A condition for a hamiltonian bipartite graph to be bipancyclic

D. Amar

LABRI, U.A. C.N.R.S. 726, Université Bordeaux I, 351, Cours de la Libération, 33405
Talence Cedex, France

Received 10 July 1989
Revised 6 March 1990

Abstract

Let G be a hamiltonian bipartite graph of order $2n$ and let $C = (x_1, y_1, x_2, y_2, \ldots, x_n, y_n, x_1)$ be a hamiltonian cycle of G. G is said to be bipancyclic if it contains a cycle of length $2i$, for every $i, 2 < i < n$. Suppose the vertices x_1 and x_2 are such that $d(x_1) + d(x_2) \geq n + 1$. Then G is either:

1. bipancyclic,
2. missing a 4-cycle (then n is odd and the structure of G is known),
3. missing a $(n + 1)$-cycle (then n is odd and the structure of G is known).

1. Introduction

Let G be a finite graph of order n. Various sufficient conditions for a graph to be hamiltonian have been given in terms of vertex-degree and size of the graph [5–8]. Almost all these conditions imply the graph to be pancyclic, [2, 4, 12], following the meta-conjecture of Bondy. But if the graph is supposed to be hamiltonian, we need weaker conditions in order for the graph to be pancyclic [1, 3]. When G is a balanced bipartite graph, we have analogous results [9–11]. In [13] Schmeichel and Hakimi proved the following theorem.

Theorem. If there exist two vertices x_1 and x_2, consecutive on a hamiltonian cycle of a graph G of order n, such that $d(x_1) + d(x_2) \geq n$, then G is either:

1. pancyclic,
2. bipartite,
3. missing only an $(n - 1)$-cycle.

We establish the analogous result for hamiltonian bipartite graphs.
Theorem. If there exist two vertices \(x_1 \) and \(x_2 \), the distance between which is two, on a Hamiltonian cycle of a bipartite graph \(G \) of order \(2n \), such that:

\[
d(x_1) + d(x_2) \geq n + 1
\]

then \(G \) is bipancyclic except in two cases:

1. \(n \) is odd,

 \[
 N(x_1) = \{ y_j : j \text{ odd}, 1 \leq j \leq n \},
 \]

 \[
 N(x_2) = \{ y_j : j \text{ even}, 2 \leq j \leq n - 1 \} \cup \{ y_1 \},
 \]

 so that \(G \) contains no 4-cycle.

2. \(n \) is odd, \(n = 2l - 1 \),

 \[
 N(x_1) = N(x_2) = \{ y_1, y_2, \ldots, y_d \} \cup \{ y_{l+d}, \ldots, y_{2l-1} \},
 \]

 with \(d \leq l - 1 \).

 Then \(G \) contains no \(2l \)-cycle (i.e. an \((n + 1) \)-cycle).

Notations. Let \(G = (V(G), E(G)) \) with: \(V(G) = \{ x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \} \).

Let \(C = (x_1, y_1, x_2, y_2, \ldots, x_n, y_n, x_1) \) be a Hamiltonian cycle of \(G \). For \(x_i \) and \(y_j \) in \(G \), let:

\[
\delta(x_i, y_j) = 1 \text{ if the edge } (x_i, y_j) \text{ is in } G,
\]

\[
\delta(x_i, y_j) = 0 \text{ if the edge } (x_i, y_j) \text{ is not in } G.
\]

For \(i = 1, 2 \), \(N(x_i) \) denotes the set of the neighbours of \(x_i \) and \(d(x_i) \) the degree of \(x_i \).

2. Proof of the theorem

We suppose that \(G \) does not contain a \(2l \)-cycle for some \(l, 2 \leq l \leq n - 1 \). Then, \(G \) does not contain \(2l \)-cycle with two edges incident with \(x_1 \) or \(x_2 \), and the other edges on the Hamiltonian cycle of \(G \).

Lemma 1. If \(G \) does not contain a \(2l \) cycle:

for \(j, 1 \leq j \leq n - l + 1 \), \(\delta(x_1, y_j) \cdot \delta(x_1, y_{j+l-1}) = 0 \),

for \(j, 2 \leq j \leq n - l + 2 \), \(\delta(x_2, y_j) \cdot \delta(x_2, y_{j+l-1}) = 0 \)

(the indices are taken modulo \(n \)).

2.1. Case \(l = 2 \)

If \(G \) does not contain a 4-cycle, then \(x_1 \) and \(x_2 \) have no common neighbour but \(y_1 \) and for \(2 \leq i \leq n - 1 \), \(x_1 \) or \(x_2 \) are not neighbours of both \(y_i \) and \(y_{i+1} \). The
only possible case is: n is odd,
\[N(x_1) = \{ y_j, j \text{ odd}\}, \]
\[N(x_2) = \{ y_j, j = 1 \text{ or } j \text{ even}\}. \]

If there are no other edges in \(G \), it is easy to see that \(G \) contains no 4-cycle, but contains a 2\(l \)-cycle, for \(3 \leq l \leq n \).

2.2. First conditions when \(3 \leq l \leq n - 1 \)

For \(3 \leq l \leq n - 1 \), \(G \) does not contain a 2\(l \)-cycle with two edges incident with \(x_1 \) or \(x_2 \), and the other edges on the hamiltonian cycle. If for some \(j \), \(2 \leq j \leq n - l + 2 \), \(\delta(x_2, y_j) = \delta(x_1, y_{j+1-2}) \), \((x_1, y_1, x_2, y_j, \ldots, y_{j+1-2}, x_1)\) is a 2\(l \)-cycle in \(G \). If for some \(j \), \(n - l + 3 \leq j \leq n - 1 \), \(\delta(x_2, y_j) = \delta(x_1, y_{j+1-n}) \), \((x_1, y_{j+1-n}, \ldots, y_2, x_2, y_j, \ldots, y_n, x_1)\) is a 2\(l \)-cycle in \(G \).

