INDECOMPOSABLE FACTORIZATIONS OF MULTIGRAPHS

A.H. BAARTMANS and W.D. WALLIS
Cakland Universify and Southern Illinois University, U.S.A.

Received 17 November 1987
Revised 4 January 1988

Abstract

A one-factorization of a complete multigraph is called decomposable if some proper subset of the faciors also forms a one-factorization of a complete multigraph; otherwise it is indecomposable. Some results on the existence of indecomposable one-factorizations will be proven.

1. Introduction

Standard graph-theoretic notions are assumed. Our graphs will all be finite and undirected. To avoid an abundance of braces, we denote the edge joining vertex x to vertex y by (x, y), even though it is undirected, or by $x y$ if possible.

The complete multigraph λK_{v} has v vertices and there are λ edges joining each pair of vertices. A one-factor of $\lambda K_{\boldsymbol{v}}$ is a set of edges which between them contain every vertex precisely once; a one-factorization is a set of one-factors which precisely partitions the edges of λK_{v}.

Clearly v must be even for a one-factor to exist; say $\boldsymbol{v}=\mathbf{2 n}$. It is well known that $K_{2 n}$ has a one-factorization for every n (see, for example, [4, p. 439]). Taking λ copies of this yields a one-factorization of $\lambda K_{2 n}$. So every $\lambda K_{2 n}$ has a one-factorization.

Given a one-factorization of $\lambda K_{2 n}$, it may be that there exists an integer λ_{1} (less than λ) such that some $\lambda_{1}(2 n-1)$ of the one-factors form a one-factorization of $\lambda_{1} K_{2 n}$. In that case the one-factorization of $\lambda K_{2 n}$ is called decomposible; otherwise it is indecomposable. When $\lambda>1$, the one-factorizations of $\lambda K_{2 n}$ just exhibited are all decomposable. It is natural to ask for which values of λ and \boldsymbol{n} do there exist indecomposable one-factorizations of $\lambda K_{2 n}$.

A one-factorization is called simple if it contains no repeated one-factor. There is no direct correspondence between simplicity and indecomposability. However, simple one-factorizations will be useful in the sequel.

In this paper we present some results on the existence of indecomposable one-factorizations which are not simple. Some of these involve so-far unrepresented parameters λ and $2 n$. Others have parameters which were previously

[^0]constructed; but as most known results involve simple factorizations, we prove the existence of non-isomorphic indecomposable one-factorizations in infinitely many cases.

Some notation will be convenient. We write $\boldsymbol{N}_{\boldsymbol{k}}$ for the set of the first \boldsymbol{k} positive integers. If \mathscr{F} is a one factorization of the $K_{2 n}$ based on vertex-set $N_{2 n}$, and U is any ordered $2 n$-set, then $\mathscr{F}(U)$ is constructed by replacing i by the i th member of \boldsymbol{U} in every factor of \mathscr{F}, for every i. The factor derived from the factor F of \mathscr{F} is denoted $F(U)$.

We also use one-factorizations of the complete bipartite graph $K_{n, n}$. If \mathscr{L} is a one-factorization of the $K_{n, n}$ based on the two vertex-sets N_{n} and $N_{2 n} \backslash N_{n}$, and U and V are ordered n-sets, then $\mathscr{L}(U, V)$ is the one-factorization formed from \mathscr{L} by the substitutions

$$
\begin{aligned}
& (1,2, \ldots, n) \mapsto U \\
& (n+1, n+2, \ldots, 2 n) \mapsto V
\end{aligned}
$$

We say a one-factorization \mathscr{F} of $K_{2 n}$ is standardized if the $K_{2 n}$ is based on $N_{2 n}$ and the i th factor contains ($i, 2 n$). A one-factorization of $K_{n, n}$ is standardized if the vertex-sets are N_{n} and $N_{2 n} \backslash N_{n}$ and the first factor is

$$
\{(i, n+1),(2, n+2), \ldots,(n, 2 n)\}
$$

2. Known resuits

The following two general results appear in [2].
Theorem 1. If $2 n-1$ is prime then there is a simple indecomposable onefactorization of $(n-1) K_{2 n}$.

Theorem 2. If there is an indecomposable one-factorization of $\lambda K_{2 n}$, where $\lambda<2 n$, then there is a simple indecomposable one-factorization of $\lambda K_{2 s}$ whenever $s \geqslant 2 n$.

