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1. INTRODUCTION

An operation on a topological space (X, T) has been defined by
S. Kasahara [18] as a mapping ¢ from T into 2% such that A< A7,
VAe T, where A° =¢(A). Abd El-Monsef et al. [1, 2] extended Kasahara’s
operation by introducing an operation ¢ on the power set 2% of X
endowed with a topology T such that int(4)< A%, YAe2¥, In this paper
we extend this concept to the class of all fuzzy sets on X endowed with a
Chang fuzzy topology 7. This extension will make an extensive use of the
notions of g-neighbourhood and g-coincidence due to Pu and Liu [26]
and the notion of a fuzzy singleton as introduced in [19].

In Section 4, first for any operation ¢ we introduce the class of all
¢p-open fuzzy sets that generalizes the classes of all open, semi-open [6],
pre-open [9], semi-pre-open [5], and feebly open [23] fuzzy sets. Second,
starting with two operations ¢,, ¢, we define the concepts of ¢, ,-closure
(¢, ,-interior) of fuzzy sets that generalizes fuzzy closure [26], fuzzy
O-closure [16, 257, fuzzy d-closure [10], fuzzy semi-closure [12], fuzzy
semi-f-closure [28], and fuzzy semi-d-closure. We show that the class of
¢, »-open fuzzy sets plays a significant role in the context of fuzzy topology
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in a way analogous to that of the ¢, ,-open sets in general topology
[1,2, 14, 18].

In Section 5, we apply this extension to generalize some types of fuzzy
separation axioms due to Pu and Liu [26], Luo [22], Azad [6], and
Kandil and El-Shaffi [17].

In Section 6, our discussion focuses on a special choice for one of the
operations. More specifically, many interesting new results are deduced for
the special choice ¢,=int and ¢, arbitrary. In particular the interaction
between operations in a topological space and its corresponding induced
fuzzy topological space is described in detail.

We use F to denote fuzzy and fts to denote a Chang fuzzy topological
space [8].

2. PRELIMINARIES

The class of all fuzzy sets on a universe X is denoted by 7'*. Fuzzy sets
on X are denoted by Greek letters as u, p, #n, etc. Crisp subsets of X are
denoted by capital letters as 4, B, C, etc. Fuzzy singletons are denoted by
X Vy» Z,. The class of all fuzzy singletons in X is denoted by S(X). For
every x,€ S(X) and pel¥, we define x, <y iff e<pu(x). A fuzzy set p is
called quasi-coincident with a fuzzy set p, denoted by ugp, iff there exists
x € X such that u(x)+ p(x)> 1. If 4 is not quasi-coincident with p, then we
write ugp. Let x,eS(X), uel”*, and A< X. By N(x,), No(x,), int{p),
S.int(u), 0.int(u), 6.int(y), S.0.int(u), S.6.int(p), cl(p), S.cl(y), 0.cl(pn),
6.cl(u), S.0.cl(n), S.6.¢l(u), cou, and 1,, we mean the neighbourhood
(nbd, for short) system of x,, the Q-neighbourhood (¢-nbd, for short)
system of x,, the interior of u, the semi-interior of y, the 8-interior of u, the
d-interior of u, the semi-6-interior of y, the semi-d-interior of g, the closure
of u, the semi-closure of y, the f-closure, the J-closure of u, the semi-
O-closure of u, the semi-d-closure of yu, the complement of y, and the
characteristic mapping of A, where d-interior (resp. f-interior) is a special
case of our new concept of ¢, ,-interior (Definition 4.6(2) below) when
@,=int and @, = intocl (resp. ¢ =int and ¢,=cl).

DerNITION 2.1, For ueI* we define
(i) p,={x|xeX and p(x)=a} as the weak a-cut of u, where
ae 0, 1]. The weak 1-cut is called the kernel of u and is denoted as ker(u).

(i) ps={x|xeX and p(x)>a} as the strong a-cut of y, where
ae [0, 1[. The strong O-cut of u is called the support of x4 and is denoted
as supp(u).

(iii) hgt{u)=sup,. v u(x) as the height of u.
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DerFiNiTION 2.2 [21]. Let (X, T) be an ordinary topological space. The
set of all lower semicontinuous functions from (X, T) into the closed unit
interval equipped with the usual topology constitutes a fuzzy topology on
X that is called the induced fuzzy topology associated with (X, T') and is
denoted as (X, w(T)).

The representation theorem [207] states that a fuzzy set can be decom-
posed into a family of ordinary subsets of the universe, namely its weak or
strong a-cuts,

= U @niy= U @n1,), VYuel®

x€ ]0,1] xe [0, 1]

where o means the constant mapping on X with value a.
3. OPERATIONS AND DuAL OPERATIONS ON Fuzzy SETS

DerFINITION 3.1, Let (X, t) be a fts. A mapping ¢:7* — I¥ is called an
operation on I iff (VuelI*) (int(y) < u®), where u® denotes the value of
¢ in p. The class of all operations on /% is denoted by O, .,.

The operations ¢, Y €0,, . are said to be dual iff (Vuel*)
(1" = co((cop)®)), or equivalently, (VueI*) (u®=—co((cou)?)). The dual
operation of ¢ is denoted by @.

