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SUMMARY

Niemann-Pick type C1 (NPC1) is a polytopic endoso-
mal membrane protein required for efflux of LDL-
derived cholesterol from endosomes, and mutations
of this protein are associated with Niemann-Pick
disease type C, a fatal neurodegenerative disease.
At least one prevalent mutation (I1061T) has been
shown to cause a folding defect, which results in
failure of endosomal localization, leading to a loss-
of-function phenotype. Here, we show that several
oxysterols and their derivatives act as pharmacolog-
ical chaperones; binding of these compounds to
I1061T NPC1 corrects the localization/maturation
defect of the mutant protein. Further, these
compounds alleviate intracellular cholesterol accu-
mulation in patient-derived fibroblasts, suggesting
that they may have therapeutic potential. These oxy-
sterol derivatives bind to a domain of NPC1 that is
different from the known N-terminal sterol-binding
domain; i.e., there is an additional sterol-binding
site on NPC1.

INTRODUCTION

Niemann-Pick disease type C (NPC) is a fatal, autosomal reces-

sive neurodegenerative disease, characterized by massive

cholesterol accumulation in lysosomes and late endosomes

(Patterson et al., 2001). Approximately 95% of NPC patients

have a mutation in the gene encoding Niemann-Pick type C1

protein (NPC1) (Ory, 2000), which is a late-endosomal protein

with 13 transmembrane-spanning domains (Carstea et al.,

1997; Loftus et al., 1997; Davies and Ioannou, 2000). The remain-

ing 5% of patients have mutations in NPC2, a soluble, choles-

terol-binding, late-endosomal protein (Naureckiene et al.,

2000). Loss of function of either NPC1 or NPC2 results in indis-

tinguishable phenotype, and these proteins are both considered

to participate in intracellular cholesterol trafficking in a concerted

manner (Sleat et al., 2004).

Although it is clear that NPC1 is essential for the egress of lipo-

protein-derived cholesterol from endosomes, the mechanism of

cholesterol export remains to be clarified in detail. Binding of
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cholesterol, oxysterols, and fluorescent sterols to NPC1 protein

has been demonstrated by several groups (Ohgami et al., 2004;

Infante et al., 2008a; Liu et al., 2009a), and the binding site of

sterols has been determined to be a soluble N-terminal domain

(NTD) (Infante et al., 2008b; see also Figure 1A). Subsequently,

crystal structures of the NTD complexed with cholesterol and

25-hydroxycholesterol (25HC) were solved (Kwon et al., 2009),

and the importance of this domain in NPC1-dependent transport

of cholesterol was demonstrated in vivo (Xie et al., 2011). Taking

into account the reported cholesterol transfer between NTD and

NPC2 (Infante et al., 2008c), the mechanism of cholesterol trans-

port is proposed to be as follows: (1) cholesterol-bound NPC2

binds to luminal loop 2 of NPC1 (Deffieu and Pfeffer, 2011), (2)

cholesterol slides into the cavity of the NTD from NPC2 in

a mouth-to-mouth manner (a hydrophobic hand-off model)

(Wang et al., 2010), and (3) cholesterol is transferred to an

unknown cytosolic acceptor molecule(s).

To date, more than 100 disease-causing mutations in NPC1

have been reported (OMIM 607623). At least for the most preva-

lent mutation, I1061T, the molecular mechanism of loss of func-

tion has been proposed to involve a folding defect and increased

instability, rather than an intrinsic loss of function (Gelsthorpe

et al., 2008). This mutant has lower folding efficiency and is re-

tained in the endoplasmic reticulum (ER), a site of folding and

quality control of membrane proteins, as a result of recognition

by the cellular quality control system, consequently being tar-

geted for proteasomal degradation. As a result of ER retention

and rapid degradation, the level of functional NPC1 in the late en-

dosomes decreases, and this results in loss-of-function pheno-

type. Although a large proportion of themutant protein shows the

trafficking defect and is degraded in the ER, a small proportion of

the protein does fold correctly and is localized to late endo-

somes. The correctly localized mutant protein has also shown

to be intrinsically functional with respect to cholesterol transport.

Considering the folding-defective nature of the NPC1 mutant

protein, one possible approach to treat NPC is to identify phar-

macological chaperones, i.e., small-molecular ligands that

correct the trafficking defect resulting from the lower folding effi-

ciency, presumably by binding to the folding intermediate in the

ER (Loo and Clarke, 1997) and encouraging its escape from the

ER quality control system (Ishii et al., 1993; Morello et al., 2000a,

2000b; Fan, 2003; Loo and Clarke, 2007).

Here, we report that 25HC acts as a pharmacological chap-

erone, enhancing the folding/maturation and correcting the traf-

ficking defect of NPC1I1061T mutant. Based on this finding, we
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Figure 1. Correction of Subcellular Locali-

zation of NPC1I1061T Mutant by 25HC

(A) Schematic representation of the predicted

topology of the NPC1 protein. The three large

luminal loops are denoted as NTD, loop 2, and loop

3. Loop 3 harbors the I1061T mutation.

(B) Structure of 25HC, showing relevant carbon

numbers.

(C) Subcellular localization of WT and I1061T

mutant NPC1-GFP, and effect of 25HC on

NPC1I1061T-GFP localization. HEK293 cells stably

expressing the indicated construct were incubated

with 25HC for 24 hr, and the localization of NPC1-

GFP and LAMP1 was examined. Calibration bar

represents 20 mm.

(D) Quantitative analysis of colocalization between

NPC1-GFP proteins and LAMP1. The images ob-

tained as in (C) were analyzed as described in

Experimental Procedures. Data points represent

the mean with SD depicted by error bars (n = 5).
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conducted structure-activity relationships studies, which led to

the identification of highly potent pharmacological chaperones.

