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A one-factorization of a complete multigraph is called decomposable if some proper subset of
the factors also forms a one-factorization of a complete multigraph; otherwise it is indecom-
posable. Some resuits on the existence of indecomposable one-factorizations will be proven.

1. Introduction

Standard graph-theoretic notions are assumed. Our graphs will all be finite and
undirected. To avoid an abundance of braces, we denote the edge joining vertex
x to vertex y by (x, y), even though it is undirected, or by xy if possible.

The complete multigraph AK, has v vertices and there are 4 edges joining each
pair of vertices. A one-factor of AK, is a set of edges which between them contain
every vertex precisely once; a one-factorization is a set of one-factors which
precisely partitions the edges of AK,,.

Clearly v must be even for a one-factor to exist; say v =2n. It is well known
that K, has a one-factorization for every n (see, {or example, [4, p. 439]). Taking
A copies of this yields a one-factorization of AK,,. So every AK,, has a
one-factorization.

Given a one-factorization of AK,,, it may be that there exists an integer A, (less
than 4) such that some A,(2n — 1) of the one-factors form a one-factorization of
MK,,. In that case the one-factorization of AK,, is called decomposable;
otherwise it is indecomposable. When A >1, the one-factorizations of AK,, just
exhibited are all decomposable. It is natural to ask for which values of A and n do
there exist indecomposable one-factorizations of AK,,.

A one-factorization is called simple if it contains no repeated one-factor. There
is no direct correspondence between simplicity and indecomposability. However,
simple one-factorizations will be useful in the sequel.

In this paper we present some results on the existence of indecomposable
one-factorizations which are not simple. Some of these involve so-far unrep-
resented parameters A and 2n. Others have parameters which were previously
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constructed; but as most known results involve simple factorizations, we prove
the existence of non-isomorphic indecomposable one-factorizations in infinitely
r1any cases.

Some notation will be convenient. We write N for the set of the first k positive
integers. If % is a one factorization of the K,, based on vertex-set N,,, and U is
any ordered 2n-set, then F(U) is constructed by replacing i by the ith member of
U in every factor of &, for every i. The factor derived from the factor F of & is
denoted F(U).

We also use one-factorizations of the complete bipartite graph K,,,. If Lis a
one-factorization of the K,, , based on the two vertex-sets N, and N,,\N,,, and U
and V are ordered n-sets, then (U, V) is the one-factorization formed from &
by the substitutions

1,2,...,n)»U
(n+1,n+2,...,2n)-V.

We say a one-factorization ¥ of K, is standardized if the K,, is based on N,,
and the ith factor contains (i, 2n). A one-factorization of K, , is standardized if
the vertex-sets are N, and N,,\N, and the first factor is

{G,n+1),2,n+2),...,(n 2n)}.

2. Known resuits
The following two general results appear in [2].

Theorem 1. If 2n —1 is prime then there is a simple indecomposable one-
factorization of (n — 1)K,.

Theorem 2. If there is an indecomposable one-factorization of AK,,, where

A <2n, then there is a simple indecomposable one-factorization of AK,; whenever
s =2n.

These results were used in [2] together with some ad hoc constructions to

obtain a number of results on the existence of simple indecomposable one-
factorizations for small A:

Theorem 3. A simple indecomposable one-factorization of AK,, exists as follows:
A=2: if and only if 2n = 6;

3: if and only if 2n =8;

4: if and only if 2n = 8;

5:if 2n =10, 12, 14 or 2n =20;

A
A
A
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A=6:if 2n=12;

A=8:if2n =12 or 14 or 2n =24,
A=9:if2n=12 or 14 or 2n =24,
A=10: if 2n =14 or 2n =28;
A=12: if 2n=32.

In the course of proving this theorem, indecomposable (but non-simple)
one-factorizations of 6Kz and 12K, were found. It is known [2] that no
indecomposable one-factorizations of AK, (4> 1) or 3K, exist. Apart from these
two nonexistence results, the only known result about the enumeration of
one-factorizations of 1K, is the fact that there are precisely three non-isomorphic
one-factorizations of 2K, of which exactly one is indecomposable [5].

3. An upper bound

Since there are exactly 1-3- - - (2n — 1) one-factors of K,,, the largest A such
that AK,, has a simple factorization is

A=1-3---(2n-3),
and for a simple indecomposable factorization we must have
A<1:3---(2n-3).

However, this bound does not apply to indecomposable factorizations when
simplicity is not required. We shall now derive a bound (which is probably very
coarse) in that more general case.

By an exact cover of depth d on a set S we mean a collection of subsets of S,
called blocks, such that each member of S belongs to exactly d blocks. (Repeated
blocks are allowed.) If all the blocks are k-sets, the exact cover is called regular of
degree k. An exact cover in S is decomposable if some proper subcollection of its
blocks forms an exact cover on S. It is known (see [3]) that every sufficiently deep
exact cover is decomposable: given s, there exists a positive integer D[s] such that
any exact cover of depth greater than D[s] on an s-set is decomposable. It follows
that there is also a maximum depth for a regular exact cover of degree k on an
s-set: we denote it D[s, k].

Lemma 4 [1]. Whenever s=k =1,

DIs k]<s"-(Sk+S+1)
b s *
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Theorem 5. If there is an indecomposable factorization of AK,,, then

2n3+n2-—n+1)

A<[n(2n - 1)} "’( o —n

Proof. Suppose there is an indecomposable factorization & of AK,,. Denote by S
the set of all edges of K,,: S is a set of size n(2n —1). The factors in %,
interpreted as subsets of S, form an n-regular exact cover of depth d on S. So

A<D[n(2n—1), n},
giving the result. [

4. The case 2n =6

In this section we prove that no indecomposable one-factorization of AK¢ can
exist for A =3. We assume there is an indecomposable one-factorization % of AK
for some A=3 and derive a contradiction. (Recall that the result was already
known in the case A =3.)