DErFINITION 3.2. Let (X, 1) be a fts. A partial order “<” on O, ., is
defined as ¢, < @, <> (Vue I")(u® < u®?), where @,, ¢,€ O, x ., It is easy
to prove that (O, ., <) is a completely distributive lattice.

ExampLEs 3.3. Let (X, 1) be a fts. Then:
(i) The following operations belong to O, .,:int, ¢/, cl-int, intecl,
intocloint, 8.cl, S.0.cl, S.cl, (8.cl)-cl.

(it) The following are the dual operations of those defined in (i): ¢/,
int, int<cl, cleint, clointocl, B.int, S$.8.int, S.int, (8.int)- int.

(i) Identity operaiion tip'=pandi=u;

(iv) Constant operation 1 : u' = X.

(v) Support operation g : p° =1, ..,

(vi) Fuzzy union operation \/,(pel”*): uVr=pu v p; the associated
dual operation is denoted by A since u¥»=u A (cop) (de Morgan).

cop?

DEFINITION 3.4.  An operation g€ O, ., is called:

(i) g-regular with respect to (w.r.t., for short) X < I iff (Vx, € S(X))
(Y, p€ No(x,. £))3ne Ny(x,. £))n® S 9°  p*);
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(i) regular wrt. XcI¥ iff  (Vx,eS(X))(Vu, peN(x,,2))
(Bne N(x,, 2D s pu”np?);
(iii) monotonous iff (Yu, peI*)(u<Sp=>pu® < p®);

(iv) weakly finite intersection preserving (WFIP, for short) w.r.t.
IVt (YneX)Vuel®)nou<(nnu)®)

THEOREM 3.5. Let (X, 1) be a fts, X<1I*, and 9O, ,,. Then ¢ is
monotonous = ¢ is regular w.r.t. £ = is q-regular w.r.t. .

The following examples show that the converse is not true in general.

ExaMmpPLE 3.6. Let t={a|ae[0,1]} and let @: 7% — I be defined by

4 = Hs u#0.5
X, 1=0.5.

Then ¢ is regular w.r.t. 7 but not monotonous.

ExampLE 3.7. Let X={x,»} and consider the following fuzzy
topology,

1={X,Ftu{x,]e205}u{x,uy,s|e=05}.

(i) The operation ¢,: I* — I'* defined by

Xi» K= X5
#‘m — ”
i, otherwise

is g-regular w.r.t. t but not regular w.r.t. 7. Indeed, for x,;, we have
X230 (X33 U Yos) € NMxgs, T) and (x3;3)7 N (xy3 U pos)® = X35, but there
is no # € N(x,;, t) such that n?' < x, ;. Thus ¢, is not regular w.r.t. .

(ii) The operation ¢,: I* — 1% defined by

5 X1, H=Xgs
= .
U, otherwise

is not g-regular w.r.t. 7. Indeed, for x,, £>0.5, we have x;sn (x55U yos) €
Nolx,, 1) and (x45)?* N (Xo5U yo5)?" = X5, but there is no ne Ny(x,, 1)
such that n** < x,.

ExampLES 3.8. Let (X, 1) be a fts. Then:

(1) All operations in Examples 3.3 are monotonous.
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(ii) The operations int, cloint, int-cl, intoclsint, and ¢/ are WFIP
w.r.t. .

(iii) The operations 8.c/ and (0.cl)-cl are WFIP w.rt. 1 1.

4. GENERALIZATIONS OF Basic Fuzzy TopoLoGIiCcAL CONCEPTS

DEFINITION 4.1. Let (X, 1) be a fts, 9 €Oy .y, x,€S(X), and pel*
Then u is called g-open iff u< p?. We will denote the class of all ¢-open
fuzzy sets on X by @OF(X) and the class of all ¢-open g-nbds of x, by
Nolx,, pOF(X)). The fuzzy set u is called ¢-closed iff cou is @-open.

ExampLEs 4.2. Let (X, 1) be a fts and let o € Oy ..
(i) If ¢ <1, then oOF(X)={u | pel* and pu* = p}. In particular, if
@ = int, then pOF(X)=1.
(ii) If @ >1, then @OF(X) coincides with I,

(i) If ¢ =cl-int, then @OF(X) coincides with the class of all semi-
open fuzzy sets on X denoted by SOF(X).

(iv) If @ =1int-cl, then @OF(X) coincides with the class of all pre-
open fuzzy sets on X denoted by POF(X).

(v) If o=cleintocl, then @OF(X) coincides with the class of all
semi-pre-open fuzzy sets on X denoted by SPOF(X).

(vi) If ¢ =58.cl-int, then @OF(X) coincides with the class of all
feebly open fuzzy sets, denoted by FOF(X).

LEMMa 4.3. Letr (X, 1) be a fts, ¢, @, 9,€O0x..,, and p, nel*. Then:
(1) Every open fuzzy set is a @-open fuzzy set.
(2) If o, <,, then we have ¢, OF(X)< ¢,O0OF(X).
(3) If ¢ is monotonous, then an arbitrary union of @-open fuzzy sets
is -open.
4) If ¢ is WFIP wrt @OF(X) and u, pe@OF(X), then
unpepOF(X).