We also examined the functional consequence of pharmacolog-

ical chaperone treatment of NPC patient-derived fibroblasts,

which harbor I1061T mutation on both alleles, and found that

cholesterol accumulation was alleviated. In the course of the

structure-activity relationships studies, we noticed inconsis-

tency between the reported crystal structure of NTD and the ob-

tained structure-activity relationships, leading us to hypothesize

that NPC1 has a second sterol-binding site, other than the NTD.

Here, we provide unequivocal evidence of the existence of this

second, non-NTD sterol-binding site in NPC1.

RESULTS

Oxysterols Correct Subcellular Localization of Folding-
Defective NPC1I1061T Mutant
We first tested whether 25HC could act as a pharmacological

chaperone for NPC1 protein by examining the effect of 25HC

on NPC1I1061T-GFP localization. Although the localization of

NPC1WT-GFP was LAMP1-positive late endosomes, a large

proportion of NPC1I1061T-GFP exhibited a perinuclear reticular
392 Chemistry & Biology 20, 391–402, March 21, 2013 ª2013 Elsevier Ltd All rights reserved
pattern, characteristic of ER-retained

proteins, and only a small proportion

was correctly localized to LAMP1-posi-

tive late endosomes, as previously re-

ported (Figure 1C) (Neufeld et al., 1999;

Zhang et al., 2001a; Gelsthorpe et al.,

2008). Upon treatment with 25HC, the

steady-state localization of the mutant

protein became vesicular, and the

mutant protein was well colocalized

with LAMP1, indicating recovery of the

proper localization (Figure 1C). The

extent of colocalization was quantified

and shown in Figure 1D. Furthermore,

as shown in Figure 2B, dose-dependent

recovery of proper localization of
NPC1I1061T was observed, and the EC50 was estimated as

2.4 mM.

Next we explored the structure-activity relationship of the oxy-

sterol-mediated change in NPC1I1061T localization by testing

a panel of oxysterolswith one or two additional hydroxyl group(s),

other than the 3-hydroxyl group. Among the tested oxysterols,

19-hydroxycholesterol (19HC) (Figure 2B) and 20(S)-hydroxy-

cholesterol (data not shown) had no effect on NPC1I1061T-GFP

localization at 10 mM, whereas B-ring-hydroxylated sterols,

such as 7b-hydroxycholesterol, showed activity comparable to

or slightly higher than that of 25HC (data not shown).

Identification of Potent Oxysterol Derivatives through
Chemical Optimization
To identify more potent oxysterol derivatives, we conducted

cycles of synthesis and evaluation using the NPC1I1061T localiza-

tion assay (data not shown), and identified potent oxysterol

derivatives with more than one order of magnitude lower EC50

values. For example, the EC50 of mo56CFA, one of the most

potent derivatives, was 0.12 mM, and this is nearly 20-fold lower

concentration compared to 25HC. Structures and EC50 values of

representative compounds are shown in Figure 2 (see also
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Figure 2. Identification of Sterol Derivatives with Greater Potency by Means of Chemical Optimization

(A) Structures of representative sterol derivatives used in this article.

(B) NPC1I1061T colocalization assay, showing dose-response curves for selected oxysterols and sterol derivatives. The extent of colocalization of the NPC1

mutant and LAMP1 was quantified as described in Experimental Procedures, and the data points represent the averages (n = 10) with SE depicted by error bars.

(C) Representative images of the experiments in (B). Calibration bar represents 20 mm.

See also Figure S1A.
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Figure S1A available online). Furthermore, the obtained deriva-

tives did not correct mislocalization of another folding-defective

protein, rhodopsin P23H mutant, indicating specificity of the

effect (Figure S1B). This data supports the hypothesis that these

compounds act as pharmacological chaperones.

Oxysterol Derivatives Stabilize NPC1I1061T Mutant
Protein and Increase its Steady-State Level
NPC1I1061T mutant is unstable because of accelerated degrada-

tion at the ER, resulting in lower steady-state levels (Gelsthorpe

et al., 2008; Yamamoto et al., 2000, 2004; Ninomiya, 2006). In the

case of G protein-coupled receptors (GPCRs), it has been shown

that unstable mutant receptors can be stabilized in cells by add-

ing their ligand, and upregulation of the steady-state levels of the

receptors can be used as a method for detecting ligand binding

(MacEwan and Milligan, 1996; Ramsay et al., 2001). To examine

whether oxysterol derivatives stabilize the mutant protein

and eventually increase its steady-state level, we studied

NPC1I1061T-GFP expression levels by measuring the GFP fluo-

rescence. As shown in Figure 3A, mo56CFA dose-dependently

increased the level of NPC1I1061T protein, whereas no significant

increase was observed for the wild-type (WT) protein. As

a control for those experiments, identical experiments were per-

formed using 19HC, one of the inactive oxysterols, and no signif-

icant upregulation was observed (Figure 3A). Furthermore, the

relative efficacies of the oxysterol derivatives in this assay were

the same as those in the localization assay (Figures 2B and

3A). These results support the notion that the observed upregu-

lation is a result of ligand-mediated stabilization resulting from
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binding of the oxysterol derivatives to the NPC1I1061T mutant

protein.

Oxysterol Derivatives PromoteMaturation of NPC1I1061T

Mutant
Next, we examined the effect of oxysterol derivatives on

NPC1I1061T maturation by monitoring the EndoH sensitivity.

EndoH can hydrolyze only unmodified N-linked glycans, and

sensitivity to this enzyme indicates that the proteins are imma-

ture and have not exited from the ER. In accordance with

a previous report (Gelsthorpe et al., 2008), NPC1I1061T-GFP di-

gested with EndoH migrated faster on SDS-PAGE than En-

doH-resistant WT protein (Figure 3B). Upon treatment with

25HC or mo25HC, NPC1I1061T-GFP became resistant to EndoH,

indicating that oxysterols and oxysterol derivatives promote

maturation of NPC1I1061T proteins.

