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Abstract

We define a monad M on a category of measurable bornological sets, and we show how this monad
gives rise to a theory of vector-valued integration that is related to the notion of Pettis integral. We show
that an algebra X of this monad is a bornological locally convex vector space endowed with operations that
associate vectors

´
f dμ in X to incoming maps f : T → X and measures μ on T . We prove that a Banach

space is an M-algebra as soon as it has a Pettis integral for each incoming bounded weakly-measurable
function. It follows that all separable Banach spaces, and all reflexive Banach spaces, are M-algebras.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

A fundamental paradigm of algebra has been the process of abstraction whereby the form and
governing equations of the familiar operations of arithmetic have been isolated, yielding abstract
notions, such as those of abelian group, ring, and vector space, of which the real numbers are an
example in the company of others. It is the aim of this paper to proceed analogously with regard
to the operations f �→ ´

f dμ of Lebesgue integration with respect to measures μ. We provide
an equational axiomatization of such operations, thereby defining a general algebraic notion of
a space in which integrals may take their values.
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The usual real-valued Lebesgue integration can indeed be construed as a family of operations

ΩT
μ :RT → R, f �→

ˆ
f dμ

associated to measurable spaces T and measures μ thereon, where R
T is a suitable set of real-

valued functions f : T → R, each of which may be regarded as a T -indexed family of points
in R to which the given T -ary operation may be applied. We axiomatize a notion of a space X

equipped with an analogous family of operations ΩT
μ : XT → X, again written as f �→ ´

f dμ =´
t∈T

f (t) dμ, satisfying certain equations.
The presence of the integration operations carried by such a space X entails in particular that

X will carry the structure of a vector space over the reals, even though our axiomatization does
not directly mandate this. Rather, linear combinations a1x1 + · · ·+ anxn of elements xi ∈ X may
be taken by considering the discrete space T := {1, . . . , n} and forming an integral

a1x1 + · · · + anxn :=
ˆ

t∈T

xt dμ

with respect to a corresponding linear combination μ := a1δ1 +· · ·+ anδn of Dirac measures δt .
We thus define associated vector space operations in terms of the given operations of integration,
and the equational laws that must be satisfied by these derived vector space operations are then
entailed by those governing the integration operations.

Hence, we provide a fresh perspective on vector-valued integration, a subject that was a cen-
tral motivation for the development of Banach space theory in the 1930s [4]. The subject reached
an apparent apex of generality with the introduction of the Pettis integral in 1938 [21], the modern
understanding of which has flourished since the late 1970s and the work of Edgar and Talagrand;
see [27]. We show that spaces having sufficient Pettis integrals, such as reflexive or separable
Banach spaces, provide examples of our general algebraic notion.

Our equational axiomatization is achieved by defining a monad M that concisely and canoni-
cally captures the syntax and equational laws of our theory of vector-valued integration. Monads
are a cornerstone of the category-theoretic approach to Birkhoff’s general algebra initiated by
Lawvere [14]. Categories of finitary algebras can be presented elegantly and canonically both in
terms of Lawvere’s algebraic theories and, alternatively, as the categories of Eilenberg–Moore
algebras [6] of finitary monads on the category Set of sets (see, e.g., [20] or [2]). The connec-
tion between algebraic theories and monads was elucidated by Linton [15–17], who showed that
monads axiomatize not only finitary but also infinitary algebras. Further, Linton showed that even
monads on arbitrary abstract categories, rather than Set, also give rise to categories of algebras
defined by the operations and equations of an associated (generalized) algebraic theory.

In our case, the monad M = (M, δ, κ) is defined on a category BornMeas of sets X equipped
with both a sigma-algebra and a bornology, which is a system of subsets of X that are said to be
bounded (see, e.g., [10]). The functor M : BornMeas → BornMeas associates to X the set MX

of all finite signed measures that are, in a suitable sense, supported by a bounded subset of X.
An Eilenberg–Moore algebra (X, c) of M consists of an object X ∈ BornMeas together with a
boundedness-preserving measurable map c : MX → X making certain diagrams commutative.
Such an Eilenberg–Moore algebra can be described alternatively as an algebra of the associated
algebraic theory (of the type of Linton [15–17]), and hence carries operations



554 R.B.B. Lucyshyn-Wright / Advances in Mathematics 230 (2012) 552–576
ΩT
μ : BornMeas(T ,X) → X

of each arity T ∈ BornMeas associated to each measure μ ∈ MT , given in terms of c : MX → X

via ΩT
μ (f ) = c ◦Mf (μ) for each morphism f : T → X in BornMeas. These we construe as the

operations of integration valued in X, defining

ˆ
f dμ := ΩT

μ (f ) = c ◦ Mf (μ). (1)

Moreover, such an algebra also carries multiply-valued operations

ΩT
μ : BornMeas(T ,X) → BornMeas(S,X),

for each T ,S ∈ BornMeas and each BornMeas-morphism μ(−) : S → MT , which send each
f : T → X to the S-indexed family of integrals

´
f dμs .

All these operations of integration ΩT
μ reduce to the single structure map c : MX → X, which

sends each measure μ ∈ MX to the integral

ˆ
idX dμ = ΩX

μ (idX) = c(μ)

of the identity map idX : X → X with respect to μ. Indeed, this is the case in our primordial
example of an M-algebra, the real line R, as each integral

´
f dμ of a real-valued map f : T →R

reduces to an integral
´

idR dMf (μ) with respect to the direct-image measure Mf (μ) on R. Any
power Rn of R is also an M-algebra, and, for example, if we let μ be the probability measure
associated to a uniform distribution across a measurable subset E ⊆ R

n, then c(μ) = ´
idRn dμ

will be the geometric center of E; for an arbitrary probability measure μ on R
n, c(μ) is the

barycenter or center of mass of μ.
It may be remarked that our syntactic theory of vector-valued integration actually incor-

porates, and depends upon, real-valued (Lebesgue) integration. Indeed, R, endowed with the
Lebesgue integral, is itself a free algebra R ∼= M1 of M. This is analogous to the situation of the
algebraic theory of vector spaces over R, which similarly depends upon the addition and (scalar)
multiplication operations of R.

Our monad M is a variation on the Giry–Lawvere monad of probability measures on the
category of measurable spaces [8]. As we employ signed real-valued measures, rather than prob-
ability measures, and consequently must also introduce notions of boundedness via bornologies,
the definition of M and the proof that M is a monad are much more involved than those pertaining
to the Giry–Lawvere monad. Some of the lemmas we employ are similar in form to those of [8],
but their proofs are much more difficult, owing to these added concerns of signed measures and
boundedness and the need to employ more subtle convergence theorems with regard to signed
real-valued integrals.

Giry [8] also introduced a monad of probability measures on Polish spaces rather than mea-
surable spaces, and Doberkat [5] characterized the algebras of that monad as certain topological
convex spaces (i.e. spaces endowed with operations allowing the taking of convex combinations)
and observed the connection of the structure map of such an algebra to the notion of barycenter.
Doberkat’s work was predated by the work of Świrszcz [25,26] and Semadeni [23] with regard to
a monad of regular Borel probability measures on compact Hausdorff spaces. Świrszcz showed
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that the algebras of that monad are compact convex sets embeddable within locally convex topo-
logical vector spaces. Świrszcz also observed the connection to the barycenter or centroid of a
probability measure.