These results were used in [2] together with some ad hoc constructions to obtain a number of results on the existence of simple indecomposable onefactorizations for small λ :

Theorem 3. A simple indecomposable one-factorization of $\lambda K_{2 n}$ exists as follows:
$\lambda=2$: if and only if $2 n \geqslant 6$;
$\lambda=3$: if and only if $2 n \geqslant 8$;
$\lambda=4$: if and only if $2 n \geqslant 8$;
$\lambda=5:$ if $2 n=10,12,14$ or $2 n \geqslant 20$;

$$
\begin{aligned}
& \lambda=6: \text { if } 2 n \geqslant 12 ; \\
& \lambda=8: \text { if } 2 n=12 \text { or } 14 \text { or } 2 n \geqslant 24 ; \\
& \lambda=9: \text { if } 2 n=12 \text { or } 14 \text { or } 2 n \geqslant 24 ; \\
& \lambda=10: \text { if } 2 n=14 \text { or } 2 n \geqslant 28 ; \\
& \lambda=12: \text { if } 2 n \geqslant 32 .
\end{aligned}
$$

In the course of proving this theorem, indecomposable (but non-simple) one-factorizations of $6 K_{8}$ and $12 K_{16}$ were found. It is known [2] that no indecomposable one-factorizations of $\lambda K_{4}(\lambda>1)$ or $3 K_{6}$ exist. Apart from these two nonexistence results, the only known result about the enumeration of one-factorizations of $\lambda K_{2 n}$ is the fact that there are precisely three non-isomorphic one-factorizations of $2 K_{6}$, of which exactly one is indecomposable [5].

3. An upper bound

Since there are exactly $1 \cdot 3 \cdots(2 n-1)$ one-factors of $K_{2 n}$, the largest λ such that $\lambda K_{2 n}$ has a simple factorization is

$$
\lambda=1 \cdot 3 \cdots(2 n-3),
$$

and for a simple indecomposable factorization we must have

$$
\lambda<1 \cdot 3 \cdots(2 n-3) .
$$

However, this bound does not apply to indecomposable factorizations when simplicity is not required. We shall now derive a bound (which is probably very coarse) in that more general case.
By an exact cover of depth d on a set S we mean a collection of subsets of S, called blocks, such that each member of S belongs to exactly d blocks. (Repeated blocks are allowed.) If all the blocks are k-sets, the exact cover is called regular of degree k. An exact cover in S is decomposable if some proper subcollection of its blocks forms an exact cover on S. It is known (see [3]) that every sufficiently deep exact cover is decomposable: given s, there exists a positive integer $D[s]$ such that any exact cover of depth greater than $D[s]$ on an s-set is decomposable. It follows that there is also a maximum depth for a regular exact cover of degree k on an s-set: we denote it $D[s, k]$.

Lemma 4 [1]. Whenever $s \geqslant k \geqslant 1$,

$$
D[s, k]<s^{k} \cdot\binom{s k+s+1}{s} .
$$

Theorem 5. If there is an indecomposable factorization of $\lambda K_{2 n}$, then

$$
\lambda<[n(2 n-1)]^{n(2 n-1)}\binom{2 n^{3}+n^{2}-n+1}{2 n^{2}-n}
$$

Proof. Suppose there is an indecomposable factorization \mathscr{F} of $\lambda K_{2 n}$. Denote by S the set of all edges of $K_{2 n}: S$ is a set of size $n(2 n-1)$. The factors in \mathscr{F}, interpreted as subsets of S, form an n-regular exact cover of depth d on S. So

$$
\lambda \leqslant D[n(2 n-1), n]
$$

giving the result.

4. The case $2 n=6$

In this section we prove that no indecomposable one-factorization of λK_{6} can exist for $\lambda \geqslant 3$. We assume there is an indecomposable one-factorization \mathscr{F} of λK_{6} for some $\lambda \geqslant 3$ and derive a contradiction. (Recall that the result was already known in the case $\lambda=3$.)