Bifunctional Photoaffinity Probe Reveals Direct Binding
of Oxysterol Derivatives to NPC1
To test the hypothesis that the observed effects of oxysterol

derivatives on NPC1I1061T mutant proteins are mediated through

direct binding to NPC1 (i.e., oxysterol derivatives act as pharma-

cological chaperones), we synthesized a bifunctional photoaffin-

ity probe, mo56AZK (Figure 4A), and conducted photoaffinity

labeling experiments (Hosoya et al., 2004). This compound

contains an aryl azide as a photoreactive group and an alkyne

for conjugation with a reporter molecule, such as biotin, by Cu-

catalyzed azide-alkyne cycloaddition (CuAAC) (MacKinnon

et al., 2007; Ban et al., 2010; Côté et al., 2011). The small size
91–402, March 21, 2013 ª2013 Elsevier Ltd All rights reserved 393
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Figure 3. Effect of Oxysterol Derivatives on Steady-State Expression Level and Maturation Status of NPC1I1061T Mutant

(A) The steady-state expression level of FLAG-NPC1-GFP (WT or I1061T) was quantified by measuring GFP fluorescence in the lysate with or without oxysterol

derivatives. The GFP fluorescence was normalized with respect to total protein concentration. Data points represent the averages (n = 3) with SD depicted by

error bars.

(B) Acquisition of EndoH resistance upon treatment with 25HC and its derivative. Cells stably expressing either WT or I1061T version of FLAG-NPC1-GFP were

treated as indicated for 24 hr and lysed. The lysates were digested with EndoH and immunoprecipitated with anti-FLAG beads. The immunoprecipitated proteins

were subjected to western blot analysis (immunoblotted with anti-FLAG antibody).
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of both azide and alkyne groups allowed us to obtain this probe

(EC50 0.078 mM) without loss of activity compared with the

parental compound mo56CFA (EC50 0.12 mM) (Figures 2B and

4B). Next, we used this probe to examine whether the oxysterol

derivatives directly bind to NPC1 by means of photocrosslinking

experiment. As shown in Figures 4C and 4D, mo56AZK directly

labeled NPC1 upon UV irradiation, and the fact that the labeling

was subject to competition bymo56CFA indicates the specificity

of this crosslinking reaction.

Similar experiments with I1061T mutant gave essentially the

same results (data not shown; cf. Figure 7C), demonstrating

that the binding of mo56AZK was independent of the presence

or absence of the I1061T mutation. Thus, direct interaction
A B

DC
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between the oxysterol derivatives and NPC1 proteins was

demonstrated. This result strongly supports our hypothesis

that these compounds act as pharmacological chaperones for

the I1061T mutant.

Oxysterol Derivatives Promote Maturation of
Endogenous NPC1I1061T in Patient-Derived Fibroblasts
It has been reported that I1061T and some other mutants show

altered band patterns on western blots, with smaller apparent

molecular mass (Watari et al., 1999a, 1999b) (Figure 5A). Further-

more, these smaller forms of NPC1 proteins were considered to

be nonfunctional, based on the fact that the sterol-trafficking

defect of CT60 cells, a CHO cell line lacking functional NPC1,
Figure 4. Direct Binding between Oxysterol

Derivatives and NPC1

(A) Structure and EC50 value of bifunctional pho-

toaffinity probe mo56AZK.

(B) mo56AZK dose-dependently rescue the local-

ization defect of I1061T mutant. The data points

represent the averages (n = 10) with SD depicted

by error bars. See also Figure S1A.

(C) The probe mo56AZK specifically labels FLAG-

NPC1-GFP. Photocrosslinking experiments were

performed as described in Experimental Proce-

dures.

(D) The quantified result of (C).

r Ltd All rights reserved
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Figure 5. Functional Rescue of Patient-

Derived Fibroblasts

(A) Comparison of the expression levels and band

patterns of endogenous WT (HEK293) and I1061T

NPC1 proteins (NPC fibroblast). The filled arrow-

head indicates the mature form, and the open

arrowhead indicates the immature form.

(B) Effects of 25HC and mo56HC on expression

level and band pattern of endogenous NPC1I1061T.

NPC fibroblasts were treated with the indicated

compound for 48 hr and processed for western

blot analysis using anti-NPC1 antibody.

(C) Effect of other sterol derivatives on expression

level and band pattern of I1061T mutant. To facil-

itate comparison between the compounds, the

concentrations normalized with their EC50s are

also shown.

(D) Alleviation of intracellular cholesterol accumu-

lation by oxysterol derivative. NPC fibroblasts

were cultured in the presence of the indicated

compound for 48 hr, and processed for filipin

staining. Calibration bar represents 100 mm. The

intracellular cholesterol accumulation was quanti-

fied as described in Experimental Procedures.

Error bar represents SD (n = 12).

See also Figure S2.
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could not be corrected by transfection of the cells with these

mutants (Watari et al., 2000). Here, we explored whether treat-

ment with oxysterol derivatives could normalize the altered

band pattern of endogenous NPC1I1061T mutant protein by using

NPC patient-derived fibroblasts with the I1061T mutation on

both alleles. When NPC fibroblasts were treated with mo56HC,

a dose-dependent increase in expression level and a band shift

toward higher molecular weight were observed, so that the band

pattern became nearly the same as that of WT protein (Figures

5B and 5C). Treatment with 25HC also increased the abundance

of the higher-molecular-weight species, although more than 10-

fold higher concentration was required in this case (Figures 5B

and 5C). For other oxysterol derivatives, the relative efficacies

in the NPC1 localization assay were recapitulated; the upregula-

tion was detectable only when the concentrations higher than

their EC50s were used. (Figure 5C). Considering the results ob-

tained from cells overexpressing NPC1I1061T-GFP (Figures 1, 2,

3, and 4), these results suggest that the oxysterol derivatives

stabilized and promoted the maturation of endogenous

NPC1I1061T protein in the patient-derived fibroblasts.