The recent papers of Kock [12,11] on a general framework for extensive quantities via mon-
ads are also related to our work. Working with an arbitrary commutative strong monad T on a
cartesian closed category, Kock has independently employed the integral notation as in (1) with
respect to a T-algebra. However, Kock employs this notation chiefly in the case of the free alge-
bra R := T 1, as Kock’s aim is clearly to provide a framework for extensive quantities valued in
a special object R analogous to the real line. The examples of monads considered in [12,11] are
substantially different from our monad M, and Kock does not construe such monads as providing
a theory of vector-valued integration.

2. The base category: Measurable bornological sets

Definition 2.1. A bornology on a set X is an ideal BX in the powerset (PX,⊆) of X whose
union is the entire set X. Hence a bornology is a collection of subsets of X, called the bounded
subsets, that is downward-closed with respect to the inclusion order ⊆, closed under the taking
of finite unions (and hence, in particular, contains ∅), and contains all singletons. A basis for a
bornology on X is an upward-directed subset C of PX whose union is all of X, and for any such
basis C, the collection of all subsets of sets in C constitutes a bornology on X, the bornology
generated by C.

Definition 2.2. A bornological set is a set X equipped with a bornology BX. We denote by Born
the category of bornological sets and bornological maps, i.e. functions f : X → Y for which the
image of any bounded subset of X is a bounded subset of Y .

Definition 2.3. A measurable space is a set X equipped with a sigma-algebra σX. We denote
by Meas the category of measurable spaces and measurable maps, i.e. functions f : X → Y for
which the inverse image of any measurable subset of Y is a measurable subset of X.

Definition 2.4. A measurable bornological set is a set X equipped with both a bornology BX

and a sigma-algebra σX. We denote by BornMeas the category of measurable bornological sets,
with maps that are both measurable and bornological.

Definition 2.5. Let P : A → Set be a faithful functor, which we shall view as providing each
object X of A with an underlying set, again written X. We identify each hom-set A(X,Y ) with
the associated subset of Set(X,Y ). We say that a family of morphisms (fi : X → Yi)i∈I in A is
an initial source in A if for any incoming function g : T → X defined on the underlying set of

an object T of A, g is a morphism in A as soon as each composite T
g−→ X

fi−→ Yi is a morphism
in A. The dual notion is that of a final sink. A single morphism f : X → Y of A is initial if it
constitutes an initial source with one element. We say P is topological if for every family (Yi)i∈I

of objects in A, indexed by a class I , and every family (fi : X → Yi)i∈I of morphisms in Set,
there is an associated object of A with underlying set X, again written as X, with respect to
which (fi : X → Yi)i∈I is an initial source in A. If P is topological then it follows that P also
has the dual property, that of being cotopological; see, e.g., [1].
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Proposition 2.6. The forgetful functors Born → Set and Meas → Set are topological. In partic-
ular, we have the following:

1. A family of morphisms (fi : X → Yi)i∈I in Born is an initial source iff X carries the initial
bornology, wherein

B ⊆ X is bounded ⇔ ∀i ∈ I : fi(B) ⊆ Yi is bounded.

2. A family of morphisms (fi : X → Yi)i∈I in Meas is an initial source iff X carries the initial
sigma-algebra, generated by the inverse images f −1

i (F ) with i ∈ I and F ⊆ Yi measurable.
3. A morphism i : A → X in Meas is initial iff A carries the sigma-algebra {i−1(E) | E ⊆

X measurable}.

Corollary 2.7. The forgetful functor BornMeas → Set is topological. Initial structures in
BornMeas are gotten by equipping a set with the initial bornology and initial sigma-algebra.
Hence the categories BornMeas, Born, and Meas are complete and cocomplete, with limits
(resp. colimits) formed by endowing the limit (resp. colimit) in Set with the initial (resp. final)
structure.

Remark 2.8. For a diagram D : I → Born with I an upward-directed poset, the colimit Y =
lim−→ i∈IDi in Born carries the direct limit bornology, which has a basis consisting of the images
λi(B) ⊆ Y of bounded subsets B ⊆ Di under the colimit injections λi : Di → Y .

Remark 2.9. Given a subset A ⊆ X of a bornological set, measurable space, or measurable
bornological set X, we implicitly endow A with the initial bornology and/or sigma-algebra in-
duced by the inclusion ιAX : A ↪→ X.

Lemma 2.10. For each X ∈ BornMeas the set BornMeas(X,R) of all BornMeas-morphisms
X → R is a real vector space under the pointwise operations.

3. Finite signed measures

Definition 3.1. For each measurable space X, we let SX be the set of all finite signed measures
on X, and we endow SX with the initial sigma-algebra induced by the evaluation maps

EvE : SX →R, μ �→ μ(E)

associated to measurable subsets E ⊆ X. There is a functor S : Meas → Meas that associates to
each measurable map f : X → Y the map Sf : SX → SY sending each measure μ ∈ SX to the
direct image Sf (μ) ∈ SY of μ along f , given by (Sf (μ))(F ) = μ(f −1(F )) for each measurable
F ⊆ Y . Indeed, Sf is measurable since each composite

SX
Sf−→ SY

EvF−−→ R, F ⊆ Y measurable,

is equal to the measurable map Evf −1(F ) : SX →R.
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Proposition 3.2. For each measurable space X, SX is a real vector space under the setwise
operations, and for each measurable map f : X → Y , Sf : SX → SY is a linear map. Hence we
obtain a functor Meas →R-Vect.

Definition 3.3. Let X be a measurable space. For each μ ∈ SX, we denote by (μ+,μ−) the
Jordan decomposition of μ. The total variation of μ is the real number

‖μ‖ = |μ|(X),

where |μ| = μ+ + μ− ∈ SX is the total variation measure associated to μ.

Remark 3.4. For a measurable space X, Definition 3.3 endows the real vector space SX with
a norm, the total variation norm, under which SX is a Banach space (e.g., by Exercise 1.28
of [19]).

Proposition 3.5. For each measurable map f : X → Y and each μ ∈ SX, we have

∥∥Sf (μ)
∥∥ � ‖μ‖,

so that Sf : SX → SY is a linear contraction. Hence we obtain a functor Meas → Ban1 into
the category Ban1 of real Banach spaces and linear contractions.

Proof. Letting (P,N) be a Hahn decomposition for (Y,Sf (μ)), we have that

(
Sf (μ)

)+
(Y ) = (

Sf (μ)
)
(P ) = μ

(
f −1(P )

)
� μ+(

f −1(P )
)
� μ+(X)

and similarly (Sf (μ))−(Y ) � μ−(X), from which the needed result follows. �
4. Some basic lemmas on real-valued integration

Lemma 4.1. Let f : X → R be a measurable function. Then there is a sequence (θi) of signed
simple functions on X with |θi | � |f | and θi → f pointwise, such that for any finite signed
measure μ on X, if f is μ-integrable then

ˆ
f dμ = lim

i

ˆ
θi dμ.

