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SUMMARY

Cyclic AMP (cAMP) and Ca2+ are key regulators of
exocytosis in many cells, including insulin-secreting
b cells. Glucose-stimulated insulin secretion from
b cells is pulsatile and involves oscillations of the cy-
toplasmic Ca2+ concentration ([Ca2+]i), but little is
known about the detailed kinetics of cAMP signaling.
Using evanescent-wave fluorescence imaging we
found that glucose induces pronounced oscillations
of cAMP in the submembrane space of single MIN6
cells and primary mouse b cells. These oscillations
were preceded and enhanced by elevations of
[Ca2+]i. However, conditions raising cytoplasmic
ATP could trigger cAMP elevations without accom-
panying [Ca2+]i rise, indicating that adenylyl cyclase
activity may be controlled also by the substrate
concentration. The cAMP oscillations correlated
with pulsatile insulin release. Whereas elevation of
cAMP enhanced secretion, inhibition of adenylyl
cyclases suppressed both cAMP oscillations and
pulsatile insulin release. We conclude that cell meta-
bolism directly controls cAMP and that glucose-
induced cAMP oscillations regulate the magnitude
and kinetics of insulin exocytosis.

INTRODUCTION

Glucose is the main physiological stimulus for insulin secretion

from pancreatic b cells. The stimulus-secretion coupling involves

metabolism of the sugar, which leads to increase of the cytoplas-

mic ATP/ADP ratio and closure of ATP-sensitive K+ (KATP) chan-

nels in the plasma membrane. The resulting depolarization trig-

gers influx of Ca2+ through voltage-dependent Ca2+ channels

and exocytosis of insulin secretory granules (Henquin, 2000).

The glucose-induced depolarization and Ca2+ influx are periodic,

and the ensuing oscillations of the cytoplasmic Ca2+ concentra-

tion ([Ca2+]i) result in pulsatile insulin release (Gilon et al., 1993;

Bergsten et al., 1994). In isolated b cells, the dominating [Ca2+]i
oscillation frequency is 0.1–0.5 min�1, but faster (2–6 min�1)

oscillations and mixed patterns also occur, especially in b cells

located in islets of Langerhans (Valdeolmillos et al., 1989; Liu
26 Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc.
et al., 1998). Glucose stimulates insulin secretion also at steps

distal to the elevation of [Ca2+]i (Henquin, 2000). The mecha-

nisms underlying this effect are unclear, but may involve changes

in the ATP/ADP ratio. Although glucose-induced [Ca2+]i oscilla-

tions trigger pulsatile insulin release, secretion remains pulsatile

also when [Ca2+]i is stable (Westerlund et al., 1997). Thus, apart

from Ca2+, other factors controlling secretion can be expected to

oscillate in b cells. There is evidence that metabolism oscillates

in parallel with [Ca2+]i in b cells. For example, [Ca2+]i oscillations

correlating with those of glucose and oxygen consumption,

NAD(P)H and glucose-6-phosphate concentration, as well as

the ATP/ADP ratio, have been recorded in isolated islets of Lang-

erhans and suspensions of islet cells (Longo et al., 1991; Nilsson

et al., 1996; Jung et al., 2000; Luciani et al., 2006).

Cyclic AMP (cAMP) is another critical messenger for insulin

release (Hellman et al., 1974; Wollheim and Sharp, 1981; Schuit

and Pipeleers, 1985; Prentki and Matschinsky, 1987), and the

nucleotide potently enhances Ca2+ signals and exocytosis

both via protein kinase A (PKA)-dependent and -independent

mechanisms (Ämmälä et al., 1993; Renström et al., 1997;

Takahashi et al., 1999; Eliasson et al., 2003; Dyachok and Gylfe,

2004; Seino and Shibasaki, 2005). Glucose was found to cause

elevation of cAMP in b cells (Charles et al., 1973; Grill and Cerasi,

1973). However, since the reported effects were modest

(Charles et al., 1973; Hellman et al., 1974; Schuit and Pipeleers,

1985), and cAMP alone is a poor trigger of insulin secretion

(Hellman et al., 1974; Wollheim and Sharp, 1981; Prentki and

Matschinsky, 1987), a view has emerged that cAMP is of minor

importance for glucose-induced insulin secretion. Instead,

cAMP is regarded to mediate the amplification of insulin secre-

tion by glucagon and incretin hormones, such as glucagon-like

peptide-1 (GLP-1). Glucose potently amplifies the hormone-

induced elevations of cAMP, an effect proposed to be mediated

by the elevation of [Ca2+]i (Delmeire et al., 2003). In contrast to

[Ca2+]i signaling, which has been extensively characterized, little

is known about the spatiotemporal kinetics of cAMP. Using

a fluorescence resonance energy transfer biosensor, glucose

was recently found to trigger concurrent cAMP and [Ca2+]i eleva-

tion in individual MIN6 b cells (Landa et al., 2005). We recently

developed an evanescent-wave microscopy technique for real-

time recordings of the cAMP concentration beneath the plasma

membrane ([cAMP]i) of individual cells (Dyachok et al., 2006) and

found that stimulation of insulin-secreting cells with GLP-1 trig-

gers pronounced oscillations of [cAMP]i that were coordinated
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Figure 1. Glucose Triggers [cAMP]i Oscillations in b Cells

(A) Evanescent-wave microscopy recording of DRIIb-CFP-CAAX (blue) and Ca-YFP (yellow) fluorescence from a MIN6 b cell during elevation of the glucose

concentration from 3 to 11 mM. The prestimulatory CFP/YFP ratio was normalized to unity. Pseudocolor ratio images are from the time points indicated by

numbered arrowheads, and the region of interest is encircled by a dashed line.

(B) Glucose-induced [cAMP]i oscillations in a single mouse pancreatic b cell. The response is inhibited by 5 mM adrenaline.