Oxysterol Derivatives Alleviate Intracellular Cholesterol
Accumulation in Patient-Derived Fibroblasts
To examine whether the oxysterol-derived pharmacological

chaperones could functionally rescue NPC1I1061T protein, we

evaluated their effect on intracellular cholesterol accumulation

in NPC fibroblasts. When stained with filipin, a fluorescent poly-

ene antibiotic with affinity for free cholesterol, NPC fibroblasts

showed an intense intracellular staining pattern, indicating

cholesterol accumulation in the lysosomes and late endosomes

(Pentchev et al., 1985). Upon treatment with mo56HC (�1 mM),

dose-dependent alleviation of this intracellular cholesterol accu-

mulation was observed. As mo56HC did not downregulate LDL
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receptor nor inhibit LDL uptake (Figures S2C andS2D), this result

indicates functional rescue of the NPC1I1061T mutant protein by

mo56HC (Figures 5D and 5E). Unexpectedly, however, a high

concentration (10 mM) of mo56HC induced an increase of intra-

cellular cholesterol accumulation compared with the vehicle-

treated cells. One possible explanation of this result is that the

observed accumulation is due to an inhibitory effect of

mo56HC on NPC1 function at high concentration.

The Presence of NTD Is Not Obligatory for Sterol-
Mediated Rescue of NPC1I1061T Localization Defect
Our structure-activity relationship studies on oxysterol deriva-

tives revealed that (1) introduction of a substituent on the

3b-hydroxyl group lowered EC50 by one order of magnitude in

several series of derivatives (e.g., compare 25HC and

mo25HC, Figure 2B), and (2) introduction of hydroxyl functional-

ities into the B-ring of the sterol, especially at the 5-, 6-, or 7-posi-

tion, did not result in any loss of activity. On the other hand, the

reported crystal structure of NTD complexed with 25HC showed

that (1) 25HC binds to NTD with the 3b-hydroxyl group located

deep in the binding pocket, and (2) the B-ring of 25HC is sur-

rounded by hydrophobic residues, such as Leu, Phe, and Ile

(Kwon et al., 2009). Thus, there appeared to be a discrepancy

between our structure-activity relationships and the reported

crystal structure. This discrepancy led us to explore the possi-

bility that the binding site of our oxysterol derivatives is not situ-

ated in the NTD.

To address this possibility, we tested whether the oxysterol

derivatives could correct the localization defect of NTD-deleted

NPC1I1061T-GFP (DNTD-I1061T) (Figure 6). Although a small

proportion of full-length I1061T mutant shows late endosomal

distribution, DNTD-I1061T was completely localized to the ER.

This observation indicates that the deletion of the NTD itself
91–402, March 21, 2013 ª2013 Elsevier Ltd All rights reserved 395
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Figure 6. Dispensability of NTD for Oxysterol Derivative-Mediated Rescue of Mutant NPC1 Protein

(A) Schematic representation of the NTD-deleted NPC1-GFP (DNTD).

(B) Subcellular localization of the DNTD-WT and DNTD-I1061T. Cells stably expressing the DNTD-NPC1-GFP construct were treated as indicated for 24 hr and

colocalization of the NPC1 with LAMP1 was examined. Calibration bar represents 20 mm.

(C) Dose-dependent rescue of DNTD-I1061T localization by representative oxysterol derivatives. The graph shows the dose-response curves of representative

compounds and the table shows calculated EC50 values. For 25HC, the extrapolated value is shown. Error bar, SE (n = 12).
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slightly reduced the folding efficiency. In spite of this diminished

folding efficiency, the ER localization of DNTD-I1061T was effi-

ciently corrected to late endosomal localization by treatment

with the oxysterol derivatives (Figure 6B), demonstrating that

the NTD is not required for the pharmacological chaperone

effect. We further characterized this effect by determining the

EC50 values of the oxysterol derivatives. As shown in Figure 6C,
396 Chemistry & Biology 20, 391–402, March 21, 2013 ª2013 Elsevie
the rank order of the derivatives was the same as in Figure 2B,

showing the same specificity as with the full-length protein.

Compared with full-length I1061T, however, we observed right-

ward shifts of the dose-response curves for DNTD-I1061T.

Taking into account the observation that deletion of the NTD

itself slightly lowered the folding efficiency, we rationalized these

rightward shifts as reflecting decreased folding efficiency. These
r Ltd All rights reserved
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Figure 7. Existence of Non-NTD Sterol-Binding Site

(A) Sterol-mediated stabilization of DNTD-I1061T. The steady-state expression level of DNTD-I1061T was quantified as in Figure 3A. Error bar, SD (n = 3).

(B) Schematic representation of the NTD-tail-GFP construct. See also Figure S3.

(C) Photoaffinity labeling experiments of NTD-deleted NPC1 and NTD-tail NPC1. Membranes from cells stably expressing either FLAG-tagged DNTD-I1061T or

NTD-tail-GFP were labeled with mo56AZK as in Figure 4. Right panel shows the labeling of DNTD-WT. Because of the low expression level of the stable cell line,

the longer exposure time was used for DNTD-WT. ns, nonspecific labeling/staining. See also Figure S3C.

(D) The quantified results of (C).
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data clearly point to the existence of a sterol-binding site that is

distinct from the NTD.

Oxysterol-Derived Pharmacological Chaperones
Stabilize NTD-Deleted NPC1I1061T Mutant
To test whether the stabilizing effect of the oxysterol derivatives

on I1061Tmutant was also independent of the existence of NTD,

we examined the steady-state levels of DNTD-I1061T. As had

been found for full-length I1061T, mo56CFA stabilized DNTD-

I1061T protein in a dose-dependent manner, but 19HC did not

(Figure 7A). Furthermore, the relative efficacies of other oxysterol

derivatives were also consistent with those in the case of full-

length I1061T mutant (data not shown). These data strongly
Chemistry & Biology 20, 3
support the hypothesis that the oxysterol-derived pharmacolog-

ical chaperones bind to a distinct, non-NTD sterol-binding site

on NPC1.