For notational convenience we assume K_{6} to have vertices $0,1,2,3,4,5$. Since the fifteen one-factors of K_{6} form a one-factorization of $3 K_{6}$, not all of them can appear in \mathscr{F} : say $\{01,23,45\}$ is not represented. We denote the other possible one-factors as follows; say A occurs a times in \mathscr{F}, and so on.

$$
\begin{aligned}
A=\{01,24,35\} & H=\{03,15,24\} \\
B=\{01,25,34\} & I=\{04,12,35\} \\
C=\{02,13,45\} & J=\{04,13,25\} \\
D=\{02,14,35\} & K=\{04,15,23\} \\
E=\{02,15,34\} & L=\{05,12,34\} \\
F=\{03,12,45\} & M=\{05,13,24\} \\
G=\{03,13,25\} & N=\{05,14,23\}
\end{aligned}
$$

Since edge 01 must appear in λ factors, we have

$$
\begin{equation*}
a+b=\lambda \tag{1}
\end{equation*}
$$

One could derive fourteen more equations in this way. In particular, considering $24,02,14$ and 34 we get

$$
\begin{array}{r}
k+n=\lambda \\
c+d+e=\lambda \\
d+g+n=\lambda \\
b+e+l=\lambda \tag{5}
\end{array}
$$

and $(1)+(2)+(3)-(4)-(5)$ is

$$
\begin{equation*}
a+c-g+k-l=\lambda \tag{6}
\end{equation*}
$$

We can assume that $a \geqslant \frac{1}{2} \lambda$ and $k \geqslant \frac{1}{2} \lambda$: if $a<\frac{1}{2} \lambda$ and $k<\frac{1}{2} \lambda$, then carry out the permutation (01)(45) on all members of \mathscr{F}-it exchanges A with B and K with N and leaves $\{01,23,45\}$ unchanged; if $a<\frac{1}{2} \lambda$ and $k \geqslant \frac{1}{2} \lambda$ then (01) is the relevant permutation; if $a \geqslant \frac{1}{2} \lambda$ and $k<\frac{1}{2} \lambda$ then use (45).

The factors $\{A, C, G, K, L\}$ form a one-factorization of K_{6}, so a, c, g, k and l cannot all be non-zero. The permutation (01)(23)(45) exchanges G and L, and leaves A, C and $\{01,23,45\}$ unchanged; so without loss of generality we can assume $g \leqslant l$.

Since a and k are positive, this means we can assume either \boldsymbol{c} or \boldsymbol{g} to be zero. But the equations derived from considering edges 03 and 45 are

$$
\begin{array}{r}
f+g+h=\lambda \\
c+f=\lambda \tag{8}
\end{array}
$$

whence $h=c-g$ and $c \geqslant g$. So $g=0$. Substituting this into equation (6), and recalling that $a \geqslant \frac{1}{2} \lambda$ and $k \geqslant \frac{1}{2} \lambda$ we obtain $c-l \leqslant 0$. Counting occurrences of 12 we see that

$$
f+i+l=\lambda
$$

from (8) we get $i=c-l$, and as i cannot be negative we have $c=l$ and $a=k=\frac{1}{2} \lambda$. Equation (5) tells us now that $e=a-c$, so $c \leqslant a \leqslant \frac{1}{2} \lambda$, and therefore from (8) f is non-zero. Since not all the members of the one-factorization $\{A, E, F, J, N\}$ can be represented, $e=0$, whence c must equal $\frac{1}{2} \lambda$ also.

It is now easy to see that $e=g=i=m=0$, and that the other ten factors each occur $\frac{1}{2} \lambda$ times. (The equations derived from edges 04 and 05 give the information about i and m.) If λ is odd, we have a contradiction. Otherwise we have $\frac{1}{2} \lambda$ duplicates of the one-factorization $\{A, B, C, D, F, H, J, K, L, N\}$ of $2 K_{6}$, and \mathscr{F} is decomposable. So we have proven the following Theorem.

Theorem 6. There is no indecomposable one-factorization of λK_{6} when $\lambda \geqslant 3$.

5. Doubling constructions

Theorem 7. Suppose there exists an indecomposable one-factorization of $\lambda K_{2 n}$ for some $\lambda>1$. Then there exists an indecomposable one-factorization of $\lambda K_{4 n}$ which is not simple.

Proof. Suppose $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{\lambda(2 n-1)}\right\} \quad$ is an indecomposable onefactorization of the $\lambda K_{2 n}$ based on $N_{2 n}$. Select two ordered $2 n$-sets U and V, and a standardized one-factorization \mathscr{L} of $K_{2 n, 2 n}$. Then the factors in the one-
factorization $\mathscr{L}(U, V)$, together with the $\lambda(2 n-1)$ factors $F_{i}(U) \cup F_{i}(V), 1 \leqslant i \leqslant$ $\lambda(2 n-1)$, form a non-simple one-factorization of $K_{4 n}$.

