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REVIEW

Microbial natural products as a source of antifungals
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The vast number and variety of chemotherapeutic agents isolated from microbial natural
products and used to treat bacterial infections have greatly contributed to the improve-
ment of human health during the past century. However, only a limited number of
antifungal agents (polyenes and azoles, plus the recently introduced caspofungin acetate)
are currently available for the treatment of life-threatening fungal infections. Further-
more, the prevalence of systemic fungal infections has increased significantly during the
past decade. For this reason, the development of new antifungal agents, preferably with
novel mechanisms of action, is an urgent medical need. A selection of antifungal agents in
early stages of development, produced by micro-organisms, is summarized in this
review. The compounds are classified according to their mechanisms of action, covering
inhibitors of the synthesis of cell wall components (glucan, chitin and mannoproteins), of
sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phos-
phoceramide synthase and fatty acid elongation) and of protein synthesis (sordarins). In
addition, some considerations related to the chemotaxonomy of the producing organisms

and some issues relevant to antifungal drug discovery are also discussed.
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INTRODUCTION

The exploration of micro-organisms as sources of
therapeutically useful compounds has a much
shorter and less well-known history than the use
of plants and plant extracts in human medicine.
Secondary metabolites are defined as naturally
produced substances which do not play an explicit
role in the internal economy of the organisms that
produce them. These micro-organisms may have
evolved the ability to produce such compounds
because of the selection advantages conferred
upon them as a result of the interactions of the
compounds with specific receptors in other organ-
isms [1,2]. Although almost 20 000 microbial meta-
bolites and approximately 100000 plant products
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have been described so far, secondary metabolites
still appear to be an inexhaustible source of lead
structures for new antimicrobials, antivirals, anti-
tumour drugs, and agricultural and pharmacolo-
gical agents. In addition, numerous secondary
metabolites, such as benzylpenicillin, cephalos-
porins, erythromycin, strobilurin, etc. were lead
structures that later became the basis for synthetic
and semisynthetic derivatives with improved
pharmacological properties.

Fungal infections range from superficial condi-
tions of the skin (e.g. ringworm and athlete’s foot)
and nails (onychomycoses) to disseminated life-
threatening diseases. Serious invasive fungal
infections caused by Candida spp., Cryptococcus
neoformans, Aspergillus spp., Pneumocystis carinii
and Histoplasma capsulatum, represent an increas-
ing threat to human health. The prevalence of
these systemic fungal infections has increased sig-
nificantly during the past decade.

Major factors responsible for this dramatic
rise include greater use of broad-spectrum anti-
biotics, marked increases in the numbers of
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immunocompromised persons (AIDS, cancer and
transplant patients), the use of central venous
catheters, and an aging patient population [34].

Until the 1970s, fungal infections were consid-
ered largely treatable and the demand for new
medicines to treat them was very small. Before this
period, antifungal chemotherapy included only
two kinds of compounds: potassium iodide, effec-
tive in the treatment of sporotrichosis; and two
useful polyenes, nystatin and amphotericin B,
which were introduced in the 1950s. Except for
the development of flucytosine (1964), there was
little progress until the development of the azole
drugs in the early 1970s. Therefore, only a limited
number of antifungal agents (polyenes and azoles
plus the recently introduced Cancidas) are cur-
rently available for the treatment of life-threaten-
ing fungal infections. These antifungal agents
show some limitations, such as the significant
nephrotoxicity of amphotericin B [5] and emerging
resistance to the azoles [6], despite several recent
improvements, such as lipid formulations of poly-
enes with lower toxicity and new triazoles (vor-
iconazole, rovuconazole and pasaconazole) with
a wider spectrum of action, including activity
against some azole-resistant isolates [7]. The devel-
opment of new antifungal agents, preferably natu-
rally occurring with novel mechanisms of action, is
an urgent medical need.

This review presents a selection of antifungal
agents produced by micro-organisms, classified
according to their mode of action. Some considera-
tions related to the chemotaxonomy of the produc-
ing organisms and some issues relevant for
antifungal drug discovery are also discussed.

CELL WALL BIOSYNTHESIS
INHIBITORS

One of the targets for novel antifungals under
active investigation is the fungal cell wall. Anti-
fungal agents acting on this target are inherently
selective. This characteristic and the fact that they
are fungicidal for Candida make them particularly
attractive for clinical development. Fungal cell
wall composition varies among species, but it
generally has three polymeric components: glu-
can, chitin and mannoproteins. The subcellular
mechanisms of their synthesis and assembly have
been used as potential targets to search for new
antifungals and numerous natural products have
been identified as inhibitors acting at these levels.

Glucan synthesis inhibitors

At present, glucan synthesis is the only component
of the cell wall synthesis machinery that has suc-
cessfully led to the development of a new drug on
the market. Glucan is a polysaccharide constituted
by glucose monomers linked by (1,3)-f or (1,6)-f
bonds, and it is an essential component of the cell
wall, guaranteeing many of its physical properties
[8]. Inhibitors of glucan synthesis have been shown
to possess antifungal activity in vitro as well as in
vivo in many different animal models. The most
classical examples of inhibitors of glucan synthesis
are the echinocandins. These are cyclic hexapep-
tides N-acylated with an aliphatic chain of differ-
ent length [9]. The various echinocandins differ in
having different substituents in the hexapeptide
ring or a distinct fatty acid chain (Figure 1). Since
the first echinocandin was discovered in the early
1970s [10], many members of the family have been
discovered in diverse fungi (Table 1).