THEOREM 4.4. Let (X, 1) be a fts and ¢ € Oy ).

(1) If @ is monotonous, then @OF(X) forms a fuzzy supratopology on
X [24].
(1) If @ is monotonous and WFIP w.r.t. pOF(X), then pOF(X) forms
a fuzzy topology on X.
(i) If t=1%, then pOF(X)=1%.

409 180 2-3
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Proof. (1) By Definition 4.1, it is easy to note that X, & € pOF(X) and
by Lemma 4.3(3), ¢ OF(X) is closed under arbitrary union and so ¢OF(X)
is a fuzzy supratopology.

(ii) This follows from Definition 4.1 and Lemma 4.3(3) and (4).
(ii1) This is obvious.

ExaMpLE 4.5. Let (X, 1) be the fts described in Example 3.7 and let
¢ = cl<int. Then the family ¢ OF(X) is a fuzzy supratopology on X but not
a fuzzy topology on X.

DerFINITION 4.6, Let (X, 1) be a fts, ¢, ¢,€0,y ), x,€S(X), and

pel”.

(1) The ¢, ,-closure of y, denoted by ¢, ,.cl(y), is defined by x, =
@1, 2-clp) < (Ve No(x,, 9, OF(X)))n*qu).

(2) The ¢, ,-interior of u, denoted by ¢, ,.inf(u), is defined by
X492 int(p) <> (3ne No(x., 9, OF(X)))(n® < p).

(3) pis @, yopen<>puc @, ,.int(p).

(4) pis @, ,closed<=u2¢, ,.cl(p).

Obviously a fuzzy set u is @, ,-open iff its complement is ¢, ,-closed.

ExampLes 4.7. Let (X, 1) be a fts, ¢, ¢©,, @3, 0,€ 0,y ..

(1) For ¢, =int, we have:

(i) if int<@,<1, then ¢, ,-closed (resp. ¢, -closure operation)
coincides with F-closed (resp. F-closure operation);

(ii) if @, =cl, then @, ,-closed (resp. ¢, ,-closure operation) coin-
cides with F.f8-closed (resp. F.0-closure operation);

(iii) if @,=1int-cl, then @, ,-closed (resp. ¢, ,-closure operation)
coincides with F.d-closed (resp. F.d-closure operation);

(iv) if ¢, is an arbitrary operation on I'¥, then ¢/< ¢, ,.cl.

(2) For ¢, =cl-int, we have:
(i) if @,=1, then ¢, ,-closed (resp. ¢, ,-closure operation) coin-
cides with F.semi-closed (resp. ¥.semi-closure operation);
(ii) if @, =cl, then ¢, ,-closed (resp. ¢, ,-closure operation) coin-
cides with F.f-semiclosed (resp. F.6-semi-closure);
(i) if @, =int-cl, then @, ,-closed (resp. ¢, ,-closure operation)
will be called F.d-semiclosed (resp. F.d-semi-closure).
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(3) If ¢, =int=cl and ¢,=1, then ¢, ,-closed (resp. ¢, ,-closure)
coincides with F.pre-closed (resp. F.pre-closure).

(4) U o,=¢,<1, then c/< @, 5.0l

(5) Ifp,=¢,=1, then c/=¢, ,.cl.

(6) If@,=2¢;and p,< @, then ¢, ,.cl< @, 4.cl.

LemMa 48. Ler (X.1) be a fis, ¢,, ©,€0,y., pel*, and
n€ @, OF(X). Then nge, ,.cl(p)=>n"qp.
Proof. Let nqo, ,.cl(u). Then (3xe X)(n(x)+ @, ,.cl(p)(x)>1). Put

@ ».cl(p)(x)=¢. Then x,= ¢, ,.cl(p) and x,qn. From x,S ¢, ,.cl(u), we
have (Vp e Ny(x,, ¢, OF(X)))(p*qu) and so n*qu.

LEMMA 4.9. Let ¢, ¢,€ 0,y ., and p, neI*. Then:

) x99, y.clu) < (Ve N(x,, ¢, OF(X)))(n*qu).
(i) @ 2.cp)=U {x,e S(X) | (Vne Ny(x,, o, OF(X)))n*qu)}.
) @)=
) If (@1 0r ;2 0,), then p< @y ,.cl(u).
(v) Ifucsn, then ¢, ,.cl(p) < @, 5.cl(n).
(vi) An arbitrary intersection of ¢, j-closed fuzzy sets is ¢, ,-closed.
(vil) If ¢, is g-regular wrt. @, OF(X), then the finite union of
@, 2-closed fuzzy sets is @ ,-closed.
(viii) Let (¢, =1 0r ¢,= @) and @, is monotonous. If u is ¢, s-open,
then u is @ ,-open.
(ix) If(p,z10r ¢;20¢)), then (@ .cl)o@r€ Oy -
Proof. The straightforward proofs are omitted. We only prove:

(iv) Suppose x,cu and ne Ny(x,, ¢, OF(X)), then we have x.gn
il 1<e+n(x)<ulx)+n(x)<pu(x)+n*(x). By hypothesis, we have
u(x)+n9}(x)> 1. This means that n*}qu and hence x, S ¢, ,.cl(y).