Oxysterol-Derived Pharmacological Chaperones
Directly Bind to a Non-NTD Sterol-Binding Site
To demonstrate the direct binding of oxysterol derivatives to the

putative non-NTD sterol-binding site, we again conducted pho-

tocrosslinking experiments. For this purpose, we used two cell

lines stably expressing FLAG-tagged NPC1-GFP construct;

one is DNTD (D25–248) and the other is NTD-tail (D306–1256)

(Figure 7B). The latter construct contains the NTD, the first trans-

membrane domain, and the C-terminal tail, which is required for
91–402, March 21, 2013 ª2013 Elsevier Ltd All rights reserved 397
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endosomal localization (Watari et al., 1999a; Scott et al., 2004).

The NTD-tail localized correctly to LAMP1-positive endosomes

(Figure S3A), indicating that the protein structure is not compro-

mised by this large deletion. As shown in Figures 7C and 7D,

mo56AZK specifically labeled both DNTD-I1061T and DNTD-

WT. On the other hand, neither UV-dependent labeling nor

competition by mo56CFA could be observed for NTD-tail. This

result clearly demonstrated that oxysterol derivatives directly

and selectively bind to a non-NTD sterol-binding site. Thus, it

is most likely that there exist additional sterol-binding site and

that the observed effects of the oxysterol derivatives on

NPC1I1061T mutant protein are mediated through direct binding

of the compounds to this non-NTD sterol-binding site.

DISCUSSION

Our data clearly support the following two propositions: (1) oxy-

sterols and their derivatives act as pharmacological chaperones

for NPC1I1061T mutant, and (2) their binding site is not the known

sterol-binding domain, NTD, but another, distinct binding site on

NPC1.

To date, much effort has been made to elucidate the etiology

of NPC and to gain insight into NPC1 function. Recent progress

has provided some promising therapeutic options, such as

cyclodextrin treatment and substrate reduction therapy (Rose-

nbaum and Maxfield, 2011). Cyclodextrins have been shown to

reduce the NPC phenotype and to prolong the lifespan of

npc1�/� mice, possibly via cyclodextrin-mediated clearance of

endosomal cholesterols (Griffin et al., 2004; Davidson et al.,

2009; Liu et al., 2009b; Aqul et al., 2011). Another therapeutic

option, substrate reduction therapy, is based on the fact that gly-

cosphingolipids also accumulate in late endosomes. To alleviate

the accumulation of glycosphingolipids, which may affect

neuronal viability, a glucosylceramide synthase inhibitor, miglu-

stat, has been tested, and it was shown to improve several clin-

ical markers (Patterson et al., 2007).

Our approach here was to find compounds that alleviate the

folding defect of NPC1 mutant proteins, such as I1061T. Here,

we successfully found that some oxysterols and their more

potent derivatives can act as pharmacological chaperones,

and our results demonstrate the potential value of this strategy

as an option for NPC treatment. Recently, histone deacetylase

(HDAC) inhibitors have been shown to upregulate NPC1 expres-

sion level via transcriptional regulation of HDAC target genes,

and functional rescue in NPC fibroblast has also been achieved

(Pipalia et al., 2011). As the pharmacological chaperones act

posttranslationally, the combination of HDAC inhibitors and the

pharmacological chaperones may be of greater benefit.

Until now, two independent groups have purified NPC1

protein and conducted binding assay with 3H-labeled sterols

or fluorescent sterol analogs (Infante et al., 2008a; Liu et al.,

2009a). The former group localized the binding site of sterols

to the NTD and clearly demonstrated high-affinity binding

between purified NTD and 3H-labeled sterols (Kd 10 nM for

25HC). The latter group demonstrated binding between full-

length NPC1 and fluorescent sterols by utilizing the change in

fluorescence intensity of the sterols themselves upon binding

to the purified protein as well as the change in intrinsic Trp fluo-

rescence of NPC1 upon binding of the sterols. As regards the Trp
398 Chemistry & Biology 20, 391–402, March 21, 2013 ª2013 Elsevie
fluorescence quenching, however, the former group mentioned

that in their preliminary study they could not detect Trp fluores-

cence quenching of the NTD upon binding of 25HC. This

discrepancy might be attributable to the difference in the exper-

imental conditions the two groups employed (Infante et al.,

2008b). However, considering the existence of the second

sterol-binding site on NPC1, another explanation for the discrep-

ancy is now possible, i.e., that the Trp fluorescence quenching

was a result of the fluorescent sterol binding to the second,

non-NTD sterol-binding site. Although the location of the second

sterol-binding site has yet to be determined, its identification will

provide a basis for resolving the discrepancy, if one or more Trp

residues are present near this binding site.

Infante et al. (2008b) reported that both full-length NPC1 and

NTD bound [3H]25HC with similar saturation kinetics, proposing

the NTD as the sole oxysterol-binding site, at least under their

experimental conditions. On the other hand, we have found clear

evidence of binding of 25HC and other oxysterol derivatives to

a second, non-NTD sterol-binding site. Our working hypothesis

is that the NTD is a high-affinity sterol-binding site, whereas

the non-NTD sterol-binding site is a low-affinity or transient

sterol-binding site, because the EC50 of 25HCwas of micromolar

order in our cell-based assay. Accordingly, binding of [3H]25HC

to the non-NTD sterol-binding site might not have been detected

in their in vitro binding assay that requires bound/free separation.