(C and D) Inhibition of [cAMP]i oscillations in MIN6 cells by 3 mM noradrenaline (C) and 50 mM 2050-dideoxyadenosine (DDA) (D).
with elevations of [Ca2+]i. Using this method in combination with

single-cell recordings of insulin release, we now investigated the

kinetics of glucose-induced [cAMP]i signaling in b cells and

whether this messenger partakes in the dynamic pacing of

insulin secretion.

RESULTS

Glucose Triggers Oscillations of [cAMP]i

Mouse-derived MIN6 b cells were transfected with a fluorescent-

translocation biosensor comprised of a truncated and mem-

brane-anchored PKA regulatory subunit tagged with cyan-fluo-

rescent protein (DRIIb-CFP-CAAX), and a catalytic subunit

labeled with yellow-fluorescent protein (Ca-YFP) (Dyachok

et al., 2006). Holoenzyme dissociation caused by elevation of

[cAMP]i results in translocation of Ca-YFP to the cytoplasm,

recorded with evanescent-wave microscopy as selective loss

of YFP fluorescence with rise of the CFP/YFP-fluorescence ratio

(Figure 1A).

When the glucose concentration was raised from 3 to 11 mM,

there was a temporary decrease of [cAMP]i (D ratio = 0.043 ±

0.006, p < 0.001, n = 28) followed after some delay (3.54 ±

0.23 min, n = 28) by a rapid rise (t1/2 = 0.63 ± 0.17 min, n = 28)

and pronounced oscillations (Figure 1A). The oscillatory pattern

varied among cells with frequencies in the 0.07–1.8 min�1 range

and amplitudes from 0.13 to 2.4 ratio units. The nadirs between

oscillations often did not reach the baseline (Figures 1D, 2A, and

2B), but after lowering of the glucose concentration, the ratio
quickly returned to the prestimulatory level (Figure 1A). Restimu-

lation with the same glucose concentration resulted in a similar

average response (100% ± 25% of first response, n = 11; data

not shown). Oscillatory responses were also observed after ele-

vation of the glucose concentration from 3 to 20 mM (n = 34, data

not shown). Primary mouse pancreatic b cells infected with

adenoviruses encoding the cAMP biosensor reacted similarly

with pronounced [cAMP]i oscillations in response to glucose

stimulation (n = 18; Figures 1B and 2C; frequencies 0.10–0.63

min�1, amplitudes 0.09–0.98 ratio units). The glucose-induced

[cAMP]i oscillations in mouse b cells were abolished by 5 mM

adrenaline (n = 15, Figure 1B), consistent with a2-adrenergic

suppression of adenylyl cyclase activity in b cells (Schuit and

Pipeleers, 1986). A similar effect was observed in MIN6 cells

exposed to 3 mM adrenaline (n = 9, data not shown) or noradren-

aline (n = 6; Figure 1C), or to 50 mM of the adenylyl cyclase inhibitor

20,50-dideoxyadenosine (DDA, n = 8; Figure 1D).

Ca2+ Amplifies, but Is Not Essential, for Glucose-
Induced Oscillations of [cAMP]i

Like primary b cells from rodents and humans (Hellman et al.,

1994), most MIN6 cells respond to glucose with a small initial

lowering of [Ca2+]i, followed by a pronounced increase with oscil-

lations due to periodic depolarization and influx of Ca2+ through

voltage-dependent channels (See Figure S1 in the Supplemental

Data). Since the glucose-induced [cAMP]i response resembled

that of [Ca2+]i, which has been proposed to play an important

role in b cell generation and degradation of cAMP (Sharp,
Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc. 27
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Figure 2. Glucose-Induced [cAMP]i Oscillations Are Amplified by Ca2+ but Are Not Tightly Linked to Changes in [Ca2+]i

(A and B) Evanescent-wave microscopy recordings of glucose-induced changes of [cAMP]i in MIN6 b cells when Ca2+ influx was prevented with 50 mM methox-

yverapamil (A) or by Ca2+ removal and addition of 2 mM EGTA (B).

(C) Effect of Ca2+-deficient medium on glucose-induced [cAMP]i oscillations in a single mouse pancreatic b cell.

(D and E) Simultaneous recording of [cAMP]i (black) and [Ca2+]i (red) in fura-2-loaded MIN6 b cells during elevation of the glucose concentration from 3 to 11 mM.

(D) shows that [cAMP]i increases before [Ca2+]i, during initial stimulation, and after [Ca2+]i during subsequent oscillations. (E) shows that [Ca2+]i rises before

[cAMP]i during initial stimulation and that subsequent [cAMP]i oscillations occur without associated changes of [Ca2+]i. The data were subjected to sliding-

window crosscorrelation analysis. Correlation was calculated from consecutive pairs of data segments of 100 s duration and shifted 2 s in time in relation to

the previous segment. Two-dimensional crosscorrelograms (colored areas) were constructed from consecutive one-dimensional crosscorrelations with time

on the x axis, the time lag of the correlation on the y axis, and the normalized crosscorrelation amplitude coded in color. Bottom traces show one-dimensional

crosscorrelograms at the time points indicated by the vertical lines. For clarity, the crosscorrelation amplitude is shown both numerically on the y axis and using

the same color code as in the two-dimensional presentation. It is apparent that there is a high correlation during the initial [cAMP]i and [Ca2+]i elevations (panel D,
28 Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc.
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1979; Prentki and Matschinsky, 1987; Delmeire et al., 2003;

Landa et al., 2005), we investigated the Ca2+ dependence of

glucose-induced [cAMP]i signaling. Consistent with regulation

being at least partially independent of Ca2+, the glucose-induced

[cAMP]i oscillations in MIN6 cells often persisted, albeit signifi-

cantly suppressed, in the presence of the voltage-dependent

Ca2+-channel inhibitor methoxyverapamil (50 mM, average ratio

41% ± 6% of the control level with glucose alone, n = 9, p <

0.001; Figure 2A) or in Ca2+-deficient medium containing 2 mM

EGTA (ethyleneglycol-bis(b-aminoethyl)-N,N,N0,N0-tetraacetic

acid) (24% ± 7% of control, n = 5, p < 0.001; Figure 2B). Also,

in primary mouse b cells, the [cAMP]i oscillations were signifi-

cantly suppressed—but not completely abolished—by Ca2+

removal (n = 6, average ratio 24% ± 8% of control; Figure 2C).