(v) Supposepucnandx, S ¢, ;.cl(u). Then(¥pe Ny(x,, ¢, OF(X)))
(p“qu), equivalently 1 < u{x)+ p?(x)<n(x)+ p*®(x), equivalently p®ign
and hence x, < ¢, ,.cl(n).

(vii) Let A={)7_, 4;, where (Vje{1,2,.,n}) (@, ,.cl(A)<S4). Let
x, & A Then (Vje{l,2,.,n})x, & 4;). Hence (In;e Ny(x., @, OF(X)))
(Viel{l,2,..,n})(n’*q4;). Now ¢, is g-regular wrt. ¢, OF(X) so
(e Ny(x,, 0 OF(X))n* = ]_, n/*). Hence n**qiand so x, & @, ,.cl(4).
Thus ¢, ,.cl{A) < A

Now it is easy to prove the following theorem.
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THEOREM 4.10. Let (X, 1) be a fts and @, @5, @3, 94€ Oy 1.

(i) The class ¢, ,OF(X) of all ¢, r-open fuzzy sets in X is a fuzzy
supratopology on X.

(ii) If @, is g-regular wr.t. ¢, OF(X), then ¢, ,OF(X) is a fuzzy
topology on X denoted by 7, ..

(i) If (9,21 or @220,), then the fuzzy ¢, ,-closure operation
defines on X a fuzzy pretopological space [7].

(iv) If (p,=10r @,2 @) and @, is g-regular w.r.t. @ OF(X), then the
fuzzy @, ,-closure operation defines on X a fuzzy closure space [24].

V) If o .cd<py .0l thent, <1, ..

Proof. The straightforward proofs are omitted. We only prove:

(i) This follows directly from Definition 4.6 and Lemma 4.9(iii) and
(iv).
(ii) This follows directly from Definition 4.6 and Lemma 4.9(iii),
(iv), (vi), and (vii).
(iii) By Lemma4.9(iii) and (iv), we have ¢,,.c()=¢ and
US @ ,.cllu), Yuel* Hence ¢, is a fuzzy pretopology operator [7].
(iv) By Lemma 4.9(iii), (iv), and (vii), we have o¢.cl(J)= T,

pE@,.cllp), Yuel* and @, (pun)=@,(#) U @(n). Yu, nel”. Hence
¢, is a Cech fuzzy closure operator [24].

ExampPLES 4.11. Let (X, 1) be a fts and let ¢,, ¢,€ Oy x ..

(1) If @, =@, =int, then 7,  coincides with 1.
(2) If ¢, =int and @, =cl, then 1, , coincides with 7, [16, 25].
(3) If ¢, =int and @, =int-cl, then 1, , coincides with t5 [10].

(4) tyctsc1 [10,16,25].

?1.2

5. GENERALIZED FUZZY SEPARATION AXIOMS

In this section we introduce and study the concepts of ¢, ,-separation
axioms in fuzzy topological spaces which generalize the axioms FT,, FT,
introduced by Pu and Liu [26], the axiom FT,,,, introduced by Yalvac
[297], the axiom FR, introduced by Luo [22], the axiom FSR, introduced
by Azad [6], and the axioms F*T,, F*T,, F*T,,,,, and F*R, introduced
by Kandil and El-Shaffi [17]. Various properties of these new classes of
fuzzy topological spaces have been studied.
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DeFiNITION 5.1, Let (X, t) be a fts and ¢, ¢,€ 0. .. Then (X, 1) is
called:

(i) @, ,.FT, < (Vx,€ S(X))(x, is ¢, ,-closed).

(1) @ . F*T; <= (Vx,, y, e S(X))(x.qy, = ((3ue N(x,, ¢, OF(X)))
(¥.qu®*) and (Ine N(y,, @, OF(X)))x,4n**))).

() @ . FT, < (Vx,y,eS(X))(x#y = (3ue Ny(x,, ¢, OF(X)))
(Fne No(y., @ OFX)))(u?” nn? = ).

(V) @, 2. F*T, < (x.qy, = (3u € N(x,, ¢, OF(X)))(3n € N(y,,
@ OF( X)) (u®qn®?)).

(V) @ 2. FRy, = (Vx, € S(X))(Viue Ny(x,, 9 OF(X)))3n € No(x,,
@, OF(X)))(n®* < p).

(Vi) @ .F*R;, <= (Vx, € S(X))(Vu € N(x,, ¢, OF(X)))(3n € N(x,,
©, OF(X)(n* < ).

ExaMpLES 5.2. Let (X, 1) be a fts and ¢,, ¢, € Oy .,. Then:

(1) For ¢, =int, we have:
(1) if int<@,<1, then ¢, ,.F*T\(¢,,.FT\) and ¢, ,.F*T,
(¢, 5.FT;) coincide with F*T\(FT,) and F*T,(FT;);

(ii) if @, =cl, then @, ,. F*T\(¢, ,.FT}), ¢, ,. F*Ty(¢, ,.FT,), and
¢ 2. F*Ry(@, ,.FR;) coincide with F*Ty(FT,), F*T,,/(FTs,.,), and
F*R,(FR,).