A region of five consecutive transmembrane domains (TM3-7)

of NPC1, known as the sterol-sensing domain (SSD), was initially

found in two proteins related to cholesterol homeostasis, HMG-

CoA reductase and SREBP-cleavage activating protein (SCAP)

(Hua et al., 1996). Thereafter, this family was expanded to

include other proteins related to cholesterol sensing, synthesis,

metabolism, and transport, including NPC1, NPC1-like 1,

Patched, and 7-dehydrocholesterol reductase (Kuwabara and

Labouesse, 2002). However, the function of SSD in general

remains enigmatic. Although sequence conservation of the

SSD in sterol-related proteins suggests that SSD might be

a sterol sensor, there is no report of direct binding of SSD and

sterols. Ohgami et al. (2004) indicated the importance of intact

SSD for cholesterol binding to NPC1. In their work, photocros-

slinking of NPC1 protein by 3H-labeled 7,7-azi-cholestanol was

diminished by introduction of an SSD mutation, P691S. The

result clearly showed the requirement of intact SSD for sterol

binding, but they did not establish whether the sterol directly

bound to SSD or whether the SSD mutation affected the confor-

mation of a sterol-binding site located somewhere other than in

the SSD. In the case of NPC1, as mentioned above, a sterol-

binding site was later localized to the NTD (Infante et al.,

2008b). For SCAP, based on studies using purified SCAP, it is

proposed that the cholesterol-binding site is not the SSD, but

is a luminal loop adjacent to the SSD (Motamed et al., 2011),

although this loop is not conserved in NPC1. Our data presented

here demonstrate the existence of a distinct non-NTD sterol-

binding site, and this may again raise the question of ‘‘does the

SSD bind sterols’’? Our on-going studies to establish the locali-

zation and identity of the second sterol-binding site should

provide an answer to this question.

A question also arises as to whether this second sterol-binding

site onNPC1 plays a role in NPC1 functions. In general, the effect

of pharmacological chaperones on the function of a mutated
r Ltd All rights reserved
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target protein is biphasic; at lower concentration they restore

function to the mutant protein, but at higher concentration they

inhibit the function by acting as inhibitors or antagonists. This

appears to be the case for our sterol derivatives. As shown in Fig-

ure 5D, treatment with the sterol derivatives at lower concentra-

tion alleviated cholesterol accumulation in the endosomes of

patient-derived fibroblasts, but a higher concentration, such as

10 mM, conversely induced accumulation of free cholesterol in

the endosomes. Similar accumulation was also observed in

other cells endogenously expressing NPC1WT, such as

HEK293 cells (Figure S2). Further, we observed that the cells

overexpressing NPC1WT-GFP showed resistance to this sterol

derivatives-induced accumulation of cholesterol (data not

shown). Therefore, we think the mechanism of the cholesterol

accumulation involves inhibition of NPC1 function, though other

possibilities cannot be ruled out. These results suggest a func-

tional significance of the second sterol-binding site.

It is still unclear how NPC1 regulates intracellular cholesterol

trafficking. One possible mechanism is that NPC1 acts as

a permease/transporter, and transport sterols or other

substrates to the cytosolic face (Davies et al., 2000; Ioannou,

2001). This hypothesis is based on the fact that NPC1 shares

sequence homology with prokaryotic resistance-nodulation divi-

sion (RND) transporters, which are proton antiporters that

mediate efflux of substances from cells (Tseng et al., 1999).

Another possible mechanism is that NPC1 regulates intracellular

lipid transport via regulation of vesicular trafficking (Ohsaki et al.,

2006; Zhang et al., 2001b; Ko et al., 2001). The second sterol-

binding sitemay be a substrate-binding site that channels sterols

from the luminal to cytosolic face, or a regulatory site that

controls vesicular trafficking in a sterol-dependent manner.

These possibilities should be examined in the future.

In conclusion, we have discovered the oxysterol-derived phar-

macological chaperones for folding-defective NPC1mutant, and

we have also uncovered the presence of a second sterol-binding

site, distinct from the NTD site. Although further work is needed

to establish the physiological significance of this site, our two-

sites model is expected to provide a useful framework for under-

standing the function and regulation of NPC1 and other related

proteins. The location of the second sterol-binding site remains

to be identified. Work on these issues is under way.

SIGNIFICANCE

We report several oxysterols and their chemically optimized

derivatives as pharmacological chaperones for NPC1 I1061T

mutant. The mutant NPC1 protein is folding-defective, fails

to achieve the usual endosomal localization, and is rapidly

degraded at the ER, thus leading to loss-of-function pheno-

type. We found that oxysterol derivatives correct these

phenotypes by directly binding to NPC1 protein. Further-

more, the N-terminal domain of NPC1, a well-established

sterol-binding site, is not required for our oxysterol-derived

pharmacological chaperones to bind toNPC1 and exert their

effect. This result clearly indicates the existence of an addi-

tional, second sterol-binding site on NPC1. The original

identification of the N-terminal domain as a sterol-binding

site greatly improved our understanding of NPC1 function

as a key molecule in egress of cholesterol from late endo-
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somes. However, it remains elusive how NPC1 transports

sterols beyond endosomal membranes. Our discovery of

pharmacological chaperones and the putative second

sterol-binding site should help to provide a rational basis

for developing therapeutics, as well as for elucidating the

still-enigmatic functions of NPC1 and other related proteins.

EXPERIMENTAL PROCEDURES

Cell Culture

HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 5% fetal bovine serum (FBS) and penicillin and strepto-

mycin at 37�C in a humidified incubator (5% CO2). Cell lines stably expressing

NPC1 construct were maintained in the presence of G418 (0.4 mg/ml). NPC

patient-derived fibroblast cell line GM18453 was obtained from Coriell Insti-

tute. The fibroblasts were maintained in Eagle’s minimal essential medium

supplemented with 10% FBS and penicillin and streptomycin, and they were

used for experiments within 9–11 passages.

DNA Constructs

The expression vector encoding NPC1 (GenBank BC063302.1) C-terminally

tagged with turboGFP under control of the CMV promoter was purchased

from OriGene. As previously reported, FLAG tag was inserted at the ClaI site

by PCR mutagenesis; insertion at this site does not affect the localization or

function of NPC1 (Davies and Ioannou, 2000; Ohsaki et al., 2006). Thus, our

constructs contain an additional sequence DYKDDDDKI (FLAG tag and an

Ile) between amino acid residues 305 and 306. Site-directed mutagenesis

was conducted by inverse PCR using KOD-plus (Toyobo). The coding regions

of the plasmids were sequenced and the integrity of each construct was

confirmed.