Proof. We may take some sequences (ϕi), (ψi) of nonnegative simple functions that converge
pointwise from below to f + and f −, respectively, and then it follows from the Monotone Con-
vergence Theorem that θi := ϕi − ψi defines a sequence of simple functions with the needed
properties, noting that |θi | � ϕi + ψi � f + + f − = |f |. �
Proposition 4.2. Let X

f−→ Y
g−→ R be measurable maps, and let μ ∈ SX be a signed measure

on X. If g ◦ f is μ-integrable, then g is Sf (μ)-integrable and

ˆ
g ◦ f dμ =

ˆ
g dSf (μ).
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Proof. See 3.6.1 of [3] and the remarks that follow there regarding signed measures. �
5. Measures supported by a subset

Proposition 5.1. Let i : A → X be an initial measurable map. Then the linear map Si : SA →
SX is injective.

Proof. Suppose Si(ν) = 0. By 2.6(3), for each measurable F ⊆ A there is some measurable
E ⊆ X with F = i−1(E), and 0 = (Si(ν))(E) = ν(i−1(E)) = ν(F ). Hence ν = 0. �
Definition 5.2. Let X be a measurable space and A ⊆ X an arbitrary subset. We say that a
measure μ ∈ SX is supported by A if μ lies in the image of the injective linear map SιAX :
SA � SX, where ιAX : A ↪→ X is the inclusion and, as usual, A is endowed with the initial
sigma-algebra induced by ιAX . Hence μ is supported by A iff μ is the direct image along A ↪→ X

of some measure ν ∈ SA. As such a measure ν is necessarily unique if it exists, it is denoted by
μA and called the restriction of μ to A. We define S(A,X) := {μ ∈ SX | μ is supported by A}.

Remark 5.3. For a measurable subset E ⊆ X we find that E supports a measure μ ∈ SX iff
μ(X\E) = 0, and in this case μE(F) = μ(F) for all measurable F ⊆ E.

Remark 5.4. Since S(A,X) is the image of the injective linear map SιAX : SA � SX, S(A,X)

is a vector subspace of SX isomorphic to SA.

Proposition 5.5. Let f : X → R be a measurable map, let μ ∈ SX be supported by a subset

A ⊆ X, and suppose that the restriction A
ιAX
↪→ X

f−→ R is μA-integrable. Then f is μ-integrable,
and

ˆ
f dμ =

ˆ
f ◦ ιAX dμA.

Proof. This follows from 4.2. �
Proposition 5.6. Suppose that a signed measure μ ∈ SX is supported by a subset A ⊆ X. Then
‖μA‖ = ‖μ‖.

Proof. Letting (P ′,N ′) be a Hahn decomposition for (A,μA), we may take some measurable
P ⊆ X with P ′ = A ∩ P . Letting N := X\P , one verifies readily that (P,N) is a Hahn decom-
position for μ, and we have that (P ′,N ′) = (A ∩ P,A ∩ N). Using these Hahn decompositions,
it is straightforward to verify that μ+ = SιAX((μA)+) and μ− = SιAX((μA)−), and the result
follows. �
Corollary 5.7. For each subset A of a measurable space X, the injective linear map SιAX :
SA � SX restricts to an (isometric) isomorphism of normed vector spaces SA

∼−→ S(A,X),
whose inverse ρAX : S(A,X) → SA is given by μ �→ μA.
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6. The endofunctor: Measures of bounded support

Definition 6.1. Let X ∈ BornMeas. We say that a measure μ ∈ SX is of bounded support if μ

is supported by some bounded B ⊆ X. We denote by MX the set of all measures μ ∈ SX that
are of bounded support. For an arbitrary subset A ⊆ X, we denote by M(A,X) the set of all
μ ∈ MX that are supported by A.

Proposition 6.2. For any morphism f : X → R in BornMeas and any μ ∈ MX, f is μ-
integrable.

Proof. μ is supported by some bounded B ⊆ X, and the restriction B ↪→ X
f−→ R has bounded

image and hence is μB -integrable, so the conclusion follows from 5.5. �
Remark 6.3. Since we implicitly endow MX with the initial sigma-algebra induced by the in-
clusion MX ↪→ SX, it follows, with reference to Definition 3.1, that MX carries the initial
sigma-algebra induced by the evaluation maps EvE : MX →R associated to measurable subsets
E ⊆ X.

Remark 6.4. For X ∈ BornMeas, since the bornology BX is a directed poset (under the inclusion
order), MX is a directed union of the monotone increasing family (S(B,X))B∈BX of vector
subspaces of SX. Hence MX is a vector subspace of SX isomorphic to the direct limit of the
evident composite functor

BX → Meas S−→ R-Vect.

Definition 6.5. Let X ∈ BornMeas. For each bounded B ⊆ X and each real number γ � 0, we
let

M(B,X,γ ) := {
μ ∈ MX

∣∣ μ is supported by B and ‖μ‖ � γ
}
.

Proposition 6.6. For X ∈ BornMeas, the sets M(B,X,γ ) with B ⊆ X bounded and γ � 0
constitute a basis for a bornology on MX.

Proof. One verifies immediately, using the upward-directedness of BX, that the given collec-
tion of sets is upward-directed. Further, for any μ ∈ MX, there is some bounded B ⊆ X that
supports μ, so μ ∈ M(B,X,‖μ‖). �
Definition 6.7. For X ∈ BornMeas, we endow MX with the supportwise bornology, which is
generated by the basis given in 6.6.

Remark 6.8. For any bounded B ∈ BornMeas, the supportwise bornology on MB = SB coin-
cides with the norm bornology, which has a basis consisting of the closed balls about the origin.
For a general X ∈ BornMeas, MX is a direct limit MX = lim−→ B∈BXSB in R-Vect (6.4), and
by 5.7 one finds that MX carries the direct limit bornology (2.8) induced by the norm bornolo-
gies on the spaces SB . Each SB is a bornological vector space (see 11.2), and hence by 2:8.2
of [10] we find that MX is a direct limit, in the category of bornological vector spaces, of the
normed vector spaces SB .
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Proposition 6.9. Let f : X → Y be a BornMeas-morphism. Then the associated measurable
linear map Sf : SX → SY restricts to a measurable linear map Mf : MX → MY . Moreover,
Mf is a bornological map, so we obtain a functor M : BornMeas → BornMeas.

Proof. For each bounded B ⊆ X, we have a measurable restriction fB : B → f (B) of f , and
by 3.5, the linear map

SfB : SB → S
(
f (B)

)
is bornological with respect to the norm bornologies. In view of 6.8, these bornological linear
maps induce a bornological linear map

MX = lim−→
B∈BX

SB → lim−→
C∈BY

SC = MY,

which is simply the desired restriction of Sf . �
7. The unit: Dirac measures

Definition 7.1. Let X be a measurable space. For each measurable E ⊆ X we let [E] : X → R

denote the characteristic function of E. For each point x ∈ X, we denote by δx = δX,x ∈ SX the
Dirac measure on X associated to x, given by δx(E) = [E](x) for each measurable E ⊆ X.

Proposition 7.2. Let X ∈ BornMeas and let x ∈ X. Then the Dirac measure δX,x is of bounded
support.

Proof. δX,x is supported by {x}, which is bounded. Indeed, δX,x is the direct image along the
inclusion {x} ↪→ X of the Dirac measure δ{x},x on {x} associated to x. �
Definition 7.3. For each X ∈ BornMeas, we let δX : X → MX be the map sending each x ∈ X

to the Dirac measure δX(x) = δX,x .