The pneumocandins in particular have been
successfully used to develop an antifungal drug
that has been recently approved by the FDA. This
semi-synthetic pneumocandin, caspofungin acet-
ate, is an aza-substituted derivative of pneumo-
candin By [11]. Pneumocandins are natural
products derived from the fermentation of the
fungus Glarea lozoyensis [12,13]. The introduction
of additional amino groups in the peptide ring of
pneumocandin By increased the solubility of the
molecule and the potency against fungal patho-
gens by two orders of magnitude [14]. The com-
pound has been shown to be effective in animal
models of disseminated candidiasis, aspergillosis,
coccidiomycosis and pneumonia caused by Preu-
mocystis carinii [15-18]. The clinical trials have
demonstrated good tolerance of the compound
and its efficacy in the treatment of oropharyngeal
and oesophageal candidiasis, as well as in invasive
aspergillosis [19,20]. Cancidas has recently been
approved by the FDA for use against invasive
aspergillosis, refractory to, or intolerant of, other
therapies.

Other echinocandin-like antifungal agents in
advanced phases of drug development include
FK463 (micafungin), an echinocandin derivative
with a sulphate ester moiety in the hexapeptide
nucleus [21], and LY303366 (V-echinocandin, ani-
dulafungin), which has a terphenyl head group
and a C5 chain [22]. Other echinocandin deriva-
tives have also been reported from Fujisawa [23],
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Table1 Natural products inhibitors of glucan synthesis

Compound

Producing species

Reference

Lipopeptides
Echinocandin B

Aspergillus nidulans
A. rugulosus

Aculeacin Aspergillus aculeatus
Mulundocandin Aspergillus sydowii
Sporiofungins Penicillium arenicola
Cryptosporiopsis sp.
Pneumocandins Glarea lozoyensis
Pezicula sp.
Cryptosporiopsis sp.
Cryptocandin Cryptosporiopsis quercina

WF11899 and related

sulfate-derivatives

Coleophoma empetri

Coleophoma crateriformis
Tolypocladium parasiticum
Chalara sp.

FR901469 Unidentified fungus
Arborcandins Unidentified fungus
Clavariopsins Clavariopsis aquatica
Glycolipids

Papulacandins Papularia sphaerosperma
Corynecandin Coryneum modonium
Mer-WF3010 Phialophora cyclaminis
Fusacandin Fusarium sambucinum
BU-4794F Gilmaniella sp.
L-687781 Dictyochaeta simplex

Acidic terpenoids

Efumafungin Hormonema sp.
Arundifungin Arthrinium arundinis

A. phaeospermum

Leotiales anamorphs

Coelomycete undetermined
Ascoteroside Ascotricha amphitricha

Ergokonin A

Moycoleptodiscus atromaculans
Trichoderma longibrachiatum
T. koningii

T. viride

Nyfeler and Keller 1974 [10]

Mizuno et al. 1977 [107]
Roy et al. 1987 [25]
Tscherter and Dreyfuss 1982 [108]

Schwartz et al. 1992 [12]
Bills et al. 1999 [13]
Noble et al. 1991 [109]
Strobel et al. 1999 [110]
Hori 1999 [111]

Fujie et al. 2000 [27]
Ohyama et al. 2000 [26]
Kaida et al. 2001 [28]

Traxler et al. 1977 [29]
Gunawardana et al. 1997 [112]
Kaneto et al. 1993 [113]

Yeung et al. 1996 [31]

Aoki et al. 1993 [114]
VanMiddlesworth et al. 1991 [115]

Pelaez et al. 2000 [34]
Cabello et al. 2001 [33]

Onishi et al. 2000 [32]

Vicente et al. 2001 [35]

Roche (aerothricins) [24] and Aventis (mulundo-
candins) [25].

The success of the lipopeptide class of glucan
synthesis inhibitors has prompted interest from
the industry in the search for other structural types
with improved features over the echinocandins
(especially for their lack of oral absorption).
Besides echinocandins and the like, other cyclic
peptides have been described as acting as glucan
synthesis inhibitors. Arborcandins are recently
described antifungal agents, containing a 10-
amino-acid ring and two lipophilic tails [26]. Like-
wise, the compound named FR901469 is a macro-
cyclic lipopeptidolactone composed of 12 amino
acids and a 3-hydroxypalmitoyl moiety [27]. Cla-
variopsins, cyclic depsipeptides lacking a long

lipophilic radical, have also been suggested as
acting as inhibitors of glucan synthesis [28]. How-
ever, to date only two other types of glucan
synthesis inhibitors are known, besides cyclic lipo-
peptides, the papulacandins and related com-
pounds, and the acidic triterpenes.

The papulacandins are glycolipids discovered
in the late 1970s [29]. A series of related com-
pounds has been discovered over the years, all
of them produced by fungi (Table 1 and Figure 1).
Despite medicinal chemistry efforts, neither papu-
lacandins nor any of their relatives have been
developed as drugs, basically due to their limited
potency in animal models [30,31].