(iii) If ¢, =int->cl, then ¢, ,. FR, coincides with fuzzy semi-regular
(FSR;) due to Azad [6]. The axiom ¢, ,.F*R, will be called in this case
F*SR,.

(2) If ¢, =intocl and ¢,=1, then

(i} ¢, ,.F*T) and ¢, ,.F*T, are called semi-F*T, and semi-
F*T,;

(i1) ¢, ,.FT, and ¢, ,.FT, are called semi-F7, and semi-FT,.

(3) If ¢, =cloint and ¢,=S.cl, then the axiom ¢, ,.FR, will be
called in this case S.FR,.

The following theorem shows that ¢, ,.FT, and ¢, ,.F*7, are
equivalent.

THEOREM 5.3. Let (X, 1) be a fts, ¢, ¢,€0,x .. A fts (X,1) is
@1 4. F*T = (Vx, e S(X)) (x, is @, ,-closed).

Proof. Let (X,1) be ¢, ,.F*T; and x,, y.eS(X) such that x.gy..
Then (IneN(y,, ¢, OF(X))Nx.gn®*) which implies that y g¢, ,.cl(x,).
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Thus we have ¢, ,.cl(x,)Sx,. Conversely, suppose that (Vx eS(X))
(x,2¢,,.cl(x;)) and let x.gy,. Then x.go¢, ,.cl(y,) and y.g4o, ;.cl{x,).
Hence (3ueN(x,, ¢;OF(X)))EneN(y,, o, OF(X))(y,qu”* and x.gn*).
Thus (X, 7) is ¢, 5. F*T,.

CoROLLARY 5.4. A fts (X, 1)is ¢, ,.FT, iff (X,z, ,) is FT,.

Pi2

The situation is quite different for ¢, ,.FT(¢, ;. F*T,) and
¢, 2. FRy(¢, ,.F*R,) as may seen from the next theorem.

THEOREM 5.5. Let (X, 1) be a fts and ¢, ¢,€ Oy .. Then:
(i) (X,t1,,) is FT, (resp. F*T,) = (X,1) is ¢, ,.FT, (resp.

 h o1
@12 F*T>).
(i) (X,t,.,) is FR, (resp. F*R,) = (X,1) is ¢, ,.FR, (resp.

¢, 1. F*R,).

THEOREM 5.6. Let (X, ) be a fis and let ¢, ¢ € Oy . Then:

(1) ((X,1) is @2 F*T\ = (X,1) is @ . F*T))<(Yx,, y, € S(X))
(x.qy, = (e N(x,, ¢, OF(X)} U N(y,, 9, OF(X))) (u* is ¢, ,-closed)).

(i) ((X,1) is @, ,.FT, = (X,1) is ¢, +.FTy) <= (¥x,, v, € S(X))
(x#y=>(3ueNy(x,, 0, OFX))U Ny(y,, 0, OF(X))} (u® is ¢, ,-closed)).

Proof. (i) Let (X,7t) be a fts, ¢, ,.F*T,= ¢, ,.F*T,, and x.gy,.
Since (X, 1) is ¢, ,.F*T,, we have (Ine N(y,, ¢, OF(X}))(x,qn?*). Also,
because (X, 1) is ¢, ,.F*T,, it follows (3ue N(x,, ¢, OF(X)))(u#*gn®?)
which implies that x,g¢, ,.c/(n??). Hence ¢, ,.cl(n®*) S n®:. Therefore n*?
is ¢, ,-closed.

Conversely, let (X, t) be an ¢, ,.F*T, and x,, y, € S(X) such that x,gy,.
Then (Jue N(x,, ¢, OF(X)))v,qu®?). Since u® is ¢, ,-closed, we have
YeGe o.cl(u®) and so (Ine N(y,, ¢, OF(X))u?qn?). Thus (X, 1) is
¢, . F*T,. A similar proof can be given for (ii).

THEOREM 5.7. Let (X, 1) be a fts and ¢,, ¢,€ Oy .. If (@221 or
0:20,) and (X, 1) is @, o.F*Ty, then (Vx,€ S(X)(x, = {@12.cl(u*) |
pe N(x., ¢, OF(X))}).

Proof. Suppose (X, 1) is ¢, ,.F*T, and x,e S(X). Then (Vy, e S(X))
(y,gx, = (3 e N(x,, 9, OF(X)))(3n € N(y., 9, OF(X)){u**gn**)). Hence
7vG¢1.2.cl(u®) and so we obtain () {¢, ,.cl(u®) | ue N(x,, ¢, OF(X))}
< x,. Therefore, x,=\ {@, ,.cl(u®) | pe N(x,, ¢, OF(X))}.