Proposition 7.4. The maps δX : X → MX, where X ∈ BornMeas, are measurable and
bornological and constitute a natural transformation δ : 1BornMeas → M .

Proof. Each such map δX is measurable, since for each measurable E ⊆ X, the composite

X
δX−→ MX

EvE−−→R

is equal to the characteristic function [E] : X →R, which is measurable. δX is also bornological,
since for any bounded B ⊆ X we find that δX(B) ⊆ M(B,X,1). The naturality of δ is readily
verified. �
Proposition 7.5. Let f : X →R be a measurable function and let x ∈ X. Then f is δx -integrable
and

ˆ
f dδx = f (x).
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Proof. This is a standard and easy exercise in applying the Monotone Convergence Theorem.
Establish the result in each of the following successive cases: (i) when f is a characteristic
function, (ii) when f is a simple function, (iii) when f is nonnegative, and (iv) for general f . �
8. The multiplication

Lemma 8.1. Let X ∈ BornMeas. Then

1. For any bounded B ⊆ X, any γ � 0, and any measurable E ⊆ X, the image of M(B,X,γ )

under the evaluation map EvE : MX → R is contained in [−γ, γ ].
2. For each measurable E ⊆ X, EvE : MX → R is a BornMeas-morphism.

Proof. (1) is readily verified, and (2) follows since EvE is measurable by the definition of
σ(MX). �
Definition 8.2. Let X ∈ BornMeas and M ∈ MMX. By 8.1 and 6.2, we have that EvE : MX →
R is M-integrable for each measurable E ⊆ X. Hence we may define a real-valued set function
κX(M) on σX by

(
κX(M)

)
(E) =

ˆ
EvE dM.

Proposition 8.3. Let X ∈ BornMeas and M ∈ MMX. Then κX(M) is a finite signed measure
on X.

Proof. Firstly, (κX(M))(∅) = ´
Ev∅ dM = ´

0dM = 0. Next, let (Ei)i∈N be a sequence of
pairwise disjoint measurable subsets of X. M is supported by some basic bounded subset G =
M(B,X,γ ) of MX, where B ⊆ X is bounded, and we let ιG : G ↪→ MX denote the inclusion.
Note that (

n∑
i=1

EvEi

)
n∈N

→ Ev⋃∞
i=1 Ei

pointwise on MX, by the countable additivity of the measures μ ∈ MX. Also, for each n ∈N we
have that

∑n
i=1 EvEi

= Ev⋃n
i=1 Ei

by finite additivity. Moreover, for any measurable E ⊆ X we
have by Lemma 8.1 (1) that the restriction

G
ιG
↪→ MX

EvE−−→ R

has |EvE ◦ ιG| � γ . This applies in particular to the sets
⋃n

i=1 Ei for each n ∈ N, so that

∣∣∣∣∣
(

n∑
i=1

EvEi

)
◦ ιG

∣∣∣∣∣ = |Ev⋃n
i=1 Ei

◦ ιG| � γ.

Hence we may employ the Bounded Convergence Theorem and Proposition 5.5 to compute as
follows:
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(
κX(M)

)( ∞⋃
i=1

Ei

)
=
ˆ

Ev⋃∞
i=1 Ei

dM=
ˆ

Ev⋃∞
i=1 Ei

◦ ιG dMG

= lim
n

ˆ n∑
i=1

EvEi
◦ ιG dMG = lim

n

n∑
i=1

ˆ
EvEi

◦ ιG dMG

=
∞∑
i=1

ˆ
EvEi

dM=
∞∑
i=1

(
κX(M)

)
(Ei). �

Lemma 8.4. Let X ∈ BornMeas, and suppose M ∈ MMX is supported by M(B,X) for some
bounded B ⊆ X. Then κX(M) is supported by B .

Proof. Consider the isomorphism of normed vector spaces ρBX : M(B,X) → MB of 5.7, given
by μ �→ μB . By 6.8, ρBX is an isomorphism of bornological sets. Further, ρBX is measurable,
and hence a BornMeas-morphism, since for each measurable F ⊆ B , which must be of the form
F = B ∩ E for some measurable E ⊆ X, one finds that the diagram

M(B,X)

j

ρBX

MB

EvB∩E

MX
EvE

R

(2)

commutes, where j is the inclusion, so that the composite EvF ◦ρBX = EvE ◦j is measurable.
For each measurable E ⊆ X, we again employ the commutativity of the diagram (2) to com-

pute as follows:

(
κX(M)

)
(E) =

ˆ
EvE dM

=
ˆ

EvE ◦j dMM(B,X) (by 5.5)

=
ˆ

EvB∩E ◦ρBX dMM(B,X)

(
by (2)

)
=
ˆ

EvB∩E dMρBX(MM(B,X)) (by 4.2)

= (
κB ◦ MρBX(MM(B,X))

)
(B ∩ E)

= (
SιBX ◦ κB ◦ MρBX(MM(B,X))

)
(E).

Hence κX(M) is the direct image along ιBX : B ↪→ X of the measure

κB ◦ MρBX(MM(B,X))

on B . �
Corollary 8.5. Let X ∈ BornMeas and M ∈ MMX. Then κX(M) ∈ MX.
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Proposition 8.6. Let f : X → R be a morphism in BornMeas. Then

1. there is a BornMeas-morphism f � : MX →R given by f �(μ) = ´
f dμ, and

2. for any M ∈ MMX,

ˆ
f � dM=

ˆ
f dκX(M).

Proof. (i) First consider the case where f = [E] is the characteristic function of some mea-
surable [E] ⊆ X. We have that f �(μ) = ´

f dμ = ´ [E]dμ = μ(E) for each μ ∈ MX, so
f � = EvE : MX → R is a BornMeas-morphism, using Lemma 8.1. Further,

ˆ
f � dM=

ˆ
EvE dM= (

κX(M)
)
(E) =

ˆ
[E]dκX(M) =

ˆ
f dκX(M).

(ii) It follows from the linearity of the integral that the map (−)� : BornMeas(X,R) →
Set(MX,R) is linear. Hence for any signed simple function f = ∑n

i=1 ai[Ei] on X, f � is a
linear combination of the BornMeas-morphisms [Ei]� : MX → R and hence is a BornMeas
morphism, by 2.10. The needed equation (2) for f follows from (i) and the linearity of the inte-
gral.

(iii) For general f , we have by 4.1 that there is a sequence (θi) of signed simple functions on
X such that |θi | � |f |, θi → f pointwise, and

∀μ ∈ MX: f �(μ) =
ˆ

f dμ = lim
i

ˆ
θi dμ = lim

i
θ

�
i (μ).

Hence f � = limi θ
�
i pointwise on MX, so since each θ

�
i is measurable by (ii), f � is measurable.

The following general observation will enable the remainder of our proof:

Claim. For any basic bounded subset M(B,X,γ ) of MX, any β � 0, and any bornological
measurable function g : X → R with |g| � β on B ,

∣∣g�
∣∣ � βγ on M(B,X,γ ).