Simultaneous measurements of [cAMP]i and [Ca2+]i in trans-

fected MIN6 cells loaded with the fluorescent indicator fura-2

demonstrated that [cAMP]i and [Ca2+]i oscillations were synchro-

nized (Figure 2D). The temporal relationship was somewhat vari-

able, with [cAMP]i sometimes increasing before (8 out of 84 cells;

Figures 2D and 2F) but more often after (76 of 84 cells, Figures 2E

and 2F) the initial glucose-induced rise of [Ca2+]i. During subse-

quent oscillations, [cAMP]i always increased after [Ca2+]i (Fig-

ures 2D and 2F) with a time difference of 40 ± 4 s (n = 54, range

2.5–103 s; Figure 2F) between half-maximal elevations. Interest-

ingly, 38 out of 60 cells showed [cAMP]i oscillations without

tightly associated changes in [Ca2+]i. Figure 2E shows a recording

from a cell with slow oscillations of [cAMP]i without correspond-

ing slow oscillatory changes in [Ca2+]i, although two of the

[cAMP]i oscillations were preceded by brief [Ca2+]i spikes. The

temporal coordination and phase relationship between [Ca2+]i
and [cAMP]i signals were confirmed by crosscorrelation analysis

(Figures 2D and 2E). To test if the dissociation between the cAMP

and Ca2+ signals was due to the epifluorescence [Ca2+]i mea-

surements with fura-2 being performed in a larger cell volume

than the evanescent-wave microscopy recordings of [cAMP]i,

we performed simultaneous evanescent-wave recordings of

[Ca2+]i and [cAMP]i. To this end, the cells were transfected with

a cAMP indicator based on a Ca-CFP construct and a DRIIb-

CAAX regulatory subunit lacking fluorescence tag to avoid spec-

tral overlap with the Ca2+-indicator Fura Red. With this approach

the glucose-induced [cAMP]i elevation occurred before the initial

rise of [Ca2+]i in 4 of 10 cells (time difference: 6–81 s) and after

[Ca2+]i in the remaining 6 cells (time difference: 9–320 s, Fig-

ure S2). As in the fura-2 measurements, [cAMP]i always in-

creased after [Ca2+]i during subsequent oscillations (7–162 s,

n = 8). Together, these findings indicate that Ca2+ amplifies but

is not essential for glucose-induced rise of [cAMP]i. The initial

reduction of [cAMP]i may reflect lowering of [Ca2+]i (Chow

et al., 1995) below a permissive level for basal cAMP production.

cAMP Production Is Directly Stimulated by Cell
Metabolism
There is evidence that b cell metabolism is oscillatory and that

these oscillations may underlie those of [Ca2+]i (Longo et al.,
1991; Nilsson et al., 1996; Jung et al., 2000). We next aimed to

clarify whether variations in metabolism are also involved in the

generation of [cAMP]i oscillations. In MIN6 cells hyperpolarized

with 250 mM of the KATP channel-opener diazoxide, elevation

of glucose from 3 to 11 or 20 mM failed to raise [cAMP]i. In con-

trast, when [Ca2+]i was allowed to increase upon removal of diaz-

oxide, there was a rapid and pronounced elevation of [cAMP]i
(25% ± 6% increase of average ratio, n = 5, p < 0.02;

Figure 3A). Depolarization with 30 mM K+ in the presence of 3

mM glucose and 250 mM diazoxide caused a prompt but modest

elevation of [cAMP]i (9.4% ± 1.3% increase of average ratio, n = 7,

p < 0.001) that was reversed upon normalization of the K+ con-

centration (Figure 3B). This response was much enhanced when

the cells were restimulated in the presence of 11 mM glucose

(2.5 ± 0.4-fold, n = 6, p < 0.02; Figure 3B). Likewise, when the glu-

cose concentration was elevated from 3 to 11 mM during depolar-

ization with 30 mM K+ in the presence of diazoxide, there was

a pronounced rise of [cAMP]i (2.1 ± 0.3-fold the response to

depolarization alone, n = 11, p < 0.01), often with superimposed

oscillations (Figure 3C; frequency = 0.19 ± 0.02 min�1, n = 8).

Similar data were obtained from mouse pancreatic b cells with

a small K+-induced elevation of [cAMP]i that was markedly en-

hanced by elevation of glucose from 3 to 11 mM in the presence

of diazoxide (Figure 3D, n = 6). Under these depolarizing condi-

tions, adrenaline (3–5 mM) immediately lowered [cAMP]i to base-

line both in primary mouse b cells (Figure 3D) and clonal MIN6

cells (data not shown). This finding demonstrates that the inhib-

itory effect of adrenaline on cAMP production is not secondary

to its hyperpolarizing action (Santana de Sa et al., 1983). We

also tested the effect of a-ketoisokaproic acid (KIC), an insulin

secretagogue that stimulates ATP production by b cell mito-

chondria (Lembert and Idahl, 1998). When added to depolarized

MIN6 cells, 2 mM KIC induced a marked but transient increase

in [cAMP]i (2.6 ± 0.6-fold the response to depolarization alone,

n = 6, p < 0.05; Figure 3E). These effects of glucose and KIC

on [cAMP]i were not paralleled by increases of [Ca2+]i. Instead,

elevation of glucose or addition of KIC induced transient lower-

ing of [Ca2+]i from the levels obtained by K+ depolarization

(Figure S1). Consistent with mitochondrial metabolism being es-

sential for the nutrient-induced elevation of [cAMP]i, the effect of

glucose was promptly reversed by 0.1–1 mM of the uncoupler

FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone,

n = 5; Figure 3F). Our data thus confirm observations that eleva-

tion of [Ca2+]i is sufficient to trigger rise of [cAMP]i in b cells

(Landa et al., 2005). However, we also show that stimulation of

metabolism is a potent trigger of cAMP production in b cells

with elevated [Ca2+]i.