THEOREM 5.8. Let (X, 1) be a fts and ¢, ¢,€ 04y ). Then (X, 1) is
@, 2. FR, (resp. ¢, ;. F*R,) iff every ¢ -open fuzzy set is @, j-open.
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Proof. Suppose that (X,t) is ¢, ,.FR, and pueo,OF(X); x.qu
Because (X, 1) is ¢, ,.FR,, we obtain (Ine Ny(x,, ¢, OF(X)))(n** < )
which implies that x,g¢, ,.int(u). Thus p< ¢, ,.int(n) and hence u is
@, -open. Conversely, let x, e S(X) and let ue Ny(x,, ¢, OF(X}). Then
KES @, ,.int(p) and hence (3 e Ny(x,, ¢, OF(X)))(n** < p). Thus (X, 1) is
®1.2-FR,.

COROLLARY 59. Let (¢,21 0r @, 2 @,) and ¢, is monotonous. Then a
Jis (X, 1) is an @, 5. FR; (resp. ¢, . F*Ry) iff 1, ,= ¢, OF(X).

The following examples show that ¢, ,.F7, and ¢, ,.F*T, are
independent.

ExaMpPLE 5.10. Let X={x, y} and 7={X, &, x,, y,}. Let ¢,, ¢,€
Oyx. such that ¢,=int and ¢,=1 Then (X,1) is ¢, ,.FT, but
not ¢, ,. F*T,. Indeed, for xp3;, Xo,€S(X) and (Vue N(xg;, 1))
(Vne N(xgz, 1))(ugn).

ExaMmPLE 5.11. Let X be an infinite set and consider the ordinary
cofinite topology 7. = {U | U< X and coU is finite} U { & }. It is easy to
see that the class A(t..)= {u | pel* and supp(u)e,} is a fuzzy topology
on X. Let ¢,, 9,€ 0y y,) such that ¢, =int and ¢, =1. Then (X, A(z.))
s ¢, ,.F*T, but not ¢, ,.FT;.

THEOREM S5.12. Let (X, 1) be a fts and ¢, ¢,€ Oy x. .y Then (X, 1) is
@, . F*R,= (X, 1) is ¢, ,.FR,.

Proof. Let (X,7) be ¢, ,.F*R,, x,€ S(X) and pe Ny(x,, ¢, OF(X)).
Then p(x)>1—¢ Hence (Ive 0, 1[ M u(x)>v>1—¢). From x,<u and
because (X, 1) is ¢, ,.F*R,, we obtain (Ine N(x,, ¢, OF(X)))(n** < u).
Since n(x)=v>1—¢, we have ne Ny(x,, ¢, OF(X)) and hence (X, 1) is
®,.2 FR,.

The following example shows that the converse of Theorem 5.13 is not
true in general

ExaMPLE 5.13. Let X={x} and t={X, J}u{x,|03<e<07}. If
¢, =int and @, =cl, then it is easy to see that (X, t) is ¢, ,.FR, but not
¢, »F*R,. Indeed, for x,,, we have xy,;Sx,;,€7 but there is no
1€ N(xq,, 1) such that cl(u) < xq 5.

THEOREM 5.14. Let (X, 1) be a fis, ¢, ¢,€Oyx ., and let (9,21 or
©:2¢,). A fis (X, 1) is ¢, ,.FR, iff every @,-open fuzzy set u is a union
of @,-open fuzzy sets n, such that (NjeJ)(n* < u).
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Proof. Let ueq@,0OF(X), xesupp(u), and let n, be a strictly positive
real number such that 1/n, < u(x). For any positive real number n with
nzn,, put e=1—yu(x)+1/n. Then 0 <e< 1. Since, x,qu, we have (I, €
Nol(x,, 0 OF(X))n®* <= ). Now n,(x)+e=mn,(x)+1—plx)+1/n>1
and hence 15,(x)>u(x)—1/n. Thus [U {n,|n=n.}](x)=u(x). Then
pe={n,ln=n,} is a collection of ¢,-open fuzzy sets in X such that
Uinalmeptsu (U I n.epd1(x)=pu(x) and (Vn,€p )ni*Sp).
Now p=U {p.| xesupp(u)} is a collection of ¢,-open fuzzy sets such
that () {n[nep}=n and (Vnep)n”<cp)

Conversely, let x eS(X) and peNy(x,, ¢,0F(X)). By the given
conditions, we have that there exists a collection {n,| jeJ} < ¢ OF(X)
such that J {#;| jeJ} =u and (Vje J)(n?* < ). Thus, (3j,€J)(x,q1, and
ne< ). Hence (X, 1) is @ ».FR,.

Remark 5.15. The above theorem implies that the concepts of ¢, ,.FR,

(with ¢, = int and ¢, = ¢/) and F-regularity due to Hutton and Reilly [13]
are equivalent.

THEOREM 5.16. If (X, 1) is @, ,.FR, (resp. @, ,.F*R,), then (Vuel”)
(¢ 5.cl(u) is @, ,-closed).

Proof. Let x, & ¢, ,.cl(u). Then (Ine No(x,, ¢, OF(X))(n”qu). By
Lemma 4.9, we have ngo, ,.cl(i). Because (X, 7) is ¢, ,.FR,, we obtain
(3peNylx,, o, OF(X))Np®*<n) and hence p?qq, ,.cl(n) implies that

X, & @, 2.cl(@, 5.cl(p)). Thus ¢, ;,.cl(@, ,.cl(p)) < (¢, ,.cl(1)) and hence
@ 2-cl(p) is @ ,-closed.