Indeed, for each μ ∈ M(B,X,γ ) we find, using 5.5 and 5.6, that

∣∣g�(μ)
∣∣ =

∣∣∣∣
ˆ

g dμ

∣∣∣∣ =
∣∣∣∣
ˆ

g ◦ ιBX dμB

∣∣∣∣ �
ˆ

|g ◦ ιBX|d|μB |

�
ˆ

β d|μB | = β|μB |(B) = β‖μB‖ = β‖μ‖ � βγ.

The first consequence of this Claim is that f � is bornological, since for any basic bounded
subset M(B,X,γ ) of MX we can take β � 0 with |f | � β on B , as f is bornological, so the
Claim applies.

Secondly, the Claim allows a proof of the equation in (2), as follows. Each M ∈ MMX is
supported by some basic bounded subset G = M(B,X,γ ) of MX, and, taking any bound β for
|f | on B we have that |θi | � |f | � β on B for every i ∈N. Hence, by the Claim,
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|θi ◦ ιB | � β and
∣∣θ�

i ◦ ιG
∣∣ � βγ, for each i ∈ N,

where ιB : B ↪→ X and ιG : G ↪→ MX are the inclusions. We also have that

f ◦ ιB = lim
i

θi ◦ ιB and f � ◦ ιG = lim
i

θ
�
i ◦ ιG

pointwise. Hence, we may apply the Bounded Convergence Theorem twice in order to compute
that

ˆ
f � dM=

ˆ
f � ◦ ιG dMG (by 5.5)

= lim
i

ˆ
θ

�
i ◦ ιG dMG (by the B.C.T.)

= lim
i

ˆ
θ

�
i dM (by 5.5)

= lim
i

ˆ
θi dκX(M)

(
by (ii)

)
= lim

i

ˆ
θi ◦ ιB dκX(M)B (by 5.5)

=
ˆ

f ◦ ιB dκX(M)B (by the B.C.T)

=
ˆ

f dκX(M), (by 5.5)

since M is supported by G and, by 8.4, κX(M) is supported by B . �
Proposition 8.7. Let X ∈ BornMeas. Then the map κX : MMX → MX is a BornMeas-
morphism.

Proof. Firstly, κX is measurable, since for each measurable E ⊆ X, one checks that the compos-
ite MMX

κX−→ MX
EvE−−→ R is none other than Ev�

E , which is measurable by 8.6.
Secondly, κX is bornological, as follows. The bornology on MMX has a basis consisting of

the sets M(G,MX,δ), where G = M(B,X,γ ) is a basic bounded subset of MX. For any such,
we shall show that

κX

(
M(G,MX,δ)

) ⊆ M(B,X,γ δ),

yielding the needed result. To this end, let M ∈ M(G,MX,δ). Then M is supported by
G = M(B,X,γ ), so by Lemma 8.4, κX(M) ∈ M(B,X) and hence it suffices to show that
‖κX(M)‖ � γ δ. Let (P,N) be a Hahn decomposition for (X,κX(M)). Notice that t :=
EvP −EvN : MX → R is the function sending each μ ∈ MX to its total variation

t (μ) = μ(P ) − μ(N) = μ+(X) + μ−(X) = ‖μ‖.
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Moreover,

∥∥κX(M)
∥∥ = (

κX(M)
)
(P ) − (

κX(M)
)
(N)

=
ˆ

EvP dM−
ˆ

EvN dM=
ˆ

EvP −EvN dM,

so

∥∥κX(M)
∥∥ = t

(
κX(M)

) =
ˆ

t dM.

For each μ ∈ G = M(B,X,γ ) we have t (μ) = ‖μ‖ � γ , so

|t ◦ ιG| � γ,

where ιG : G ↪→ MX is the inclusion. Hence, since M is supported by G,

∥∥κX(M)
∥∥ =

ˆ
t dM =

ˆ
t ◦ ιG dMG �

ˆ
|t ◦ ιG|d|MG|

� γ |MG|(G) = γ ‖MG‖ = γ ‖M‖ � γ δ,

using Proposition 5.6 and the assumption that M ∈ M(G,MX,δ). �
Proposition 8.8. The BornMeas-morphisms κX : MMX → MX constitute a natural transfor-
mation κ : MM → M .

Proof. Let f : X → Y in BornMeas. For each M ∈ MMX and each measurable F ⊆ Y , since

the composite MX
Mf−−→ MY

EvF−−→ R is equal to the evaluation map Evf −1(F ), we compute,
using Proposition 4.2, that

(
κY ◦ MMf (M)

)
(F ) =

ˆ
EvF dMMf (M) =

ˆ
EvF ◦Mf dM

=
ˆ

Evf −1(F ) dM = (
κX(M)

)(
f −1(F )

)
= (

Mf ◦ κX(M)
)
(F ). �

9. The monad of finite signed measures of bounded support

Theorem 9.1. M := (M, δ, κ) is a monad on BornMeas.

Proof. It remains only to establish the unit and associativity laws

κ · δM = 1M = κ · Mδ and κ · Mκ = κ · κM.
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For each μ ∈ MX and each measurable E ⊆ X, we deduce that

(
κX ◦ δMX(μ)

)
(E) =

ˆ
EvE dδμ = EvE(μ) = μ(E)

by 7.5. Also, using Proposition 4.2

(
κX ◦ MδX(μ)

)
(E) =

ˆ
EvE dMδX(μ) =

ˆ
EvE ◦δX dμ

=
ˆ

[E]dμ = μ(E).

For the associativity law, let M ∈ MMMX. For each measurable E ⊆ X, since the composite
MMX

κX−→ MX
EvE−−→ R is Ev�

E (see 8.6), we compute, using Propositions 4.2 and 8.6 that

(
κX ◦ MκX(M)

)
(E) =

ˆ
EvE dMκX(M) =

ˆ
EvE ◦κX dM

=
ˆ

Ev�
E dM=

ˆ
EvE dκMX(M)

= (
κX ◦ κMX(M)

)
(E). �

10. The vector space structure on MMM-algebras

Definition 10.1. Let L = (L,ς, τ ) be the monad induced by the adjunction between the forgetful
functor R-Vect → Set and its left adjoint. Hence L : Set → Set associates to each set X the (set
underlying the) free vector space

LX =
⊕
x∈X

Rx

generated by X, consisting of formal linear combinations of the elements of X. The map ςX :
X → LX is just the injection of generators and may be taken to be a subset inclusion.

Remark 10.2. Recall that R-Vect is isomorphic to the category of algebras SetL of L.

Definition 10.3. Let U : BornMeas → Set be the forgetful functor. For each object X ∈
BornMeas, since the underlying set UMX of MX carries the structure of a real vector space,
the function UδX : UX → UMX (7.1) induces a unique linear map �X : LUX → UMX such
that

UX
ςUX

UδX

LUX

�X

UMX

commutes.
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Lemma 10.4. The maps �X of Definition 10.3 constitute a natural transformation � : LU →
UM .

Proof. Let f : X → Y in BornMeas. All the morphisms in the diagram

LUX
�X

LUf

UMX

UMf

LUY
�Y

UMY

are linear maps with respect to the given vector space structures. Hence it suffices to check the
commutativity of this diagram on each element x of the basis UX for LUX, and indeed

UMf ◦ �X(x) = Mf
(
δX(x)

) = δY

(
f (x)

) = �Y

(
f (x)

) = �Y ◦ LUf (y)

by the naturality of δ : 1BornMeas → M . �
Proposition 10.5. The forgetful functor U : BornMeas → Set and the natural transformation
� : LU → UM constitute a monad morphism (see [24,13])

� := (U,�) :M → L.