Immunocytochemical Staining of LAMP1

Cells were fixed (3.7% formaldehyde in PBS, room temperature [rt], 30 min),

permeabilized (0.1% Triton X-100 in PBS, rt, 10 min), and blocked in 1%

BSA-PBST for 1 hr. The samples were incubated with mouse anti-LAMP1

(Abcam) for 2 hr, then washed with PBS. The samples were incubated with

anti-mouse IgG AlexaFluor 546 (Invitrogen) for 1 hr and washed with PBS,

and images were acquired using an IX70 inverted fluorescence microscope

(Olympus) with a 1003 objective.

NPC1 Colocalization Assay and Quantitative Image Analysis

At day 1, HEK293 cells stably expressing NPC1I1061T-GFP or DNTD-

NPC1I1061T-GFP were plated onto a poly-D-lysine-coated glass-bottomed

dish. At day 2, cells were treated with the test compounds prediluted with

DMEM (final DMSO concentration was 0.1%). After 24 hr, cells were fixed

and processed for immunostaining of LAMP1. For quantitative analysis of

NPC1 colocalization with LAMP1, images of 10 different area were acquired,

and thresholdedManders’ coefficient (‘‘colocalization coefficient’’ in the figure)

was quantified. Automated quantification of the coefficient were performed

employing NIH ImageJ software. After background correction and automatic

thresholding, the coefficients were calculated for the pairs of thresholded

images using JACoP plugin (Bolte and Cordelières, 2006).

Synthesis of Oxysterol Derivatives

Details of the synthetic procedures and characterization data are given in

Supplemental Experimental Procedures.

Quantification of GFP Fluorescence in Lysates

For evaluation of steady-state NPC1-GFP expression levels, GFP fluores-

cence of the lysates was measured. In a 12-well plate, cells were cultured in

medium without phenol red to 70% confluence and treated with vehicle or

test compounds. After 24 hr, the cells were lysed in TNET buffer (1% Triton

X-100, 25 mM Tris, 150 mM NaCl, 5 mM EDTA, pH 7.5) for 1 hr on ice. The

debris was removed by centrifugation (13,500 rpm at 4�C for 5 min), and the

fluorescence of the supernatant was measured with a Wallac 1420 multilabel

counter (Perkin-Elmer Life Sciences). The total protein concentrations were
91–402, March 21, 2013 ª2013 Elsevier Ltd All rights reserved 399
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determined by BCA assay (Dojindo), and the fluorescence intensities were

normalized.

Endoglycosidase H (EndoH) Digestion and Immunoblot Analysis

Cell lysates (20 mg total protein) were incubated for 1 hr at 37�C with EndoH

(Roche) in citrate buffer (50 mM sodium citrate, pH 5.5) in the presence of

protease inhibitor cocktail. The FLAG-tagged NPC1 proteins were immuno-

precipitated with anti-FLAG M2 agarose (4�C, overnight), and eluted by incu-

bation in Laemmli sample buffer at 60�C for 15 min. The samples were

separated by SDS-PAGE (7.5%) and subjected to immunoblot analysis using

anti-FLAG M2 antibody (from Sigma).

Photoaffinity Labeling and CuAAC

Membrane isolated from cells stably expressing FLAG-NPC1-GFP was incu-

bated on ice with mo56AZK (0.5 mM) with or without competitor (30 mM

mo56CFA) for 30 min, and irradiated with UV (365 nm) for 20 min at 0�C. The
membrane was lysed and CuAAC reaction with biotin-azide was performed.

From the reaction mixture, FLAG-NPC1-GFP was immunoprecipitated and

separated on SDS-PAGE. After transfer to the PVDF membrane, the

membrane was probed with streptavidin-HRP (Pierce) or anti-FLAG antibody

(Sigma). For full protocol, see Supplemental Experimental Procedures.

Immunoblot Analysis

All samples involving NPC1 protein were prepared without boiling. Instead,

lysates or immunoprecipitated proteins were heated at 60�C for 15 min with

Laemmli sample buffer, and resolved by SDS-PAGE. For immunoblotting of

endogenous NPC1 protein, rabbit anti-NPC1 polyclonal antibody (Novus Bio-

logicals) combined with HRP-conjugated anti-rabbit antibody (R&D Systems)

was used. For loading controls, rabbit anti-PDI antibody (Stressgen) or mouse

anti-Na-K ATPase antibody (Abcam) was used.

Filipin Stain

At day 1, NPC fibroblasts were seeded onto glass-bottomed dishes. For filipin

staining of HEK293 cells, poly-D-Lys-coated dishes were used. At day 2, test

compounds prediluted in the medium (final DMSO concentration: 0.1%) were

added. After the indicated time, cells were fixed (3.7% formaldehyde-PBS, rt,

30 min), washed (PBS), and stained with filipin III (50 mg/ml in 20% EtOH-PBS,

rt, 45 min). The samples were washed with PBS, and images were acquired

using 360/30 nm excitation and >420 nm emission filters (320 objective for

NPC fibroblasts or 360 objective for HEK293 cells).

Quantification of Filipin-Positive Area

To quantify the extent of free cholesterol accumulation, we measured filipin-

positive area. Acquired images were converted to binary by applying

a threshold that discriminates filipin-positive, vesicular staining from plasma

membrane staining, and the filipin-positive area was quantified on an image-

by-image basis using ImageJ software. Each image was acquired with

a 320 objective, and there were �60 cells per image.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.chembiol.2013.02.009.
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Côté, M., Misasi, J., Ren, T., Bruchez, A., Lee, K., Filone, C.M., Hensley, L., Li,

Q., Ory, D., Chandran, K., and Cunningham, J. (2011). Small molecule inhibi-

tors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature

477, 344–348.

Davidson, C.D., Ali, N.F., Micsenyi, M.C., Stephney, G., Renault, S., Dobrenis,

K., Ory, D.S., Vanier, M.T., and Walkley, S.U. (2009). Chronic cyclodextrin

treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol

and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951.