The most recently discovered compound class
of glucan synthesis inhibitors are triterpenes

© 2003 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 9, 15-32



Vicente et al Microbial natural products as source of antifungals 19

containing a polar (acidic) moiety [32]. This polar
moiety can be a glycoside (in enfumafungin and
ascosteroside), a succinate (in arundifungin) or a
sulphate-derivative amino acid (in ergokonin A)
(Figure 1). The conclusion that these compounds
are acting as inhibitors of glucan synthesis is based
on several lines of evidence: first, the spectrum of
activity, being active against Aspergillus and Can-
dida species, but inactive against Cryptococcus; sec-
ond, they induced the same alterations in the
micromorphology of Aspergillus fumigatus as other
inhibitors of glucan synthesis [33-35]; and third,
direct measurement of the effect of these com-
pounds on synthesis of cell wall macromolecules
indicates that glucan is the only polymer of which
the synthesis is significantly altered upon treat-
ment with these agents [32]. Although these com-
pounds were inactive or only weakly active in the
in vivo mouse model [33-35], they represent a new
paradigm in the search for antifungal compounds
with this mode of action, and they could be useful
as a base for the development of improved drugs.

Clearly, a weak point in all the glucan synthesis
inhibitors discovered or developed up to date is
their lack of activity against C. neoformans. The
reasons for this lack of activity are unclear. The
hypothesis that echinocandins do not inhibit f-
(1,6) glucan synthesis, which seems to be the main
glucan in C. neoformans cell wall [30], has been
recently contradicted experimentally [36]. More-
over, the FKS1 homologue gene, coding the cata-
lytic subunit of f-(1,3)-glucan synthase, has been
shown to be essential in C. neoformans. However,
the enzyme could be relatively resistant to the
action of echinocandins and the rest of the glucan
synthesis inhibitors [36].

Chitin synthesis inhibitors

Chitin is an insoluble polysaccharide made of f-
(1,4)-linked N-acetylglucosamine units. This bio-
logical polymer is one of the structural microfi-
brillar components of the fungal cell wall structure
which maintains the morphological shape of the
cells and plays an essential role in fungal morpho-
genesis [37]. In yeasts, chitin accounts for 1% of the
cell wall and is distributed differently from glucan.
Chitin also links covalently to the cellular glucan,
thereby strengthening the wall. There are at least
three different chitin synthases in Saccharomyces
cerevisiae: chitin synthase I, which is involved in a
repair function at the time of cytokinesis; chitin

synthase II, an essential enzyme for primary sep-
tum formation between mother and daughter
cells; and chitin synthase III, which synthesizes
lateral chitin in the cell wall [38].

The classical inhibitors of chitin synthesis are
nikkomycins and polyoxins [39]. Both belong to a
family of peptide-nucleoside antimycotic agents
that are substrate analogues of UDP-N-acetylglu-
cosamine, the essential building block for chitin
biosynthesis and were isolated from two different
Streptomyces species: S. tendae (nikkomycin) and S.
cacaoi var. asoensis (polyoxin). Candida albicans is
resistant to polyoxins due to the difficulty that
these agents present in being transported to the
interior of the cell wall. Nikkomycins exhibit activ-
ity against dimorphic fungi but low activity
against yeast and filamentous fungi. However,
both demonstrated synergy with the azole com-
pounds and with f-glucan inhibitors [40,41]. Nik-
komycins and polyoxins are currently used
exclusively as agricultural fungicides, due to their
modest activity against human pathogens [42].

Recently, as a part of the continuing screening
for new chitin synthase inhibitors, two novel anti-
fungal compounds were found: phellinsin A and
arthrichtin. Phellinsin A is a phenolic compound
which selectively inhibited chitin synthase I and II
of S. cerevisige. In addition, this compound exhib-
ited antifungal activity against human pathogens
such as Trichophyton mentagrophytes and A. fumi-
gatus and very weak activity against other human
pathogens such as C. neoformans and Coccidioides
immitis. However, it showed no activity against C.
albicans, C. lusitaniae, C. krusei, C. tropicalis and
Fusarium oxysporum [43]. Arthrichitin is a cyclic
depsipeptide which was isolated from Arthrinium
phaeospermum and (as LL156256g) from the marine
fungus Hypoxylon oceanicum [44,45]. This com-
pound showed activity against Candida spp.,
Trychophyton spp. and several phytopathogens.
Although its in vitro potency is too low for its
use in the clinic, it has been suggested that ana-
logues with improved activity could be developed
[44].

Mannoprotein synthesis inhibitors

Mannoproteins are the third main component of
the fungal cell wall. They form the outer layer of
the cell wall and contain as much as 50% carbohy-
drate. The majority of the cell wall mannoproteins
are anchored by f-(1,6)- and f-(1,3)-glucan [46]
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and play several roles in the function of fungal
membranes. Therefore, they have been considered
another potential target in fungal membranes for
antimycotic agents. Until now, any mannoprotein
associated with the cell wall has been considered
as essential by examining for viability after gene
disruption experiments. Inhibitors of the manno-
proteins function are the pradimicin/benanomy-
cin family, whose chemical structure possesses a
benzo [a] naphthacenequinone skeleton [47,48].
The free carboxyl group of these compounds inter-
acts with the saccharide portion of cell-surface
mannoprotein, which is followed by disruption
of the plasma membrane and leakage of intracel-
lular potassium. These are antifungal (and anti-
viral) agents without significant acute toxicities,
produced by Actinomadura (Actinomycetes) spe-
cies. These antibiotics exhibited remarkable in vivo
activity against systemic fungal infections caused
by C. albicans, A. fumigatus and C. neoformans in
mice. Pradimicin/benanomycin and analogues
were studied in experimental animal models with
good success rates; however, phase I clinical trials
suggested drug-related toxicities and develop-
ment was stopped [49].