To test whether ATP, the substrate for adenylyl cyclases, may

be the mediator of the metabolically stimulated adenylyl cyclase

activity, we investigated the effect of a sudden suppression of

cellular ATP consumption by ouabain inhibition of the Na+/K+-

ATPase. Ouabain has previously been found to suppress KATP

channel activity in b cells by increasing the ATP concentration

beneath the plasma membrane (Grapengiesser et al., 1993).
line b; panel E, line b) and during subsequent oscillations in panel D (lines c and d). In contrast, correlation is low during the prestimulatory phase (panel D, line a;

panel E, line a) and when [cAMP]i shows slow oscillations while [Ca2+]i does not (panel E, lines c and d).

(F) Distribution of time differences between the half-maximal rise of [Ca2+]i and [cAMP]i during the initial glucose response and subsequent oscillations shown in

histograms with 5 s intervals.
Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc. 29
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Figure 3. Stimulation of Metabolism Triggers cAMP Formation in the Presence of Elevated [Ca2+]i

(A) Elevation of the glucose concentration from 3 to 20 mM fails to raise [cAMP]i in MIN6 b cells hyperpolarized with diazoxide (dz).

(B) [cAMP]i elevation triggered by membrane depolarization with 30 mM K+ in the presence of 250 mM diazoxide is enhanced by increase of the glucose concen-

tration from 3 to 11 mM.

(C and D) Elevation of the glucose concentration from 3 to 11 mM triggers pronounced [cAMP]i elevation with oscillations in MIN6 cells (C), and mouse pancreatic

b cells (D) depolarized with 30 mM K+ in the presence of 250 mM diazoxide. This response is counteracted by 5 mM adrenaline (D).

(E) Stimulation of [cAMP]i elevation by 2 mM KIC in depolarized MIN6 b cells.

(F) The [cAMP]i elevation in depolarized MIN6 cells exposed to 11 mM glucose is suppressed by 1 mM of the mitochondrial uncoupler FCCP.
When added to MIN6 cells depolarized with KCl in the presence

of diazoxide, ouabain was now found to raise [cAMP]i (9.0% ±

1.7% increase of the average ratio, n = 6, p < 0.01) without ap-

parent effects on [Ca2+]i (Figures 4A and 4B). More direct sup-

port for the involvement of ATP as a regulator of cAMP produc-

tion came from experiments on MIN6 cells permeabilized with

staphylococcal a-toxin. As shown in Figure 4C, elevation of

the ATP concentration from 1 to 4 mM caused a significant

and reversible elevation of [cAMP]i (7.5% ± 1.7% increase of av-

erage ratio, n = 8, p < 0.01), which was further increased by

16% ± 4% (n = 4, p < 0.05) after addition of 50 mM forskolin and

100 mM of 3-isobutyl-1-methylxanthine (IBMX). These relatively

poor cAMP responses are likely due to washout of cAMP from

the permeabilized cells.

[cAMP]i Oscillations Regulate Pulsatile Insulin Release
To investigate whether the glucose-induced oscillations of

[cAMP]i are important for the kinetics of insulin release, the

time course of secretion was recorded from individual cells by

real-time monitoring of the autocrine activation of insulin recep-
30 Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc.
tors. We recently found that insulin release from isolated b cells

results in strong autocrine activation of phosphoinositide 3-OH-

kinase (PI3-kinase), and that the PI3-kinase-induced formation

of phosphatidylinositol-3,4,5-trisphosphate (PIP3) can be moni-

tored with evanescent-wave microscopy as membrane trans-

location of fluorescent protein-tagged PIP3-binding protein

domains (Idevall-Hagren and Tengholm, 2006). The validity of this

method was further substantiated by relating the formation of

PIP3 to evanescent-wave microscopy imaging of the plasma-

membrane insertion of fluorescence-tagged insulin secretory

vesicles. PIP3 was measured with the CFP-tagged pleckstrin

homology domain (PH domain) from protein kinase B/Akt (Haugh

et al., 2000), and granules were monitored with YFP fused to the

vesicle membrane protein 2 (VAMP2). The fluorescence-tagged

VAMP2 approach has been extensively used to monitor exocy-

tosis in different types of cells, including insulin-secreting cells

(Tsuboi and Rutter, 2003). MIN6 cells expressing the reporter

constructs reacted to membrane depolarization (30 mM KCl)

with prompt incorporation of VAMP2-YFP in the plasma mem-

brane (26% ± 4% increase of overall YFP fluorescence in the



Cell Metabolism

Glucose-Induced cAMP Oscillations in b Cells
membrane), followed after a 12 ± 3 s delay by elevation of PIP3

(59% ± 7% rise of CFP fluorescence, n = 14; Figure 5A). Similar

responses were seen when repeating the depolarizations after

5–10 min delays. This finding is consistent with a tight link be-

tween exocytosis of insulin granules and autocrine activation

of insulin receptors. In subsequent experiments, we transfected

cells with the ‘‘general receptor for phosphoinositides-1’’ fused

to a construct with four copies of GFP (GFP4-GRP1). Compared

to previously used constructs, this biosensor provides improved

response by its brighter fluorescence and nuclear exclusion.

Elevation of the glucose concentration from 3 to 11 mM triggered

a rise of evanescent wave-excited GFP4-GRP1 fluorescence

(161% ± 14%, n = 39) with pronounced oscillations from a level

slightly above baseline (frequency = 0.22 ± 0.01 min�1; Figures

5B–5D, and 6). Inhibition of the insulin receptor tyrosine kinase

with 200 mM hydroxy-2-naphthalenylmethylphosphonic acid

tris-acetoxymethyl ester (HNMPA-AM3, n = 7), or of PI3-kinase

with 100 mM LY294002 (n = 10), suppressed the fluorescence

signal to the baseline (Figures 5B and 5C). Moreover, insulin-

Figure 4. Increase of [cAMP]i by Elevation of ATP Concentration

(A) Inhibition of the ATP-consuming Na+/K+-ATPase with 1 mM ouabain

triggers elevation of [cAMP]i in MIN6 b cells depolarized with 30 mM K+ in

the presence of 250 mM diazoxide.

