviceability criteria well (Kawaguchi
and Lu, 2002, Kawaguchi, 2003).
4. Conclusions

A simple energy method making use of eigenvalue analysis is
proposed to determine the symmetric prestress distribution for
certain tensegrity structures with multiple states of self-stress.
Essentially, it is to achieve a special orthonormal basis spanning
the space of integral symmetric states of self-stress, which satisfy
the stationary condition of initial strain energy simultaneously.
Since the effect of symmetry is not considered directly in this
method, certain symmetry-related operations performed in previ-
ous works, e.g. grouping members are avoided. Thus it is more con-
venient to treat the structures with large number of members and
complicated topology. A class of prismatic tensegrities with addi-
tional cables, which are the variations on the classic ones, are first
introduced to show the validity and accuracy of the presented
method. Then a cable-controlled reconfiguration procedure is put
forward for these structures, in which only additional cables are
assumed to be adjustable and provide the driving force to change
the shape as well as mechanical properties of the structures. By
adopting the length adjustments as the control parameters, this
reconfiguration procedure is regarded as a quasi-static process,
consisting of a sequence of equilibrium configurations with vary-
ing control parameters. In order to determine these configurations
(i.e. simulate and follow this reconfiguration process), a governing
equation relating nodal displacements and imposed length change
of members, as well as the corresponding nonlinear iterative pro-
gram based on Newton–Raphson method is developed. The
Moore–Penrose generalized inverse of tangent stiffness matrix is
used within each corrective iteration to treat the situation that
the structure is free-standing. As numerical examples, a particular
class of reconfigurations coined symmetrical reconfigurations are
investigated carefully. It has been shown that the transformation
between two self-equilibrium configurations corresponding to
j = 1 and j = 2 respectively in Eq. (1) is performed through these
symmetrical reconfigurations. Another potential application of
them is to improve the structural stiffness under the condition of
maintaining zero slopes for horizontal cable planes of the struc-
ture. In this way, the tensegrities investigated in this paper may
have the feasibility to become part of an exhibition rather than
merely provide shelter for one.
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