SPHINGOLIPID SYNTHESIS
INHIBITORS

Sphingolipids, although present in relatively small
proportion in the fungal cytoplasmic membrane,
are essential for cellular functions [50], and inhibi-
tion of sphingolipid synthesis results in growth
inhibition and cell death [51,52]. Ceramide has
been implicated as a component of an essential
cell-signalling pathway in Saccharomyces [53].
Sphingoid bases also have a regulatory role in
yeast where they have been shown to inhibit
several key enzymes in phospholipid biosynthesis
[54]. Sphingolipids are also involved in the syn-
thesis of glycosylphosphatidylinositol anchors in
Saccharomyces, and they appear to be the major
repository for very long chain fatty acids (C24 and
C26 species) in fungi [55].

Although many steps in the human and fungal
sphingolipid biosynthetic pathway are similar,
there are several enzymes uniquely found in fungi
that make sphingolipid synthesis attractive for
antifungal therapy (Figure 2). Three key enzymes
in the sphingolipid synthesis pathway have been
targeted to search for novel antifungals: serine
palmitoyltransferase, ceramide synthase and

inositol phosphoceramide (IPC) synthase; the lat-
ter lacks a mammalian counterpart and, as shown
in Figure 2, inhibitors to all three have been dis-
covered from natural sources. Sphingofungins
[51,56], lipoxamycin [57] and viridiofungins [58]
inhibit serine palmitoyltransferase. Fumonisin Bl
[54,59] and australifungin [52] inhibit ceramide
synthase, and aureobasidins [60], khafrefungin
[61], and rustmicin [62] inhibit IPC synthase.
Furthermore, minimoidin, an inhibitor of the fatty
acid elongation pathway, was isolated from a
coprophilic fungus [63]. The chemical structures
of these compounds are presented in Figure 3, and
the micro-organisms from which they were iso-
lated are shown in Table2.

Serine palmitoyltranferase inhibitors

Sphingofungins A to F constitute a family of novel
chemical structures that resemble the long-chain
base intermediates in the sphingolipid pathway.
They were initially identified as broad spectrum
antifungal agents, inhibiting the growth of various
Candida species and showing an especially potent
activity against C. neoformans, but they are inactive
against filamentous fungi [56,64].

Lipoxamycin was discovered in 1970 as an anti-
fungal compound of unknown mechanism of
action [65]. Lipoxamycin and hydroxylipoxamy-
cin, an analogue co-produced in the fermentation,
have a long alkyl chain and an amino-containing
polar head group, but otherwise do not resemble
the sphingoid bases as closely as the sphingofun-
gins do. Both compounds have antifungal activity
against a panel of human pathogenic fungi, with
better potency against some of the C. neoformans
and Candida species. A. fumigatus was not inhibited
in broth dilution assays, but other filamentous
fungi were sensitive to the lipoxamycins in disk
diffusion assays [57].

Viridiofungins A, B and C comprised a novel
family of amino alkyl citrates that have potent,
broad spectrum antifungal activity, inhibiting the
growth of pathogenic fungi such as C. neoformans,
Candida species and A. fumigatus [66].

It has been demonstrated by a variety of biolo-
gical and biochemical means that sphingofungins,
lipoxamycin, hydroxylipoxamycin and viridiofun-
gins are specific inhibitors of serine palmitoyl-
transferase in fungi at nanomolar concentrations
[51,56,58]. The potent in vitro inhibition of serine
palmitoyltransferase and inhibition of whole cell
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Figure 2 Sphingolipid biosynthesis pathway in fungal and mammalian cells. The different inhibitors of sphingolipid
synthesis are indicated in the corresponding steps of the pathway they are blocking.

sphingolipid synthesis at minimum inhibitory Viridiofungins are not as specific for serine
concentrations (MICs) pointed to inhibition of  palmitoyltransferase inhibition as the other inhi-
serine palmitoyltransferase as the likely mechan-  bitors of the enzyme. They also inhibit squalene
ism of their antifungal activity. synthase and other enzymes that are sensitive to
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Table2 Natural products inhibitors of shingolipid biosynthesis and protein synthesis
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Compound

Producing species

Reference

Sphingolipid biosynthesis

Sphingofungins Aspergillus fumigatus
Paecilomyces variotii
Lipoxamycin Streptomyces sp.
Viridiofungins Trichoderma viride
Myriocin Isaria sinclairii
Fumonisin B1 Fusarioum moniliforme
Australifungin Sporormiella australis
Aureobasidin A Aureobasidium pullulans
Khafrefungin Unidentified sterile fungus
Rustmicin

Galbonolide B
Minimoidin

Protein synthesis

Micromonospora chalcea
Streptomyces galbus
Micromonospora sp.
Micromonospora sp.
Sporomiella minimoides