(B) The same treatment had no effect on [Ca2+]i recorded with epifluorescence

microscopy in a single MIN6 b cell loaded with fura-2.

(C) Stimulation of cAMP formation by elevation of the ATP concentration from 1

to 4 mM and addition of 50 mM forskolin and 100 mM IBMX in a MIN6 b cell

permeabilized with a-toxin.
receptor antibodies prevented the glucose-induced GFP4-

GRP1 fluorescence response (Figures 5D and 5E). When insulin

secretion was inhibited by preventing voltage-dependent Ca2+

influx with methoxyverapamil (n = 15) or Ca2+-deficient medium

(n = 21), there was also an immediate reversal of the GFP4-GRP1

signal to the prestimulatory level (Figures 6A and 6B). In contrast,

elevation of [cAMP]i by addition of 100 mM of IBMX or 10 mM of

the adenylyl cyclase activator forskolin induced a prompt rise

of the PIP3 signal followed by stable elevation or oscillations, of-

ten with increased amplitude (Figures 6C and 6E). Time-average

PIP3 elevation was markedly increased in the presence of IBMX

or forskolin (Figure 6E), reinforcing the importance of cAMP for

controlling the magnitude of insulin secretion. Consistent with

a key role of [cAMP]i oscillations for pulsatile insulin release,

the adenylyl cyclase inhibitor DDA (50 mM) markedly suppressed

or even abolished the glucose-induced oscillations of PIP3 (aver-

age PIP3 elevation = 45% ± 5% of control, n = 30, p < 0.001; Fig-

ures 6D and 6E), without effect on those of [Ca2+]i (Figure S3).

Control experiments showed that changes of [cAMP]i had little

effects on the insulin-induced PI3-kinase activity (Figure S3).

For simultaneous measurements of [cAMP]i and PIP3, we used

alternative biosensors that could be combined without spectral

interference. [cAMP]i measurements were made with the PKA

catalytic Ca-YFP construct combined with the DRIIb-CAAX reg-

ulatory subunit lacking fluorescent-protein tag. This allowed PIP3

to be measured with CFP fused to the PH domain from protein

kinase B/Akt. The recordings revealed coordinated oscillations

of [cAMP]i and insulin secretion (Figure 6F). Each oscillation of

PIP3 was preceded by rise of [cAMP]i by 16 ± 4 s (n = 37,

Figure 6G), and there was a linear correlation between the ampli-

tudes of [cAMP]i and PIP3 oscillations (r = 0.687–0.998, p < 0.01,

n = 9 cells; Figure 6H). Together, these findings indicate that

glucose-induced pulsatile insulin release is determined by

coordinated oscillations of [Ca2+]i and [cAMP]i.

DISCUSSION

cAMP is a key regulator of exocytosis in many cells and has long

been known as a potent amplifier of insulin secretion (Hellman

et al., 1974; Sharp, 1979; Prentki and Matschinsky, 1987). Never-

theless, it has not been clear to what extent changes in cAMP

take part in glucose-induced insulin secretion from pancreatic

b cells. In the present study, we took advantage of a new tech-

nique for single-cell measurements of the cAMP concentration

beneath the plasma membrane (Dyachok et al., 2006) and

show that glucose alone triggers a marked elevation of [cAMP]i
with oscillations in both clonal insulin-secreting MIN6 cells and

primary mouse pancreatic b cells. Moreover, coordination of glu-

cose-induced [cAMP]i and [Ca2+]i oscillations was required for

optimal amplitude of pulsatile insulin release from single b cells.

The effects of glucose on [cAMP]i may have been underestimated

in previous studies using traditional biochemical detection of

cAMP (Charles et al., 1973; Hellman et al., 1974) (Schuit and Pi-

peleers, 1985) because the time-average cAMP concentration

is lower than the peaks reached during oscillations. Another pos-

sibility is that the cAMP concentration is lower in the bulk cyto-

plasm than in the vicinity of the adenylyl cyclases beneath the

plasma membrane. The absence of cAMP oscillations in a recent

imaging study of MIN6 cells stimulated with glucose alone (Landa
Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc. 31
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Figure 5. Glucose-Induced Formation of Membrane PIP3 Depends on Activation of Insulin Receptors and PI3-Kinase

(A) Simultaneousevanescent-wave microscopy recording of the PIP3 concentration and insulin granule-membrane protein insertion into the plasma membrane inMIN6

cells. The CFP-tagged PH domain from Akt was used for PIP3 measurements and YFP-tagged VAMP2 as granule marker. The traces show the responses to three

consecutive 90sdepolarizationswith30mM KCl. Imagepairs were acquiredevery0.9s. To minimize exposure to theexcitation light, recordingswere interruptedduring

10 and 5 min, respectively, between the stimulations. Membrane depolarization induces prompt VAMP-YFP membrane insertion, which precedes the elevation of PIP3.

(B and C) Evanescent-wave microscopy recording of plasma membrane PIP3 concentration in single MIN6 b cells expressing the ‘‘general receptor for phosphoinosi-

tides-1’’ fused to a tandem construct with four GFP molecules (GFP4-GRP1). Elevation of the glucose concentration from 3 to 11 mM triggers pronounced translocation

of the reporter to the plasma membrane (increase of fluorescence), reflecting insulin secretion with autocrine activation of insulin receptors. The response is completely

suppressed by 200 mM of the insulin receptor tyrosine kinase inhibitor HNMPA (B) or by 100 mM of the PI3-kinase inhibitor LY294002 (C).