6. Fuzzy TOPOLOGIZING WITH ¢-REGULAR OPERATIONS

In this section we will focus on a special choice for one of the operations.
More specifically we will dwell upon thg choice ¢, = int and ¢, denotes an
arbitrary operation. For this special choice we will use the notations 7,
¢.cl, and ¢.int, instead of 7,,,, ¢, ,.cl, and @, ,.int. Of course all of the
results of the previous sections still hold for this special choice. We will
now outline some interesting new properties for this special choice.

LEMMA 6.1. Let (X, 1) be a fts and uel”. Then:
(i) wet, iff (Vx, e S(X))Vne No(x,, 1))n’qu=>x,< p).
(i) pert, iff (Vx, e S(X)Nx.qu=>(Ine Ny(x,, 1))(n* < p)).

Proof. The statements are immediate consequences of Definition 4.5
and Theorem 4.11.
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LEMMA 6.2, Let pel”® and {n,|jeJ}=1¥ such that (NjeJ)n, < p).
Then n= U[E./ '11' lﬂ‘ (V’C:ql‘)(aje J)(Y[qr’,)

PROPOSITION 6.3. Let (X, 1) be a fts and ueI*. Then:

(1) wper, iff there exists a family {n,;| jeJ} <=t such that

u=U m=U n
jed jed

(i) per, iff u=U {nlnerand n®<yj.

Proof. (i) If u=gy, take J=@. So let uet\{F}; then (Vx,gu)
(I, et) (x,qn,Sn% S u). By construction the families {n, | x,qu} and
{n¢ | x.qu} satisfy the condition of Lemma6.3; so u=U, "=

Uvgu (1%
Conversely, if J=¢J, then u=Je1,; so let J#. If x gu, then

obviously (3je J)(x.qn, < n; < p) which implies that pez,,.
(it) This is an immediate consequence of (i).

COROLLARY 6.4. The fixpoints of ¢ all belong to 1, ie, (Vuel")
(W=p=uer,).

DerFINITION 6.5. Let (X, 7T) be an ordinary topological space and
@€ Oy r,. Associated with the induced fuzzy topology w(T) we define the

mapping
wm:w(T)—»IXas(vﬂean7v)(u¢“= U (zrxhﬂ”n>.

O <2< hgtis)
LEMMA 6.6. The mapping ¢, is an operation on (X, w(T)).

LemMma 6.7. Let (X, T) be an ordinary topological space and (X, w(T))
its induced fts, o€ Oy ) and ¢, € Oy ., as defined in 6.6. Then:
(1) (VUe D) o= (1))
(i) (WUeT(xn 1)) =201,
(iii) ¢ is regular iff ¢, is g-regular.
Proof. Parts (i) and (ii) follow immediately from Definition 6.5.

(1) Let u, pew(T) such that x q(unp). Then (Vae [0, (unp)x)])
(z,p;€T and xeu,np,). Since ¢ is regular, we obtain (3UeT)
(xeU and U< (u,)?n(p,)%). Put n=({1 —e+ punp(x))/2)~ 1. Then
neNy(x.)na(T). Moreover, %= ((1—e+punp(x))/2) N 1. S pu? np®.
Thus, ¢, is g-regular.
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Conversely, let A, Be T such that xe AnB. Then 1,, I,ew(T) and
x.q(1 4N 1g). Since ¢,, is g-regular, we have (3ue Ny(x,, w(T))) such that
u? < (1,)% v (15)°. Hence (o € [0, u(x)[)(x € p; S (u,)? = A° n B?).
Thus ¢ is regular.

THEOREM 6.8. Letr (X, T) be an ordinary topological space and
@€ 0y ). Then o(T,) = (o(T)),, .

Proof. Let pew(T,) and x,gu. Then (Voe[O, u(x)[NxepueT,).
Hence (3UeTHxeU<=(U)?<=yu,). Put ((1 —e+ u(x))/2)n1,. Then
€ No(x,;) 0 o(T). Moreover, n® = ((1 —e+ pu(x))/2) n 1o & pu. Thus
e (@(T),,.

Conversely, let ue (w(T)),,,. Then by Proposition 6.3(i), there exists a
family {n,|jeJ} S (T) such that u=U, , n;=U,., n/" Hence, using
the representation theorem and Definition 6.5, we may write

=U (U @rtg))=U (U @ntgm)
jed NO<ax<hgin) jed NO< a<hgrn)
Then by Lemma 4.2(i) of [11], we have

(Vay & [0, 1[)(ui0= U (Um %)a): U (U “”f)“’w»'

jeJ JjeJ Na<ap

From (4,),€ T, then u, e T, and hence pe o(T,).

The following Lemmas 6.9 and 6.10 and Theorem 6.12 generalize
Lemmas 4.1 and 4.2 and Theorem 4.3 of Geping and Lanfang [11], while
Lemma 6.10 generalizes the corresponding result of Lowen [21].