Unidentified sterile fungus

Sordarin Sordaria araneosa
Zofimarin Zopfiella marina
BE31405 Penicillium minioluteum
SCH57404

Xylarin Xylaria sp.
Hypoxysordarin Hypoxylon croceum
GR135402 Graphium putredinis

Zweerink et al. 1992 [51]
Horn et al. 1992 [56]
Mandala et al. 1994 [57]
Mandala et al. 1997 [58]
Miyake et al. 1995 [67]
Wang et al. 1991 [59]
Mandala et al. 1995 [52]
Nagiec et al. 1997 [60]
Mandala et al. 1997 [61]
Takatsu et al. 1985 [69]
Fauth et al. 1986 [70]
Mandala et al. 1998 [62]
Harris et al. 1998 [71]
Mandala et al. 2001 [63]

Sigg et al. 1969 [79]
Ogita et al. 1987 [83]
Okada et al. 1998 [85]
Coval et al. 1995 [86]
Schneider et al. 1995 [87]
Daferner et al. 1999 [88]
Kinsman et al. 1998 [92]

dicarboxylic acids, although at higher concentra-
tions than required for serine palmitoyltransferase
inhibition [66].

Unfortunately, the serine palmitoyltransferase
inhibitors described above also have potent activ-
ity against the mammalian enzyme [51,56,58], and
other studies showed that lipoxamycin is highly
toxic in mice when applied either subcutaneously
or topically [65]. Toxicity may be mechanism
based, since studies with a Chinese hamster ovary
(CHO) cell mutant have shown that this enzyme is
essential in mammalian cells. Another natural pro-
duct isolated from the fungus Isaria sinclairii, the
potent immunosuppressant ISP-1/myriocin, has
also been reported to inhibit serine palmitoyltrans-
ferase at picomolar concentrations in an interleu-
kin-2-dependent mouse cytotoxic T-cell line [67].

Ceramide synthase inhibitors

The fumonisins are mycotoxins initially character-
ized as tumour-promoting agents associated with
severe toxicological effects in animals. They inhibit
de novo sphingolipid biosynthesis blocking the
reaction catalyzed by ceramide synthase in rat
hepatocytes, and their toxicity and carcinogenicity
have been attributed to inhibition of ceramide

synthesis and the concomitant accumulation of
sphingoid bases [59]. Although fumonisin B1 does
inhibit fungal ceramide synthase in vitro [54] the
fumonisins have very poor activity against whole
cell fungal sphingolipid synthesis or growth; lim-
ited penetration could account for their poor anti-
fungal activity.

Australifungin is a highly potent, broad-spec-
trum antifungal compound containing a unique
combination of a-diketone and f-ketoaldehyde
functional groups. It was the first non-sphingo-
sine-based inhibitor described for the sphingolipid
biosynthetic pathway. Australifungin inhibits cer-
amide synthase in vitro at nanomolar concentra-
tions and the enzyme inhibition accounts for the
arrest of sphingolipid synthesis. Australifunginol,
an analogue isolated from the same fungus, also
blocked the enzyme converting sphinganine to
ceramide, but it was at least 50-fold less potent
[52]. Australifungin had MICs of 1mg/L or less
against all the species tested, with particularly
good activity against Candida pseudotropicalis, C.
tropicalis, and C. neoformans. Much weaker activity
was detected for australifunginol with MICs
between 8 and 64 mg/L [52].

Although the activity of australifungin in mam-
malian systems has been largely uncharacterized,
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it is known to inhibit ceramide synthesis in HepG2
cells [58], and therefore constitutes a major limita-
tion to the therapeutic use of australifungin for the
treatment of fungal infections.

IPC synthase inhibitors

Aureobasidins A to R are cyclic depsipeptides
described as antifungal agents with high in vitro
activity, particularly against C. albicans, aureoba-
sidins A, B, C and E being the most potent [68].
Their mechanism of action remained unknown
until it was shown that aureobasidin A inhibits
the IPC synthase from S. cerevisiae with an ICs, of
about 0.2 nMm [60].

Khafrefungin is a novel 22-carbon linear poly-
ketide acid esterified to an aldonic acid that shows
a broad antifungal spectrum, with C. albicans being
the most susceptible organism in vitro. The com-
pound causes the accumulation of ceramide and
inhibits the IPC synthase of S. cerevisiae and patho-
genic fungi at picomolar to nanomolar concentra-
tions [61].

Rustmicin (also named galbonolide A) is a
macrolide antifungal agent with potent activity
against wheat stem rust fungus Puccinia graminis
[69], Botrytis cinerea and several other phytopatho-
gens [70]. The mechanism of its fungal growth
inhibition was not determined until 13 years later,
when its extraordinarily potent antifungal activity
against several human pathogens, especially C.
neoformans was observed, and it was found that
its antifungal activity was due to inhibition of
sphingolipid synthesis at the IPC synthase level
at picomolar to low nanomolar concentrations of
the compound [62]. The rustmicin-related macro-
lide galbonolide B was also reported to inhibit IPC
synthase, but with less potency [71].