(D) Glucose-induced PIP3 responses of individual MIN6 b cells preincubated 30 min in the presence of anti-insulin receptor (anti-IRa) or control IgG antibodies.

(E) Averages ± SEM. for the initial glucose-induced PIP3 responses (n = 14 [anti-IRa] and 16 [control IgG]).
32 Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc.
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et al., 2005) may be due to the use of a lower-affinity biosensor

reporting cAMP concentration in the entire cytoplasm.

The glucose-induced changes in [cAMP]i resembled those of

[Ca2+]i with a small intitial lowering, followed by a pronounced

rise and slow oscillations with a period of 2–10 min. b cells

express Ca2+-calmodulin-sensitive adenylyl cyclases (Valverde

et al., 1979; Delmeire et al., 2003) and phosphodiesterases

(Pyne and Furman, 2003; Landa et al., 2005), and changes in

[Ca2+]i can therefore be expected to influence cAMP formation

and degradation. Activation of Gs-coupled hormone receptors

(Dyachok et al., 2006) or depolarization with tetraethylammo-

nium (Landa et al., 2005) have previously been found to induce

cAMP oscillations in clonal b cells in a [Ca2+]i-dependent man-

ner. cAMP oscillations secondary to elevations of [Ca2+]i have

also been reported in other types of cells (Gorbunova and Spit-

zer, 2002; Dunn et al., 2006; Willoughby and Cooper, 2006).

The phase relationship between Ca2+ and cAMP signals in insu-

lin-secreting cells seems to differ depending on the conditions.

Whereas cells stimulated with GLP-1 showed synchronous

oscillations of [cAMP]i and [Ca2+]i (Dyachok et al., 2006), tetra-

ethylammonium-induced elevations of [Ca2+]i were associated

with decreases of cAMP (Landa et al., 2005), interpreted as

periodic activation of the Ca2+-sensitive PDE1 family of phos-

phodiesterases. The present data show that glucose-induced

[cAMP]i oscillations were enhanced by Ca2+ and coordinated

with [Ca2+]i oscillations. However, the glucose-induced [cAMP]i
oscillations are not directly driven by the changes in [Ca2+]i.

For example, [cAMP]i oscillations were not completely prevented

even after 30 min in Ca2+-deficient medium. Moreover, in some

cells the initial rise of [cAMP]i preceded that of [Ca2+]i, and

[cAMP]i oscillations occurred also under conditions when

[Ca2+]i showed a stable elevation. The observations that the

glucose-induced [cAMP]i signal is abolished by membrane

hyperpolarization with diazoxide but incompletely suppressed

by preventing Ca2+ influx may possibly indicate that b cells,

like cerebellar granule cells (Reddy et al., 1995), express depo-

larization-sensitive adenylyl cyclases.

The present study demonstrates that cell metabolism is

a strong stimulus for cAMP production when [Ca2+]i is elevated.

Considering the many putative regulatory influences on adenylyl

cyclases and phosphodiesterases, [cAMP]i is likely to be under

dynamic control by multiple factors, some of which may be di-

rectly linked to cell metabolism. ATP seems to be a reasonable

candidate for regulating adenylyl cyclase, since ATP is the

substrate for this enzyme. Although indirect regulation or other

metabolites cannot be excluded, the observations that cAMP

formation was stimulated by acute suppression of ATP con-

sumption with ouabain or by exposing permeabilized cells to mil-

limolar ATP concentrations underscore the importance of ATP as

a regulator of cAMP production. It may be argued that cytoplas-

mic ATP varies relatively little and that physiological concentra-

tions of the nucleotide are higher than the Km of mouse islet

adenylyl cyclases, which have been estimated to be 0.32 mM

in vitro (Davis and Lazarus, 1972). However, also the ATP-sensi-

tive K+ channels (Tarasov et al., 2006; Schulze et al., 2007) and

the sarco(endo)plasmic reticulum Ca2+ ATPases (SERCAs) (Ten-

gholm et al., 1999) are regulated by cytoplasmic ATP although

the in vitro sensitivities to ATP are in the micromolar range. In

the case of the KATP channel, the ATP sensitivity is reduced by
ADP, which can be formed by local ATP hydrolysis (Tarasov

et al., 2006) or phosphotransfer reactions (Schulze et al.,

2007). Metabolism and the ATP/ADP ratio are known to

undergo periodic variations in b cells (Longo et al., 1991; Nilsson

et al., 1996; Jung et al., 2000; Luciani et al., 2006). Our results are

consistent with the idea that such variations underlie the

glucose-induced [cAMP]i oscillations.

cAMP in the submembrane space has important effects on ion

channels and exocytosis of insulin granules (Ämmälä et al., 1993;

Renström et al., 1997; Dyachok and Gylfe, 2004; Seino and

Shibasaki, 2005). Indeed, our results demonstrate that [cAMP]i
oscillations are critical for the magnitude of pulsatile insulin se-

cretion. Direct stimulation of cAMP formation by submembrane

ATP may explain the postpriming effects of ATP on exocytosis,

which has been reported to involve activation of PKA (Takahashi

et al., 1999). Glucose-induced generation of cAMP in b cells

potentiates insulin secretion by sensitizing the exocytosis

machinery, since inhibition of [cAMP]i oscillations markedly

suppressed pulsatile insulin secretion without affecting the un-

derlying [Ca2+]i oscillations. The interplay between Ca2+, ATP,

and cAMP may thus contribute both to the triggering and ampli-

fying pathways of insulin secretion (Henquin, 2000) and help to

explain how insulin secretion from isolated islets can be pulsatile

at stable [Ca2+]i elevation (Westerlund et al., 1997). The direct link

between cell metabolism and a signaling cascade of importance

for insulin secretion, cell growth, differentiation, and survival has

implications for understanding b cell dysfunction with loss of pul-

satile insulin release in type 2 diabetes (Lang et al., 1981). Im-

paired glucose-induced cAMP formation has been reported in

islets from diabetic animal models with reduced insulin secretion

(Rabinovitch et al., 1976; Dachicourt et al., 1996), and cAMP-

elevating agents have been found to ameliorate b cell function

in diabetes (Abdel-Halim et al., 1996; Dachicourt et al., 1996).