Proof. By its very definition, � satisfies the equation � · ςU = Uδ. Hence it suffices to show
that the diagram

LLU
L�

τU

LUM
�M

UMM

Uκ

LU
�

UM

commutes. It is clear from the definition of κ that its components κX : MMX → MX are lin-
ear maps. In fact, each component of each of the natural transformations in the given diagram
is linear with respect to the given vector space structures. Hence it suffices to show that the
composites

LU
ςLU−−−→ LLU

L�−−→ LUM
�M−−→ UMM

Uκ−−→ UM,

LU
ςLU−−−→ LLU

τU−−→ LU
�−→ UM

are equal, and indeed we compute that Uκ · �M · L� · ςLU = Uκ · �M · ςUM · � = Uκ ·
UδM · � = � = � · τU · ςLU , using the naturality of ς , the equation � · ςU = Uδ, and the
unit laws for M and L. �
Corollary 10.6. The monad morphism � = (U,�) :M → L induces a functor

U� : BornMeasM → SetL ∼= R-Vect
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which endows every M-algebra with the structure of a real vector space, and every M-homo-
morphism is thus a linear map.

For an M-algebra (X, c : MX → X), the addition and scalar multiplication maps of the
associated vector space are the composites

X × X
δX×δX−−−−→ MX × MX

+−→ MX
c−→ X,

R× X
1R×δX−−−−→ R× MX

·−→ MX
c−→ X.

The vector space structure associated to the free M-algebra MX by U� coincides with the given
structure on MX (6.4).

Proof. Any monad morphism induces such a functor (see [13], §2.1), which in the present case

is given on objects by U�(X, c) = (UX,LUX
�X−−→ UMX

Uc−−→ UX) and commutes with the
forgetful functors to Set. The addition and scalar multiplication maps of the associated vector
space are the composites

UX × UX
ςUX×ςUX−−−−−−→ LUX × LUX

+−→ LUX
�X−−→ UMX

Uc−−→ UX,

R× UX
1R×ςUX−−−−−→R× LUX

·−→ LUX
�X−−→ UMX

Uc−−→ UX.

The first of these coincides with the first composite given above, since the diagram

UX × UX
ςUX×ςUX

UδX×UδX

LUX × LUX

�X×�X

+
LUX

�X

UMX × UMX
+

UMX
Uc

UX

commutes, as � is a monad morphism and �X is a linear map. We reason analogously with
regard to the second composite.

The addition operation with which the functor U� endows a free M-algebra MX coincides
with the usual addition operation on measures, since the diagram

MX × MX
δMX×δMX

MMX × MMX

κX×κX

+
MMX

κX

MX × MX
+

MX

commutes, using a unit law for M and the fact that κX is linear with respect to the usual operations
on MX. Analogous reasoning applies with regard to the scalar multiplication operation. �
Corollary 10.7. For any M-algebra (X, c), the structure map c : MX → X is linear.

Proof. This follows from 10.6, since c is an M-homomorphism. �
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11. MMM-algebras as bornological vector spaces

Lemma 11.1. R is a ring object in BornMeas. Equivalently, the addition and multiplication
operations +, · : R × R → R are measurable and bornological, where the product R × R is
taken in BornMeas.

Proof. It is straightforward to show that the given maps are bornological. Also, since these maps
are continuous, they are Borel measurable, and the Borel σ -algebra on R×R coincides with the
product sigma-algebra (e.g., by [3], 6.4.2). �
Definition 11.2. A (real) bornological vector space (resp. measurable vector space, measur-
able bornological vector space) is an R-vector-space object in Born (resp. Meas, BornMeas).
Hence a real vector space V is a bornological (resp. measurable, measurable bornological) vector
space if V is endowed with a bornology (and/or sigma-algebra) making the addition and scalar
multiplication maps bornological (and/or measurable) as maps defined on the products V × V ,
R× V taken in Born (resp. Meas, BornMeas). We define associated categories R-Vect(Born),
R-Vect(Meas), and R-Vect(BornMeas), whose morphisms are linear maps that are, accordingly,
bornological and/or measurable. It is conventional to use the term bounded linear map to mean
bornological linear map.

Lemma 11.3. Let X ∈ BornMeas. Then MX is a measurable bornological vector space. Hence
we obtain a functor M : BornMeas → R-Vect(BornMeas).

Proof. For each measurable E ⊆ X, the diagrams

MX × MX
+

EvE ×EvE

MX

EvE

R×R
+

R

R× MX
·

1R×EvE

MX

EvE

R×R
·

R

commute since the evaluation map EvE is linear, so since the bottom-left composites are mea-
surable (using 11.1), the top-right are as well. Hence the addition and scalar multiplication maps
of MX are measurable. Also, we know from 6.8 that MX is a bornological vector space. �
Proposition 11.4. Let (X, c) be an M-algebra. Then X, endowed the associated vector space
structure (10.6), is a measurable bornological vector space. Hence the functor BornMeasM →
R-Vect of 10.6 factors through R-Vect(BornMeas).

Proof. Corollary 10.6 exhibits the addition and scalar multiplication maps of X as composites
of what are, by Lemma 11.3, measurable bornological maps. �
Definition 11.5. A bornological vector space V is convex [10] if the bornology BV on V has
a basis of convex sets; equivalently, for each bounded B ⊆ V , there is some convex bounded
subset C ⊆ V with B ⊆ C. We define R-ConvBvs to be the full subcategory of R-Vect(Born)

consisting of convex bornological vector spaces.
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Remark 11.6. Every convex bornological vector space V acquires the structure of a locally
convex topological vector space when we take as a neighborhood basis for the origin 0 ∈ V the
bornivorous discs; see [10]. This passage is part of an adjunction between R-ConvBvs and the
category of locally convex spaces; see [7].

Theorem 11.7. Let (X, c) be an M-algebra. Then X, endowed the associated vector space struc-
ture (10.6), is a convex bornological vector space.

Hence the functor BornMeasM →R-Vect of 10.6 factors through R-ConvBvs.