A. fumigatus is one of the few human pathogens
that is insensitive to any of the known IPC
synthase inhibitors, although some inhibitors of
earlier steps in the sphingolipid biosynthetic path-
way do inhibit the growth of this organism [52,66].
The reason for this resistance is unknown. Sphin-
golipids are thought to be essential in Aspergillus
[52,66] and A. fumigatus does synthesize alkali-
stable inositol lipids, and their synthesis is inhib-
ited by khafrefungin, but at much higher concen-
trations than those required for the other fungi.
Lack of growth inhibition may be due to a resistant
enzyme or poor uptake of the drug. Alternatively,
the inositol-containing sphingolipids may not be

essential in this organism, which also contains
glycosylated sphingolipids.

Unlike inhibitors to earlier steps in sphingolipid
synthesis, khafrefungin and rustmicin did not
have any detectable effect on lipid synthesis in
mammalian cells [61]. Rustmicin and aureobasidin
A were non-toxic in animal studies [62,72], sup-
porting the idea that inositol phosphoceramide
synthase is a fungal selective target, and thus
preferable in the search for novel antifungals
blocking sphingolipid biosynthesis. Although
khafrefungin was lytic to washed red blood cells
at 12.5-25mg/L, the toxicity may be due to the
detergent-like properties of the compound.

Among the three structurally diverse IPC syn-
thase inhibitors, rustmicin is unique in its remark-
able activity against C. neoformans. However,
although encouraging, the level of in vivo efficacy
is far less than expected from the in vitro suscept-
ibility of this organism to rustmicin. Poor in vivo
efficacy in animals is probably due to chemical
instability. Even at its optimal pH, rustmicin
degrades relatively rapidly in aqueous media,
converting to the inactive y-lactone. Despite these
limitations, concentrations of rustmicin that are
required to completely inhibit phosphosphingoli-
pid synthesis and accumulate ceramide in fungi
are easily achieved [62].

Fatty acid elongation inhibitors

Minimoidin is a novel compound that indirectly
inhibits sphingolipid synthesis by blocking the
fatty acid elongation pathway, thus depriving
the ceramide synthase of substrate [63]. In experi-
ments of '*C-acetate uptake, minimoidin blocked
radioactivity uptake into C26 fatty acids, while the
pattern of incorporation into other fatty acids was
not modified. Moreover, minimoidin inhibited the
incorporation of '*C-malonyl-CoA into long-chain
fatty acids.

PROTEIN SYNTHESIS INHIBITORS

Protein synthesis has always been considered one
of the more attractive targets in the development of
antimicrobial agents [73]. However, application of
this idea to the field of antifungal therapy is not an
easy task, due to the eukaryotic nature of fungi and
therefore the great degree of similarity between
the fungal and mammalian protein synthesis
machineries. Two soluble elongation factors show
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Figure 4 Chemical structures of
some natural sordarins, selective
inhibitors of fungal protein synth-
esis.

some fungal-specificity: EF3, a factor that is
required by fungal ribosomes only [74,75], and
EF2, which has been demonstrated to possess at
least one functional distinction from its mamma-
lian counterpart [76,77]; the fact that these fungal
soluble factors are essential for protein synthesis
makes them obvious targets for antifungal drug
discovery [78].

The most important family of antifungal agents
acting at the protein synthesis level are the sordar-
ins. Sordarin was isolated by scientists at Sandoz
from fermentations of the fungus Sordaria araneosa
(Table2). The compound was patented in 1969
under the name SL [79]. Its purification and degra-
dation by acid hydrolysis to a diterpenic aglycon,
sordaricin (Figure 4), and a novel sugar, 6-desoxy-
4-O-methyl-p-altrose, were described in 1971 [80],
and its full structure was reported shortly after-
wards [81]. Recent publications from Merck and
Glaxo Wellcome demonstrated that the sordarins
are potent inhibitors of translation in fungi with an
extremely high level of selectivity. They act via a
specific interaction with EF2, by stabilizing the
fungal EF2-ribosome complex, despite the high
degree of amino acid sequence homology exhib-
ited by EF2 from various eukaryotes. The fungal
specificity of the sordarins makes EF2 an attractive
antifungal target [77,82]. All compounds in this
class inhibited in vitro translation in C. albicans, C.
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tropicalis, C. kefyr and C. neoformans, but to varying
degrees. The lack of activity of the sordarins
against C. krusei, C. glabrata and C. parapsilosis, in
comparison with their extremely high levels of
potency against C. albicans, suggests that these
compounds have a highly specific binding site,
which may also be the basis for the greater selec-
tivity of these compounds in inhibiting the fungal,
but not the mammalian, protein synthesis.

After the discovery of sordarin, several com-
pounds structurally related, sharing the common
aglycone of sordarin, sordaricin, were isolated
from diverse fungal species. Those compounds
and the micro organisms from which they were
isolated are shown in Figure 4 and Table 2.

The compound called zofimarin was patented
by Sankyo in 1987 [83]. Like sordarin, zofimarin is
active against C. albicans, S. cervisiae and C. neofor-
mans, but additional activity against Aspergillus
was also described for this compound at higher
concentrations. No further development appears
to have been undertaken with zofimarin.