A direct coupling of metabolism to the ubiquitous cAMP-signal-

ing cascade may have significance in many types of cells, con-

trolling processes like gene transcription, cytoskeletal dynamics,

cell adhesion, junction formation, ion fluxes, and exocytosis.

EXPERIMENTAL PROCEDURES

Materials

Adrenaline, noradrenaline, DDA, KIC, EGTA, HEPES, IBMX, insulin, HNMPA-

AM3, LY294002, ouabain, and FCCP were from Sigma. Diazoxide, methoxy-

verapamil, and forskolin were kind gifts from Schering-Plough, Knoll AG (Ger-

many), and Aventis (Sweden), respectively. Insulin-receptor antibody (sc-710)

and control IgG (sc-2027) were from Santa Cruz Biotechnology. The plasmids

encoding the cAMP biosensor were created as previously described (Dyachok

et al., 2006). To enable simultaneous measurements of [cAMP]i and PIP3 or

[Ca2+]i, we prepared a modified cAMP probe with the PKA regulatory subunit

lacking the CFP tag and another one in which the YFP label of the catalytic sub-

unit was replaced with CFP. The GFP4-GRP1 construct was generated by li-

gating the full-length GRP1 protein in frame with four copies of GFP. The plas-

mids containing the CFP-tagged PH domain from Akt and YFP-tagged VAMP2

were originally from Professor Tobias Meyer, Stanford University.

Construction of Recombinant Adenoviruses

Recombinant adenovirus vectors expressing the cAMP-biosensor subunits

under the transcriptional control of a tetracycline-regulatable promoter were

created in several steps. First, DRIIb-CFP-CAAX and Ca-YFP cDNA were PCR

amplified with primers containing BclI and BamHI restriction sites. The products

were ligated into the pShuttleTetTripLac-BamHI transfer vector (Berenjian

and Akusjärvi, 2006). The resulting pShuttleTetTripLac-DRIIb-CFP-CAAX
Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc. 33
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Figure 6. Glucose-Induced [cAMP]i Oscillations Regulate Pulsatile Insulin Release

(A and B) Glucose-induced pulsatile insulin secretion recorded with the PIP3 biosensor GFP4-GRP1. Secretion is inhibited by Ca2+ removal and addition of EGTA

(A) as well as by 100 mM of the voltage-dependent Ca2+-channel inhibitor methoxyverapamil (MV) (B).

(C) Elevation of [cAMP]i with the phosphodiesterase inhibitor IBMX amplifies insulin release.

(D) Pulsatile insulin secretion is suppressed by inhibition of adenylyl cyclases with 2050-dideoxyadenosine (DDA).
34 Cell Metabolism 8, 26–37, July 2008 ª2008 Elsevier Inc.
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and pShuttleTetTripLac-Ca-YFP transfer vectors were linearized with PmeI

and transformed into electrocompetent BJ5183 E. coli containing the plasmid

pAd-Tet-ON. This plasmid contains the full-length adenovirus genome (Ad5)

with deleted E1 and E3 regions (Berenjian and Akusjärvi, 2006). The desired

recombinant adenovirus constructs were generated by overlap recombination

(He et al., 1998), and recombinants were selected with kanamycin and screened

by restriction enzyme analysis. The resulting constructions pAd-Tet-ON-

DRIIb-CFP-CAAX and pAd-Tet-ON-Ca-YFP were cleaved with PacI to expose

its inverted-terminal repeats and subsequently transfected into 293-LacI

cells (Edholm et al., 2001) using FUGENE 6 (Amersham Biosciences, Uppsala,

Sweden) to make recombinant viruses. The cells were harvested 7–10 days

posttransfection, freeze thawed to release virus particles, and resuspended in

PBS with 1 mM MgCl2 for reinfection. After three rounds of reinfection, high-titer

virus stockswere produced in twelve15 cm plates of 293-LacI cells infected with

the recombinant viruses as previously described (Molin and Akusjärvi, 2000).

Two to three days postinfection, when a clear cytopathic effect was visible,

the cells were harvested by low-speed centrifugation and resuspended in 2 ml

0.1 M Tris-HCl (pH 8.0), followed by lysis with 0.1 volumes of 5% Na-deoxycho-

late for 30 min on ice. The cell lysates were subsequently sonicated on ice and

viruses purified by CsCl-gradient centrifugation. Virus bands were collected

and dialyzed against 100 volumes of PBS containing 1 mM CaCl2, 1 mM

MgCl2, and 10% glycerol, using a Slide-A-Lyzer Cassette (Pierce, Rockford,

IL). Virus titers were determined by counting fluorescent forming units (FFU)

(Philipson, 1961) using a monoclonal antibody directed against the adenovi-

rus-hexon protein (Sigma) and an FITC (fluorescein isothiocyanate)-conjugated

secondary antibody (Sigma). Construction of the AdCMVrtTA virus containing

the tetracycline-regulated transcriptional coactivator has been described

previously (Molin et al., 1998).