Proof. By 11.4, it suffices to show that the bornology BX on X has a basis of convex sets.
Consider any bounded B ⊆ X. Let P(B,X) be the set of all probability measures on X supported
by B; i.e., P(B,X) = PX ∩ M(B,X) where PX := {μ ∈ SX | μ � 0, ‖μ‖ = 1} is the set of
all probability measures on X. Then, since PX is a convex subset of the space SX of finite
signed measures and M(B,X) is a vector subspace of MX, P(B,X) is a convex subset of MX.
Hence, since P(B,X) ⊆ M(B,X,1), P(B,X) is, moreover, a bounded convex subset of MX.
By 10.7, c : MX → X is a bornological linear map, so the image c(P (B,X)) of P(B,X) under
c is a bounded convex subset of X. Further, B ⊆ c(P (B,X)), since for each x ∈ B we have that
the Dirac measure δx is a probability measure supported by B , i.e. δx ∈ P(B,X), and c(δx) =
c ◦ δX(x) = x. �
12. Integrals valued in an MMM-algebra

Proposition 12.1. R is an M-algebra with structure map cR : MR →R given by

cR(μ) =
ˆ

idR dμ,

where the right-hand side is the Lebesgue integral of the identity map idR : R → R with respect
to μ. In fact, R is isomorphic to the free M-algebra M1 on the one-point measurable bornolog-
ical set 1 = {∗}.
Proof. One readily checks that the map Ev1 : M1 → R is an isomorphism in BornMeas, with
inverse given by α �→ αδ∗. Hence it suffices to show that

MM1
M Ev1

κ1

MR

cR

M1
Ev1

R

commutes, and indeed, for each M ∈ MM1 we have by 4.2 that Ev1 ◦κ1(M) = ´
Ev1 dM =´

idR dM Ev1(M) = cR ◦ M Ev1(M). �
Remark 12.2. For any BornMeas-morphism f : T → R and any μ ∈ MT , the integral of f

with respect to μ may be expressed in terms of the structure map cR on the M-algebra R as
ˆ

f dμ =
ˆ

idR dMf (μ) = cR ◦ Mf (μ),

using Proposition 4.2. This motivates the following definition:
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Definition 12.3. For an M-algebra (X, c), a BornMeas-morphism f : T → X, and any μ ∈ MT ,
we define the integral of f with respect to μ to be

ˆ
f dμ :=

ˆ

t∈T

f (t) dμ := c ◦ Mf (μ).

Remark 12.4. Let (X, c) be an M-algebra. Then, regarding (X, c) as an algebra of the algebraic
theory (over BornMeas) associated to M, we have for each T ∈ BornMeas and each μ ∈ MT

an operation ΩT
μ on X of arity T associated to μ, namely the function

ΩT
μ : BornMeas(T ,X) → X, f �→ c ◦ Mf (μ),

and in view of Definition 12.3, this is exactly the operation of X-valued integration with respect
to μ, given by

ΩT
μ (f ) =

ˆ
f dμ.

Proposition 12.5. Let X and Y be M-algebras and φ : X → Y a BornMeas-morphism. Then φ

is an M-homomorphism iff

φ

(ˆ
f dμ

)
=
ˆ

φ ◦ f dμ, i.e., φ

( ˆ

t∈T

f (t) dμ

)
=

ˆ

t∈T

φ
(
f (t)

)
dμ,

for all f : T → X in BornMeas and μ ∈ MT .

Proof. The verification is straightforward. �
Example 12.6. It is immediate from the definition of the structure map κX of a free M-algebra
MX that the evaluation maps EvE : MX →R are M-homomorphisms.

Example 12.7. Since BornMeas is complete (2.7), BornMeasM is complete. Hence for any
set n there is a product Rn in the category of M-algebras, and the underlying BornMeas-object
R

n is simply the product in BornMeas. Since the projections πi : Rn → R (i ∈ n) are M-homo-
morphisms, Rn carries the coordinatewise integral, given by πi(

´
f dμ) = ´

πi ◦ f dμ for all
f : T → R

n in BornMeas, μ ∈ MT , and i ∈ n.

Remark 12.8. For an M-algebra (X, c) and any f : T → X in BornMeas, the composite

MT
Mf−−→ MX

c−→ X, μ �→ ´
f dμ, is the M-homomorphism induced by f , which we denote

by f � and call the lift of f . We refer the reader to [18], Theorem 8.2, for some important prop-
erties of the lift combinator (−)� for a general monad.

Lemma 12.9. For an M-algebra (X, c) and an object T ∈ BornMeas, BornMeas(T ,X) is a
real vector space under the pointwise operations.
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Proof. For f,g ∈ BornMeas(T ,X) and a ∈R, the pointwise sum f + g and scalar multiple af

are the composites

T
(f,g)−−−→ X × X

+−→ X and T
(a,f )−−−→R× X

·−→ X,

which are BornMeas-morphisms since the addition and scalar multiplication maps +, · are
BornMeas-morphisms, by 11.4. �
Theorem 12.10. For an M-algebra (X, c), an object T ∈ BornMeas, and any μ ∈ MT , the
operation

ΩT
μ : BornMeas(T ,X) → X, f �→

ˆ
f dμ = c ◦ Mf (μ)

is a linear map.

Proof. The needed linearity of integration is equivalent to the requirement that for all f,g ∈
BornMeas(T ,X) and all a, b ∈ R, c ◦ M(af + bg) = ac ◦ Mf + bc ◦ Mg, i.e. (af + bg)� =
af � + bg�.

We know that the M-algebra R has this property. It follows that the free algebra MX does
as well, as follows. Let h, k ∈ BornMeas(T ,MX), a, b ∈ R, and E ⊆ X measurable. Since EvE

is an M-homomorphism (12.6) and a linear map, we find, using properties of the lift combina-
tor (12.8), that

EvE ◦(ah + bk)� = (
EvE ◦(ah + bk)

)� = (a EvE ◦h + b EvE ◦k)�

= a(EvE ◦h)� + b(EvE ◦k)� = a EvE ◦h� + b EvE ◦k� = EvE ◦(
ah� + bk�

)
.

Hence, given f,g ∈ BornMeas(T ,X), a, b ∈ R, taking h := δX ◦ f and k := δX ◦ g we have
that

(aδX ◦ f + bδX ◦ g)� = a(δX ◦ f )� + b(δX ◦ g)� = aMf + bMg,

so we may compute, using the fact that c is an M-homomorphism and a linear map, that

af � + bg� = ac ◦ Mf + bc ◦ Mg = c ◦ (aMf + bMg) = c ◦ (aδX ◦ f + bδX ◦ g)�

= (
c ◦ (aδX ◦ f + bδX ◦ g)

)� = (ac ◦ δX ◦ f + bc ◦ δX ◦ g)� = (af + bg)�. �
13. Pettis integrals and MMM-algebras

Definition 13.1. Let X be a (real) Banach space. Let X∗ := R-Vect(Born)(X,R) be the vector
space of all bounded linear functionals on X. The weak sigma-algebra on X is the initial sigma-
algebra induced by the family of all bounded linear functionals ϕ : X → R. Given a measurable
space T , we say that a function f : T → X is weakly measurable if it is measurable with respect

to the weak sigma-algebra on X, equivalently, if the composite T
f−→ X

ϕ−→ R is measurable for
all ϕ ∈ X∗.
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Definition 13.2. Let X be a Banach space, f : T → X a weakly measurable function, and μ ∈ ST

a finite signed measure on T . We say that a vector x ∈ X is a Pettis integral of f with respect
to μ if

∀ϕ ∈ X∗: ϕ ◦ f is μ-integrable, and ϕ(x) =
ˆ

ϕ ◦ f dμ.

If such a Pettis integral exists, then, since the space of functionals X∗ separates points, this Pettis
integral must be unique, and we denote it by

›
f dμ or

›
t∈T

f (t) dμ.

Remark 13.3. The defining property of the Pettis integral
›

f dμ in 13.2 requires exactly that

∀ϕ ∈ X∗: ϕ

( “

t∈T

f (t) dμ

)
=

ˆ

t∈T

ϕ
(
f (t)

)
dμ.

Compare this with the characterization of an M-homomorphism given in 12.5.