BE31405 was patented by Banyu in 1994 [84].
This compound contains a unique sugar with an
unusual tricyclic structure. It presented broad
spectrum and more potent antifungal activity
against C. albicans, C. glabrata and C. neoformans
than sordarin. The MIC against C. albicans
(1.56mg/L) was between those of amphotericin

© 2003 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 9, 15-32



26 Clinical Microbiology and Infection, Volume 9 Number 1, January 2003

B (0.39mg/L) and miconazole (6.25mg/L). This
compound did not show toxicity against mamma-
lian cells such as P388 mouse leukemia when
tested at up to 50 mg/L [85].

SCH57404 was isolated from an unidentified
fungus by Schering-Plough. It differs from
BE31405 by the presence of a methoxy in place
of the acetate at C-4 of the tricyclic sugar moiety. It
has a narrow spectrum in vitro, with antifungal
activity against C. albicans (MIC 16 mg/L), but ony
poor activity against dermatophytes and Aspergil-
Ius [86]. In a concurrent study another group
identified the same compound from a Xylaria sp.
The isolated compound, named xylarin, exhibited
potent activity against yeasts and filamentous
fungi, and, as expected, was only weakly cytotoxic
towards mammalian cells [87].

A new natural sordarin derivative, hypoxysor-
darin, has been isolated from cultures of Hypoxylon
croceum. Like the parent compound sordarin, this
new derivative presented potent antifungal activ-
ities against yeasts and several filamentous fungi
[88].

During recent years, patents for sordarin deri-
vatives have been filed by Glaxo Wellcome [89],
Merck [90] and Banyu [91].

During the screening program carried out by
Glaxo Wellcome to search for compounds inhibit-
ing fungal protein synthesis, the most promising
compound to emerge was a natural product that
showed a close similarity to zofimarin, GR135402
[92]. The spectrum of activity included C. albicans,
C. tropicalis and C. neoformans, but not some other
Candida species or Aspergillus species. GR135402
showed a therapeutic effect in mice with systemic
candidiasis following subcutaneous dosing at
100 mg/kg/dose [92]. Because this compound is
a selective and potent inhibitor of C. albicans pro-
tein synthesis, a synthetic chemical program at
Glaxo Wellcome was initiated to produce novel
analogues. Several sordarin derivatives with a
broad spectrum of activity and remarkable poten-
cies in vivo were synthesized by modifications of
the basic sordarin molecule sugar moiety (differ-
ent types of fused rings at position C3’ to C4’) [93].
Four of these sordarin derivatives (GM222712,
GM237354, GM193633 and GM211676) have
demonstrated good in vitro and in vivo antifungal
activity against most Candida species, including
azole-resistant isolates, C. neoformans and Pneumo-
cystis carinii [94,95]. Moreover, these derivatives
demonstrated potent fungicidal activity against

important dimorphic endemic fungal pathogens,
such as Histoplasma capsulatum [96] and Cocci-
dioides immitis [97], and significant in vitro activity
against yeast-like fungi, such as Blastoschyzomyces
capitatus, and dematiaceous fungi, such as Cla-
dosporium carrioni [93]. In contrast, the new sor-
darin derivatives have limited activity against
A. fumigatus, which constitutes a serious limitation
[98].

Recent efforts directed toward the synthesis and
development of new sordarin antifungal agents
with improved activity against pathogenic fungi
and better pharmacological properties have
resulted in the discovery of a new series of deri-
vatives, the azasordarins [99]. These are com-
pounds characterized by the presence of a 6-
methylmorpholin-2-yl group with different N-4'
substituents at position 8a of the sordaricin inda-
cene ring system instead of the 4’ sugar moiety
present in sordarin, and they have the additional
advantage of an easier chemical synthesis. Aza-
sordarins displayed significant activities against
Candida species, including fluconazole-resistant
strains, with the exception of C. krusei. In addition,
some azasordarin derivatives were active against
C. parapsilosis. Furthermore, these compounds
were extremely potent against P. carinii, Rhizopus
arrhizus and B. capitatus. However, C. neoformans
was resistant to all these new antifungal agents. In
general, the levels of cytotoxicity presented by the
azasordarin derivatives were low. These findings
suggest that the azasordarins possess an important
antifungal therapeutic potential [100].

The potent broad-spectrum in vitro activity, and
the fact that some of the sordarins have shown oral
efficacy in animal models, are significant advan-
tages of these compounds, sufficient to justify an
ongoing effort into developing the full clinical
potential of the sordarin class.

OTHER TARGETS

Other targets that have been used for antifungal
drug discovery include electron transport and
membrane integrity. Some inhibitors of these tar-
gets are produced by micro-organisms. The poly-
enes (amphotericin B and nystatin) are prototypic
antifungal agents affecting the integrity of the
fungal cell membrane. Their mechanism of action
is due in part to their selective binding to ergos-
terol, the major fungal sterol, in the cell membrane
of susceptible fungi. This induces changes in
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membrane permeability, causing leakage of cyto-
plasmic contents and cell death [101]. Their toxi-
city is associated with the fact that they bind
cholesterol as well, although with less affinity than
ergosterol, producing disruptions in mammalian
cell membranes as well.

With respect to mitochondrial electron transport
inhibitors, a series of related antifungal agents
with this mode of action has been described. These
compounds, named as UK2A, UK3A, and the
structurally related antimycin A, consist of a
nine-membered dilactone ring, and have been
isolated from different species of Streptomyces
[102,103]. The antifungal activities of UK-2A and
UK-3A compounds were relatively broad-spec-
trum, including C. albicans and Aspergillus spp.,
equipotent with antimycin A, while less toxic to
host cells.