Davies, J.P., and Ioannou, Y.A. (2000). Topological analysis of Niemann-Pick

C1 protein reveals that themembrane orientation of the putative sterol-sensing

domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and

sterol regulatory element binding protein cleavage-activating protein. J. Biol.

Chem. 275, 24367–24374.

Davies, J.P., Chen, F.W., and Ioannou, Y.A. (2000). Transmembranemolecular

pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298.

Deffieu, M.S., and Pfeffer, S.R. (2011). Niemann-Pick type C 1 function

requires lumenal domain residues that mediate cholesterol-dependent

NPC2 binding. Proc. Natl. Acad. Sci. USA 108, 18932–18936.

Fan, J.Q. (2003). A contradictory treatment for lysosomal storage disorders:

inhibitors enhance mutant enzyme activity. Trends Pharmacol. Sci. 24,

355–360.

Gelsthorpe, M.E., Baumann, N., Millard, E., Gale, S.E., Langmade, S.J.,

Schaffer, J.E., and Ory, D.S. (2008). Niemann-Pick type C1 I1061T mutant

encodes a functional protein that is selected for endoplasmic reticulum-asso-

ciated degradation due to protein misfolding. J. Biol. Chem. 283, 8229–8236.

Griffin, L.D., Gong,W., Verot, L., andMellon, S.H. (2004). Niemann-Pick type C

disease involves disrupted neurosteroidogenesis and responds to allopregna-

nolone. Nat. Med. 10, 704–711.

Hosoya, T., Hiramatsu, T., Ikemoto, T., Nakanishi, M., Aoyama, H., Hosoya, A.,

Iwata, T., Maruyama, K., Endo, M., and Suzuki, M. (2004). Novel bifunctional

probe for radioisotope-free photoaffinity labeling: compact structure

comprised of photospecific ligand ligation and detectable tag anchoring units.

Org. Biomol. Chem. 2, 637–641.

Hua, X., Nohturfft, A., Goldstein, J.L., and Brown, M.S. (1996). Sterol resis-

tance in CHO cells traced to point mutation in SREBP cleavage-activating

protein. Cell 87, 415–426.

Infante, R.E., Abi-Mosleh, L., Radhakrishnan, A., Dale, J.D., Brown, M.S., and

Goldstein, J.L. (2008a). Purified NPC1 protein. I. Binding of cholesterol and

oxysterols to a 1278-amino acid membrane protein. J. Biol. Chem. 283,

1052–1063.

Infante, R.E., Radhakrishnan, A., Abi-Mosleh, L., Kinch, L.N., Wang, M.L.,

Grishin, N.V., Goldstein, J.L., and Brown, M.S. (2008b). Purified NPC1 protein:

II. Localization of sterol binding to a 240-amino acid soluble luminal loop.

J. Biol. Chem. 283, 1064–1075.

Infante, R.E., Wang, M.L., Radhakrishnan, A., Kwon, H.J., Brown, M.S., and

Goldstein, J.L. (2008c). NPC2 facilitates bidirectional transfer of cholesterol

between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes.

Proc. Natl. Acad. Sci. USA 105, 15287–15292.
r Ltd All rights reserved

http://dx.doi.org/10.1016/j.chembiol.2013.02.009
http://dx.doi.org/10.1016/j.chembiol.2013.02.009


Chemistry & Biology

Second Sterol-Binding Site on NPC1
Ioannou, Y.A. (2001). Multidrug permeases and subcellular cholesterol trans-

port. Nat. Rev. Mol. Cell Biol. 2, 657–668.

Ishii, S., Kase, R., Sakuraba, H., and Suzuki, Y. (1993). Characterization of

a mutant alpha-galactosidase gene product for the late-onset cardiac form

of Fabry disease. Biochem. Biophys. Res. Commun. 197, 1585–1589.

Ko, D.C., Gordon, M.D., Jin, J.Y., and Scott, M.P. (2001). Dynamic movements

of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late

endocytic events. Mol. Biol. Cell 12, 601–614.

Kuwabara, P.E., and Labouesse, M. (2002). The sterol-sensing domain:

multiple families, a unique role? Trends Genet. 18, 193–201.

Kwon, H.J., Abi-Mosleh, L., Wang, M.L., Deisenhofer, J., Goldstein, J.L.,

Brown, M.S., and Infante, R.E. (2009). Structure of N-terminal domain of

NPC1 reveals distinct subdomains for binding and transfer of cholesterol.

Cell 137, 1213–1224.

Liu, R., Lu, P., Chu, J.W., and Sharom, F.J. (2009a). Characterization of

fluorescent sterol binding to purified human NPC1. J. Biol. Chem. 284,

1840–1852.

Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., and Dietschy, J.M.

(2009b). Reversal of defective lysosomal transport in NPC disease ameliorates

liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc. Natl.

Acad. Sci. USA 106, 2377–2382.

Loftus, S.K., Morris, J.A., Carstea, E.D., Gu, J.Z., Cummings, C., Brown, A.,

Ellison, J., Ohno, K., Rosenfeld, M.A., Tagle, D.A., et al. (1997). Murine model

of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene.

Science 277, 232–235.

Loo, T.W., and Clarke, D.M. (1997). Correction of defective protein kinesis of

human P-glycoprotein mutants by substrates and modulators. J. Biol.

Chem. 272, 709–712.

Loo, T.W., and Clarke, D.M. (2007). Chemical and pharmacological chaper-

ones as new therapeutic agents. Expert Rev. Mol. Med. 9, 1–18.

MacEwan, D.J., andMilligan, G. (1996). Inverse agonist-induced up-regulation

of the human beta2-adrenoceptor in transfected neuroblastoma X glioma

hybrid cells. Mol. Pharmacol. 50, 1479–1486.

MacKinnon, A.L., Garrison, J.L., Hegde, R.S., and Taunton, J. (2007). Photo-

leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of co-

translational translocation. J. Am. Chem. Soc. 129, 14560–14561.

Morello, J.P., Salahpour, A., Laperrière, A., Bernier, V., Arthus, M.F., Lonergan,
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