Suppose this factorization were decomposable: say $\left\{H_{1}, H_{2}, \ldots, H_{s}\right\}$ were a one-factorization of $\mu K_{4 n}$ where the H_{i} are among the factors listed. Write H_{i}^{\prime} for the intersection of H_{i} with the $K_{2 n}$ based on U. Then $\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{s}^{\prime}\right\}$ is a one-factorization of the $\mu K_{2 n}$ based on U, and $\mathscr{F}(U)$ is indecomposable-a contradiction.

Theorem 8. Suppose there exists an indecomposable one-factorization of $\lambda K_{2 n}$, for some $\lambda>1$. Then there exists an indecomposable one-factorization of $\lambda K_{4 n-2}$ which is not simple.

Proof. Suppose \mathscr{F} is an indecomposable one-factorization of $\lambda K_{2 n}$. Select two ordered $2 n$-sets $U=\left(u_{1}, u_{2}, \ldots, u_{2 n}\right)$ and ($v_{1}, v_{2}, \ldots, v_{2 n}$) and write $U^{*}=$ $\boldsymbol{U} \backslash\left\{u_{2 n}\right\}, V^{*}=\boldsymbol{V} \backslash\left\{v_{2 n}\right\}$. If the factor F of \mathscr{F} contains the edge $(i, 2 n)$ then $F(U)$ contains ($u_{i}, u_{2 n}$); define F^{*} to be $F(U) \cup F(V)$ with ($u_{i}, u_{2 n}$) and ($v_{i}, v_{2 n}$) deleted and $\left(u_{i}, v_{i}\right)$ appended. Also select a standardized one-factorization \mathscr{L} of $K_{2 n-1,2 n-1}$, and define \mathscr{L}^{*} to consist of λ copies of the factorization $\mathscr{L}\left(U^{*}, V^{*}\right)$, with all λ copies of the factor

$$
\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{2 n-1}, v_{2 n-1}\right)\right\}
$$

removed. Then

$$
\mathscr{L}^{*} \cup\left\{F_{1}^{*}, F_{2}^{*}, \ldots, F_{\lambda(2 n-1)}^{*}\right\}
$$

is the required one-fact rization of $\lambda K_{4 n-2}$.

6. Further directions

It must be pointed out that the results here and in [2] barely scratch the surface of a hard problem.
The main constructions in both papers are recursive, and in particular yield a factorization with the same λ-value as some known factorization. No indecomposable factorization of $7 K_{2 n}$ is known for any n, and no case of $\lambda K_{2 n}$ has been solved for any λ greater than 12 where $2 \lambda+1$ is not prime. Further direct constructions are needed. In particular, ad hoc constructions for $5 K_{16}, 6 K_{10}$ or any $7 K_{2 n}$ would be very useful.

In Section 4 we obtained a constraint corresponding to each edge of K_{6}; as K_{6} has 15 edges and 15 one-factors, enough information existed for a proof. As $2 n$ increases, the number of one-factors of $K_{2 n}$ goes up much faster than the number of edges, so no generalization of this method can be expected. It is even conceivable that indecomposable one-factorizations of λK_{8} exist for any λ less than $28^{28} \cdot\binom{148}{28}$, the bound from Theorem 5 (although, if pressed, we would guess that this is not so). Any light on this problem would be significant.

References

[1] N. Alon and K.A. Berman, Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory, J. Combin. Theory 43A (1986) 91-97.
[2] C.J. Colbourn, M.J. Colbourn and A. Rosa, Indecomposable one-factorizations of the complete multigraph, J. Austral. Math. Soc. 39A (1985) 334-343.
[3] J.E. Graver, A survey of the maximum depth problem for indecomposable exact covers, in Infinite and Finite Sets (Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam, 1973) 731-743.
[4] A.P. Street and W.D. Wallis, Combinatorics: A First Course, Charles Babbage Research Centre, Winnipeg, 1983.
[5] W.D. Wallis, A tournament problem, J. Austral. Math. Soc. 24B(1983) 289-291.

[^0]: The second author's contribution is based upon work supported by the National Science Foundation under grant DMS-86-01868.
 The authors wish to thank Dominique de Caen and David Gregory for helpful conservations.