GENERAL CONSIDERATIONS ON
ANTIFUNGAL DRUG DISCOVERY

The production of antifungal agents is not at all
infrequent in microbes. The results from our own
screening program over the years have shown that
a remarkable percentage of the strains isolated
may produce at least one antifungal agent. Thus,
in a study in which different families and orders of
basidiomycetes were compared in their ability to
produce antimicrobial activities, 20% of the iso-
lates examined were observed to produce some
kind of antifungal activity [104]. Likewise, studies
on fungal communities from specific environ-
ments showed percentages of 14-41% of antifun-
gal activity in fungal endophytes from halophytic
plants [105,106], depending on the panel of target
organisms used. For actinomycetes the figures are
similar: in a study performed with Streptomyces
and other genera from diverse geographies, iso-
lated under conditions of extreme pH or salinity,
between 25 and 50%, depending on the taxonomic
groups, produced antifungal activities (Basilio
et al., unpublished results). The question, then,
is: why, if antifungal agents are so common, is it
so complicated to take an antifungal drug to the
clinical stage? The reasons are several. First, many
of those activities seen in any screening effort do
not represent different chemical entities. The same
antifungal metabolite can be produced by different
organisms, in some cases by many species that are
phylogenetically unrelated. The cases of com-
pounds restricted to single strains/species or to

few strains of a given biological species are rare in
comparison. Enfumafungin, for instance, was
found only in three isolates from a Hormonema
endophytic species, growing on the same host
species (Juniperus communis) in the same forest
[34]. However, much more common is the case
of arundifungin, which was found in several
Arthrinium species from different locations, plus
a psychotolerant Leotiales anamorph and other
species, all of them phylogenetically and ecologi-
cally unrelated [33]. Thus, the number of different
compounds is far fewer than the number of activ-
ities seen in any screening. A screen such as the
one that led to the discovery of the new triterpene
class of glucan synthesis inhibitors resulted in a
very high number of hits, most of which were later
shown to be echinocandins, papulacandins and
related compounds (Cabello et al., unpublished
results). In particular, the metabolic pathways
leading to the synthesis of the echinocandin class
of antifungals seem to be widely distributed across
the fungal kingdom, as shown in Table 1, and the
same is true for the papulacandins.

Besides the matter of the number of compounds,
issues of potency, spectrum and mode of action are
probably the most relevant. Most of the antifungal
activities observed in any screening of microbial
natural products are not potent enough or do not
show the spectrum that can make them attractive
enough for industrial groups to dedicate resources
to their identification. Others are simply toxins
that also affect mammalian cells, making them
undesirable leads. Finally, many compounds with
promising in vitro activity are inactive or only
weakly active when tested in animal models. This
may result from a variety of reasons related to the
pharmacokinetic properties of the compounds,
from poor absorption to inactivation by serum-
binding, high clearance rates, etc., but in many
cases these features are not easy to solve by med-
icinal chemistry programs. In summary, although
the available data indicate that the number of
compounds with antifungal activity present in
nature is really huge, taking one of these com-
pounds to clinical trials is by no means an easy
task, and the level of resources required to make
this effort are not to be underestimated.

CONCLUSIONS

Until very recently, life-threatening fungal infec-
tions observed in the clinic could only be treated
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with drugs from the azole family or with ampho-
tericin B. Although the new generations of azoles
are much improved compared to previous com-
pounds in this class, concern remains about the
development of resistance by pathogenic strains.
Their fungistatic character is another weakness of
these compounds. Amphotericin B shows a better
activity profile, but also an undesirable toxicity.
Although the new liposomal formulations have
reduced toxicity, the lack of absolute specificity
of amphotericin B mode of action will always
be a concern. Recently, a new antifungal agent
with a different mode of action has been included
in the existing therapeutic options: caspofungin,
approved for invasive aspergillosis in patients
refractory, to or intolerant of, other therapies.
It shows good activity against Aspergillus and
Candida, and very acceptable tolerability. Other
glucan synthesis inhibitors are expected for the
near future. In addition, the sordarin derivatives
could constitute a new and promising group of
antifungals to be developed in a more distant
future. An important point yet to be established
is to specify the applicability and utility of the
antifungal associations with different mechanisms
of action.

The compounds discussed in this review repre-
sent a subset of all the antifungal agents of natural
origin that have been isolated, characterized and
described in published literature to date. There is
a huge number of other molecules with reported
antifungal activity that have not been included
here, because their mode of action is unknown.
In addition, what has been described in the litera-
ture would be only a fraction of the potentially
existing antifungal compounds from natural
sources. Research in the field of antifungal anti-
biotics should continue in order to obtain more
effective and selective drugs in the near future.
Because only a minor percentage of the micro-
organisms living in the biosphere have been
described and studied to date, there is an enor-
mous and still unexplored reservoir of natural
compounds of large structural diversity that could
be used for the development of new antifungals.
Also, the advent of fungal genomics is expected to
increase the number of molecular targets useful for
antifungal drug discovery. Thus, the stage is set for
the development of an antifungal portfolio to rival
the diversity of antibacterial drugs and increase
the armamentarium of drugs active against sys-
temic fungal infections.
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