Definition 13.4. We say that a Banach space X has enough Pettis integrals if for all bounded
weakly measurable functions f : T → X and all finite signed measures μ ∈ ST , there is a Pettis
integral

›
f dμ in X. Here, by bounded we mean that f has bounded image.

Proposition 13.5. For a Banach space X, the following are equivalent:

1. X has enough Pettis integrals.
2. X has a Pettis integral

›
f dμ for each bounded weakly measurable function f : T → X

and each nonnegative μ ∈ ST .
3. X has a Pettis integral

›
ιBX dμ of the inclusion ιBX : B ↪→ X for each bounded subset

B ⊆ X and each μ ∈ SB .
4. X has a Pettis integral

›
idX dμ of the identity map idX : X → X with respect to each finite

signed measure of bounded support μ ∈ MX.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are clear. Also, (2) ⇒ (1) since for any
μ ∈ ST , if there exist Pettis integrals

›
f dμ+ and

›
f dμ−, then

›
f dμ+ − ›

f dμ− is a
Pettis integral of f with respect to μ. Next, (3) ⇒ (4), since for any μ ∈ MX, μ is supported by
some bounded B ⊆ X and hence for each ϕ ∈ X∗ we have that

ϕ

(“
ιBX dμB

)
=
ˆ

ϕ ◦ ιBX dμB =
ˆ

ϕ dμ

by 5.5, so that
›

ιBX dμB is a Pettis integral of idX with respect to μ. Lastly, suppose (4). Endow
X with the weak sigma-algebra, let f : T → X be a bounded weakly measurable function, and
let μ ∈ ST . Endowing T with the bornology consisting of all subsets of T , we have that T is a
bounded BornMeas-object, f : T → X is a BornMeas-morphism, and μ ∈ ST = MT . Hence
we have Mf (μ) ∈ MX, so there is a Pettis integral

›
idX dMf (μ) in X, and this serves as a

Pettis integral
›

f dμ since for each ϕ ∈ X∗ we have that

ϕ

(“
idX dMf (μ)

)
=
ˆ

ϕ dMf (μ) =
ˆ

ϕ ◦ f dμ

by Proposition 4.2. �
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Theorem 13.6. Let X be a Banach space with enough Pettis integrals. Then X is an M-algebra
when we endow X with the weak sigma-algebra, the norm bornology, and the structure map
c : MX → X sending each μ ∈ MX to the Pettis integral

›
idX dμ.

Proof. (i) Firstly c is measurable, since for every ϕ ∈ X∗, ϕ is measurable and bornological, and
the composite MX

c−→ X
ϕ−→ R is the measurable map ϕ� (8.6), since for each μ ∈ MX we have

ϕ ◦ c(μ) = ϕ(
›

idX dμ) = ´
ϕ dμ = ϕ�(μ).

(ii) Next we prove that c is bornological. Consider any basic bounded subset M(B,X,γ ) of
MX, where B ⊆ X is bounded and γ > 0. Then γB ⊆ X is bounded and hence is contained
within some closed ball Br in X of radius r > 0. We shall show that c(M(B,X,γ )) ⊆ Br .

Both the norm topology and the weak topology are admissible topologies on X with respect to
the dual pair (X,X∗) (see, e.g., [9], §98), so since Br is convex and closed in the norm topology,
Br is also closed in the weak topology (e.g., by [9], 98.1). Furthermore, Br is absolutely convex,
so Br is equal to its absolutely convex weakly-closed hull, which, by the Bipolar Theorem, is
equal to the bipolar B◦◦

r (see, e.g., [9], §99). Hence

Br = B◦◦
r = {

x0 ∈ X
∣∣ ∀ϕ ∈ B◦

r :
∣∣ϕ(x0)

∣∣ � 1
}

where

B◦
r = {

ϕ ∈ X∗ ∣∣ ∀x ∈ Br :
∣∣ϕ(x)

∣∣ � 1
}
.

Now let μ ∈ M(B,X,γ ). To see that c(μ) ∈ B◦◦
r = Br , consider any ϕ ∈ B◦

r . Since μ is
supported by B , we have by 5.5 that

ϕ
(
c(μ)

) = ϕ

(“
idX dμ

)
=
ˆ

ϕ dμ =
ˆ

ϕ ◦ ιBX dμB,

where ιBX : B ↪→ X is the inclusion. But we have that |ϕ| � γ −1 on B , since for any x ∈ B we
have γ x ∈ γB ⊆ Br and hence γ |ϕ(x)| = |ϕ(γ x)| � 1, as ϕ ∈ B◦

r . Therefore

∣∣ϕ(
c(μ)

)∣∣ =
∣∣∣∣
ˆ

ϕ ◦ ιBX dμB

∣∣∣∣ �
ˆ

|ϕ ◦ ιBX|d|μB |

� γ −1|μB |(B) = γ −1‖μB‖
= γ −1‖μ‖ � γ −1γ = 1,

using Proposition 5.6.
(iii) To see that (X, c) satisfies the unit law c ◦ δX = 1X , let x ∈ X. For each ϕ ∈ X∗,

ϕ ◦ c ◦ δX(x) = ϕ

(“
idX dδx

)
=
ˆ

ϕ dδx = ϕ(x).

Hence, since the ϕ ∈ X∗ separate points, c ◦ δX(x) = x.
(iv) In order to prove that (X, c) satisfies the associativity law c ◦ Mc = c ◦ κX , let M ∈

MMX. For each ϕ ∈ X∗, we have that
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ϕ ◦ c ◦ κX(M) = ϕ

(“
idX dκX(M)

)
=
ˆ

ϕ dκX(M) =
ˆ

ϕ� dM

by Proposition 8.6, whereas

ϕ ◦ c ◦ Mc(M) = ϕ

(“
idX dMc(M)

)
=
ˆ

ϕ dMc(M) =
ˆ

ϕ ◦ c dM

by Proposition 4.2. But as noted in (i), ϕ ◦ c = ϕ�, so these two real numbers are equal. Hence,
since the ϕ ∈ X∗ separate points, the result is established. �
Corollary 13.7. Any Banach space X that is separable or reflexive has enough Pettis integrals
and hence is an M-algebra when endowed with the bornology, sigma-algebra, and structure map
of Theorem 13.6.

Proof. (i) It is well known that any separable Banach space X has enough Pettis integrals. For
example, given a bounded weakly measurable f : T → X and any nonnegative finite measure
μ on T , f is in particular scalarly bounded, in the terminology of [22], so since X is separable
we deduce by Theorem 1 of [22] that f is Pettis integrable in the sense employed there, which
implies in particular that a Pettis integral

›
f dμ exists.

(ii) For a reflexive Banach space X, if a function f : T → X is Dunford integrable with respect
to a finite nonnegative measure μ on T , meaning that f is weakly measurable and each ϕ ◦ f

is μ-integrable (ϕ ∈ X∗), then f is Pettis integrable and, in particular, there is a Pettis integral›
f dμ; see [4], §II.3. Hence X has enough Pettis integrals, since a bounded weakly measurable

function f : T → X is Dunford integrable with respect to any finite nonnegative measure μ

on T . �
Remark 13.8. Reflexive Banach spaces include all Hilbert spaces and all spaces Lp(μ) with
1 < p < ∞ (see, e.g., [19]).
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