LEMMA 6.9. Let (X, T) be a topological space, €O x 1, pel”, and
A S X. The following statements hold:
() wel@(T),, < (Vae[0, 1)(ueT,).
(i) pe((w(T)),,) < (Vae ]0, 1])(u, e T,))
(i) AeT,<1,e(w(T)),..
(iv) Ae(T,)<1,e((u(T)),,)-

LEMMA 6.10. Let (X, T) be an ordinary topological space, ¢ € O 1),
puel*, Ac X, and a€ [0, 1[. Then:
(1) @,.cl(L)=1, 44
(1) @u.int(1)=1, 4
(i) @,.clanp)=2ne@,.clu)
(iv) o,.in{lanp)=a2n g, inl(p).
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Proof. As an example we prove (i) and (iii). Let x, = ¢,,.cl(1 ). Then
(Vne Ng(x,, o(T))}n*ql ) and hence (Yoe [0, u(x)[xen, and n¢n
A#J). From n;eT, xep.cl(A) and hence x, &1, 4,

Conversely, let x, =1, ,,,- Then xe¢.cl(4) and hence (VU e N(x, T))
(U?nA#). Then (Ve>0)(1,eNy(x, o(T)) and 1,,91,). From
1,.={1.)%, we have x, < ¢,,.cl(1 ).

(iii) x, & @,.cll@np) < (Vn € No(x,, o(T))n®q(znu)) < (¥n
No(x., o(T)))n®qa and n?qu) < (x,Sa and x, S @,,.cl(u)) <= (x,S2n
@.,-clp)).

LEMMA 6.11. Let (X, T) be an ordinary topological space, and peI*.
The following statements hold.

(1) (P(U'C[(UO$1<hgl(;l) (gtr‘\ ]#&)) = U0<x<hgt(y) (g a l(p.('l(;:i))'
(“) (»D«JJ'in’(U0<1<hgr(y) (th lui)) = U0<x<hgl(u) (g N lw.ml(/-li')'

Proof. Let’s prove the first equality. Since ¢,.c/ is monotonous, we
have

U ®.,.cllan I,,,)E(p{,,.cl( U (xn lm)>.
O x< hgr(pu) 0 x < hgtiy)

SO, let X, & ¢(U'C1(U0<a<hgr(u)(g n lu,-))' Then (vr’ € NQ(xf:aw(T)))
(¢ Uo<cxengm (@0 1,)). Then we obtain (Ja e [0, hgt(u)[)
(n®q(2n1,)) and hence (Jxe [0, hgt(x)[)(x. =@, .cllanl,)) which
implies that x, € U<, < nertyy @w-cllannl ).

THEOREM 6.12. Let (X, w(T)) be an induced fts and pel”. The
following relations hold:

(1) (chl(ﬂ) = Uos x < hgt(y) (g M ltp_(‘ﬂyi)) = UOs a < hgt{u) (g M 1(47.(”(/‘1))'
(") (Pm-im(l‘) = Uosa < hgt(u) (g a l(P,in’(}lﬁ)) = U0<a<hg1(y) (g N lem(p,))'
Proof. (i) This is immediate from the decomposition theorem and
Lemma 6.11(1).

(ii) This is immediate from the decomposition theorem and
Lemma 6.11(ii).

Remark 6.13. If we put appropriate operations for ¢ and ¢, in all of
the above results, then we obtain the corresponding results for open,
#-open, and é-open fuzzy sets [3, 4, 10-12, 15, 16, 21, 25, 27, 28].

THEOREM 6.14. Let (X, T) be an ordinary topological space and
©0€0 1. Then (X, T) is ¢.T, (resp. 0. T,) iff (X, (T)) is @, .FT, (resp.
(‘D(”.FTZ )
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Proof. Let x,, v,eS(X) and x# y. Then (3Ue N(x, T)}(3VeN(y, T))
(U V?=¢F). This implies that 1,e Ny(x,, o(T)), 1peNy(y,, w(T)),
and 1,,n1,.,=¢. By Lemma 6.7(ii), we have (1,)* ~(1,)% = . Thus
(X, (1)) is @,,.FT,.

Conversely, let x, yeX and x#y. Then (Gue N, (x,,w(T)))(Ine
No(yi, (TN nn® = ). One can easily see that (Va, e [0, u(x)[)
(Voo e [0, n(y)[ Nxepn, €T, yen,eT and (u,)"n(n,)" =) Thus
(X, T)is ¢.T5.

THEOREM 6.15. Let (X, T) be an ordinary topological space and
@O x 1. Then (X, T) is ¢.R, iff (X, w(T)) is ¢,,.FR;.

Proof. Let x,eS(X) and pueN,(x,, o(T)). Then (Yxe [0, u(x)[)
(xep;eT). Since (X,T) is ¢.R,, we have (3UeN(x, )U?<=pu,).
Put n=((1 —e+u(x))/2)n 1. Then ne Ny(x,, w(T)). Moreover, n* =
(1 —e+ u(x))/2)n 1 o= pu Thus we have (X, w(T)) is ¢,,.FR,.

Conversely, let xeX and UeT with xeU. Then x,ql,ew(T).
Hence (Ine Ny(x,, o(T)))(n"" < 1,,). Then (Vae [0, u(x)[Mxen,eT and
()< U). Thus (X, T)is ¢.R,.
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