Islet Isolation, Cell Culture, and Transfection

Insulin-secreting MIN6 b cells (passage 17–30; Miyazaki et al., 1990) were cul-

tured as previously described (Idevall-Hagren and Tengholm, 2006). Transient

transfection was performed with 2 mg plasmid DNA and 5 mg Lipofectamine

2000 (Invitrogen) in 1 ml DMEM for 4 hr followed by washing and further cul-

ture in DMEM for 12–24 hr. Islets were isolated from the pancreata of C57Bl/6

mice with the aid of collagenase. All procedures were approved by a local

ethical committee on animal experiments. Single cells were prepared by

shaking the islets in a Ca2+-deficient medium. After resuspension in RPMI

1640 medium supplemented with 10% fetal calf serum, 100 IU/ml penicillin,

and 100 mg/ml streptomycin, the cells were allowed to attach to the center

of round coverslips during 2–5 days of culture at 37�C in an atmosphere of

5% CO2 in humidified air. The islet cells were infected with viruses using

a multiplicity of infection of 60 FFU/cell. After a 1 hr incubation at 37�C in cul-

ture medium, the inoculum was removed and the cells washed twice, fol-

lowed by further culture in complete medium supplemented with 4 mM doxy-

cycline for 24 hr. Before experiments, the cells were transferred to a buffer

containing 125 mM NaCl, 4.8 mM KCl, 1.3 mM CaCl2, 1.2 mM MgCl2, and

25 mM HEPES (with pH adjusted to 7.40 with NaOH) and incubated for 30

min at 37�C. For [Ca2+]i measurements, the cells were preincubated in the

presence of 1–10 mM of the acetoxymethyl esters of the fluorescent Ca2+ in-

dicators fura-2 (AnaSpec, Inc., San José, CA) or Fura Red (Invitrogen Molec-

ular Probes). Primary mouse b cells were identified based on their large size

and low nuclear/cytoplasmic ratio as well as their negative cAMP response to

adrenaline.

Cell Permeabilization

Where indicated, the cells were permeabilized with a-toxin from Staphylococ-

cus aureus (PhPlate Stockholm, Stockholm, Sweden). Before permeabiliza-
tion, the cells were superfused with an intracellular-like medium containing

140 mM KCl, 6 mM NaCl, 0.1 mM EGTA, and 10 mM HEPES (with pH ad-

justed to 7.00 with KOH). Temporarily interrupting the perifusion, 5 ml a-toxin

(0.46 mg/ml) were added directly into the 50 ml superfusion chamber. After

permeabilization, 1–4 mM MgATP were added to the medium, and the con-

centrations of free Mg2+ and Ca2+ were maintained at 1 mM and 350 nM,

respectively.

Fluorescence Microscopy

Plasma membrane association of the fluorescent protein-tagged PKA sub-

units VAMP2 and PIP3-binding proteins were measured using a dual-wave-

length evanescent-wave microscopy setup built around an E600FN upright

microscope (Nikon, Kanagawa, Japan). A helium-cadmium laser (Kimmon, To-

kyo, Japan) provided 442 nm light for excitation of CFP, and the 488 and 514

nm lines of an argon laser (Creative Laser Production, Munich, Germany) were

used to excite GFP and YFP, respectively. The output from the lasers was con-

trolled by a filter wheel equipped with an electronic shutter (Sutter Instruments,

Novato, CA). The merged laser beam was homogenized and expanded by a ro-

tating light-shaping diffuser (Physical Optics Corporation, Torrance, CA) and

refocused through a modified quartz dove prism (Axicon, Minsk, Belarus) at

an angle of 70� to achieve total internal reflection. The coverslips with the at-

tached cells were used as exchangeable bottoms of an open 50 ml chamber

and superfused with buffer at a rate of 0.3 ml/min. The chamber was mounted

on the custom-built stage of the microscope such that the coverslip was main-

tained in contact with the dove prism by a layer of immersion oil. Regular

‘‘wide-field’’ excitation of fura-2 at 340 and 380 nm was achieved via an epi-

fluorescence illuminator connected through a 3 mm diameter liquid-light guide

to an Optoscan monochromator (Cairn Research, Ltd., Faversham, UK) equip-

ped with a 150 W xenon-arc lamp. Regardless of the mode of illumination, fluo-

rescence was collected through 40 3 0.8 NA or 60 3 1.0 NA water-immersion

objectives (Nikon) and detected with a back-illuminated EMCCD camera

(DU-887, Andor Technology, Belfast, Northern Ireland) under MetaFluor

Molecular Devices Corporation, Downington, PA) software control. Emission

wavelengths were selected with interference filters (525 nm/25 nm half-band-

width for GFP, 485/25 nm for CFP, 560/40 nm for YFP, and 510/40 nm for fura-

2) mounted in a filter wheel (Sutter Instruments). Images were acquired every

2–5 s using exposure times in the 70–200 ms range. Separate [Ca2+]i record-

ings were performed with a regular imaging system as previously described

(Dyachok and Gylfe, 2004).

Data and Statistical Analysis

Image analysis was made using the MetaFluor or ImageJ (W. S. Rasband,

National Institute of Health, http://rsb.info.nih.gov/ij) softwares. The cAMP

concentration was expressed as the ratio of CFP over YFP fluorescence after

background subtraction. To compensate for the variability in expression

levels, the basal ratio was normalized to unity. Response magnitudes were

calculated from time-average data obtained before and during the stimulation

period. [Ca2+]i recorded with fura-2 is expressed either as 340/380 nm fluores-

cence-excitation ratio or as calibrated Ca2+ concentrations (Grynkiewicz

et al., 1985). Fluorescence intensities were otherwise expressed in relation

to initial fluorescence after subtraction of background (F/F0). Data are

presented as means ± SEM. Statistical comparisons were assessed with

Student’s t test.

SUPPLEMENTAL DATA

Supplemental data include three figures and can be found online at http://

www.cellmetabolism.org/cgi/content/full/8/1/26/DC1/.
(E) Effect of cAMP-modulating agents on time-average GFP4-GRP1 translocation. Means ± SEM. The number above each bar refers to the number of cells

examined. *, p < 0.02; **, p < 0.01; ***, p < 0.001; Student’s t test.

(F) Simultaneous recording of PIP3 and [cAMP]i as CFP-PHAkt and Ca-YFP translocation, respectively, demonstrates coordinated oscillations of [cAMP]i and

insulin secretion.

(G) Time expansions and amplitude normalizations of the regions shaded in (F) show that elevations of [cAMP]i precede PIP3 formation.

(H) Linear correlation between [cAMP]i and PIP3 oscillation amplitudes. Scatter plots and regression lines for data from three individual cells and from the pooled

data set.
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