For notational convenience we assume K to have vertices 0, 1, 2, 3, 4, 5. Since
the fifteen one-factors of K, form a one-factorization of 3K, not all of them can
appear in %: say {01, 23, 45} is not represented. We denote the other possible
one-factors as follows; say A occurs a times in %, and so on.

A = {01, 24, 35} H =103, 15, 24}
B={01, 25, 34} I1={04, 12, 35}
C={02, 13, 45} J={04, 13, 25}
D = {02, 14, 35} K= {04, 15, 23}
E={02, 15, 34} L = {05, 12, 34}
F={03,12,45} M={05, 13, 24}
G = {03, 13, 25} N= {05, 14, 23}

Since edge 01 must appear in A factors, we have
a+b=A. (1)

One could derive fourteen more equations in this way. In particuiar, considering
24, 02, 14 and 34 we get

k+n=21 (2
ct+d+e=A 3)
d+g+n=24 @)

bte+l=2 )
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and (1)+(2)+(3)—-(4)—-(5) is
atc—g+k—1l=A (6)

We can assume that @ = 1A and k =1A: if a <14 and k < 1A, then carry out the
permutation (01)(45) on all members of ¥ - it exchanges A with B and K with N
and leaves {01, 23, 45} unchanged; if a <32 and k = 1A then (01) is the relevant
permutation; if @ =34 and k <1A then use (45).

The factors {A, C, G, K, L} form a one-factorization of K, so a, ¢, g, k and /
cannot all be non-zero. The permutation (01)(23)(45) exchanges G and L, and
leaves A, C and {01, 23,45} unchanged; so without loss of generality we can
accume o <</
assume g <l

Since a and k are positive, this means we can assume either c or g to be zero.
But the equations derived from considering edges 03 and 45 are

f+g+h=4a, (7
ct+f=42, ®

whence h=c—g and c=g. So g =0. Substituting this into equation (6), and
recalling that a =14 and k =14 we obtain ¢ — /<0. Counting occurrences of 12
we see that

fHi+l=A;

from (8) we get i=c—!/, and as i cannot be negative we have c=! and
a =k =3A. Equation (5) tells us now that e=a —c, so c<a< 11, and therefore
from (8) f is non-zero. Since not all the members of the one-factorization
{A, E, F, J, N} can be represented, e = 0, whence ¢ must equal 12 also.

It is now easy to see that e =g =i =m =0, and that the other ten factors each
occur 1A times. (The equations derived from edges 04 and 0S5 give the information
about i and m.) If A is odd, we have a contradiction. Otherwise we have 1A
duplicates of the one-factorization {A, B, C, D, F, H, J, K, L, N} of 2K,, and ¥
is decomposable. So we have proven the following Theorem.

Theorem 6. There is no indecomposable one-factorization of AK when A =3.

5. Doubling constructions

Theorem 7. Suppose there exists an indecomposable one-factorization of AK, for
some A>1. Then there exists an indecomposable one-factorization of AK,, which
is not simple.

Proof. Suppose ¥ ={F,E,..., F,o,-} is an indecomposable one-
factorization of the AK,, based on N,,. Select two ordered 2n-sets U and V, and a
standardized one-factorization # of K,,,,. Then the factors in the one-
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factorization Z(U, V), together with the A(2n — 1) factors F(U)U F(V), 1<i<
A(2n — 1), form a non-simple one-factorization of K.

Suppose this factorization were decomposable: say {H,, H,, . .., H;} were a
one-factorization of uK,, where the H; are among the factors listed. Write H; for
the intersection of H; with the K,, based on U. Then {H;, H;,...,H;} is a
one-factorization of the uK,, based on U, and %(U) is indecomposable — a
contradiction. [}

Theorem 8. Suppose there exists an indecomposable one-factorization of AK,,,
for some A>1. Then there exists an indecomposable one-factorization of AK,,_,
which is not simple.

Proof. Suppose ¥ is an indecomposable one-factorization of AK,,. Select two
ordered 2n-sets U= (u;, u,, ..., uUs,) and (v,, v, ...,03,) and write U*=
U\{uy,}, V*=V\{v,,}. If the factor F of & contains the edge (i, 2n) then F(U)
contains (u;, u,,); define F* to be F(U)UF(V) with (u;, uy,) and (v;, v,,)
deleted and (u;, v;) appended. Also select a standardized one-factorization £ of
K5, —1.2,-1, and define Z£* to consist of A copies of the factorization L(U*, V'*),
with all A copies of the factor

{(uy, v4), (U2, v2), - - -, (Uzn—1, V2n-1)}

removed. Then
FL*U{F}, F3, ..., Fiau-1)}

is the required one-factcrization of AK,,, ,. O

6. Further directions

It must be pointed out that the results here and in [2] barely scratch the surface
of a hard problem.

The main constructions in both papers are recursive, and in particular yield a
factorization with the same A-value as some known factorization. No indecom-
posable factorization of 7K, is known for any n, and no case of AK,, has been
solved for any A greater than 12 where 24+ 1 is not prime. Further direct
constructions are needed. In particular, ad hoc constructions for 5K, 6K,, or
any 7K, would be very useful.

In Section 4 we obtained a constraint corresponding to each edge of Kg; as K¢
has 15 edges and 15 one-factors, enough information existed for a proof. As 2n
increases, the number of one-factors of K, goes up much faster than the number
of edges, so no generalization of this method can be expected. It is even
conceivable that indecomposable one-factorizations of AKg exist for any A less
than 28% - (%), the bound from Theorem 5 (although, if pressed, we would guess
that this is not so). Any light on this problem would be significant.
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