Lemma 2. If \(G \) does not contain a 2\(l \)-cycle for some \(l \), \(3 \leq l \leq n - 1 \),

\[\begin{align*}
\delta(x_2, y_j) + \delta(x_1, y_{j+1-2}) &\leq 1 \quad \text{for } 2 \leq j \leq n - l + 2, \\
\delta(x_2, y_j) + \delta(x_1, y_{j+1-n}) &\leq 1 \quad \text{for } n - l + 3 \leq j \leq n - 1, \\
n &\in [2, n - l + 2] \iff j + l - 2 \in [l, n], \\
n &\in [n - l + 3, n - 1] \iff j + l - n \in [3, l - 1].
\end{align*} \]

We have then:

\[d(x_1) + d(x_2) = \sum_{j=2}^{n-l+2} \delta(x_2, y_j) + \delta(x_1, y_{j+1-2}) \]
\[+ \sum_{j=n-l+3}^{n-1} \delta(x_2, y_j) + \delta(x_1, y_{j+1-n}) \]
\[+ \delta(x_2, y_n) + \delta(x_1, y_1) + \delta(x_1, y_2) \]

By Lemma 2: \(d(x_1) + d(x_2) \leq n + \delta(x_2, y_n) + \delta(x_1, y_2) \). The condition \(d(x_1) + d(x_2) \geq n + 1 \) implies: \(1 \leq \delta(x_2, y_n) + \delta(x_1, y_2) \leq 2. \)

First case: \(\delta(x_2, y_n) = \delta(x_1, y_2) = 1. \)

By Lemma 1: \(\delta(x_1, y_{n+1}) = \delta(x_2, y_{n-l+1}). \)

By Lemma 2 and the condition \(d(x_1) + d(x_2) \geq n + 1: \)

\[\delta(x_1, y_{n+1}) + \delta(x_2, y_3) + \delta(x_2, y_{n-l+1}) + \delta(x_1, y_{n-1}) \geq 1. \]

Then

\[\delta(x_2, y_3) + \delta(x_1, y_{n-1}) \geq 1. \]

By an argument of symmetry, we can suppose \(\delta(x_2, y_3) = 1. \)
Second case: \(\delta(x_1, y_2) = 1, \delta(x_2, y_n) = 0. \)

By Lemma 1: \(\delta(x_1, y_{l+1}) = 0. \) The condition \(d(x_1) + d(x_2) \geq n + 1 \) implies:
\(\delta(x_1, y_{l+1}) + \delta(x_2, y_n) = 1. \) Then \(\delta(x_2, y_n) = 1. \)

Third case: \(\delta(x_1, y_2) = 0, \delta(x_2, y_n) = 1. \)

This case is symmetric to the second case. For the following, we can suppose:
\(\delta(x_1, y_2) = 1 = \delta(x_2, y_n). \)

2.3. New conditions when \(\delta(x_1, y_2) = \delta(x_2, y_3) = 1 \)

\(G \) contains cycles of lengths 4, 6 and \(2n - 2. \) We suppose \(G \) does not contain a 2\(l \)-cycle, for some \(l, 4 \leq l \leq n - 2. \) If for one \(j, 4 \leq j \leq n - l + 2, \) \(\delta(x_2, y_j) = 1 = \delta(x_1, y_{j+l+3}), \) \((x_1, y_2, x_3, y_3, x_2, y_j, \ldots, y_{j+l-3}, x_1) \) is a 2\(l \)-cycle of \(G. \)

If for one \(j, n - l + 3 \leq j \leq n - 1, \) \(\delta(x_2, y_j) = 1 = \delta(x_1, y_{j+l-n+1}), \) \((x_1, y_n, \ldots, y_j, x_2, y_3, \ldots, y_{j+l-n+1}, x_1) \) is a 2\(l \)-cycle of \(G. \) Moreover, if \(\delta(x_2, y_j) = 1, \) \((x_1, y_2, \ldots, y_j, x_2, y_1, x_1) \) is a 2\(l \)-cycle of \(G. \) Then, with Lemma 2, we can obtain the following.

Lemma 3. If \(G \) does not contain a 2\(l \)-cycle, for some \(l, 4 \leq l \leq n - 2, \) and if \(\delta(x_2, y_n) = 1 = \delta(x_1, y_2): \)

For \(3 \leq j \leq n - l + 2, \) \(\delta(x_2, y_j) = 1 \Rightarrow \delta(x_1, y_{j+l-3}) = 0, \delta(x_1, y_{j+l-2}) = 0. \)

For \(n - l + 3 \leq j \leq n - 1, \) \(\delta(x_2, y_j) = 1 \Rightarrow \delta(x_1, y_{j+l-n}) = 0, \delta(x_1, y_{j+l-n+1}) = 0. \)

2.4. Proof of the theorem

We define ‘intervals of neighbours’ for \(x_2, \) and then, applying Lemma 3, we determine ‘forbidden intervals’ for the neighbours of \(x_1. \)

There exist integers \(r \geq 1, s \geq 0, \) intervals of \(\mathbb{N}, I_k, 1 \leq k \leq r, \) and \(J_h, 1 \leq h \leq s, \) such that:

For \(1 \leq k \leq r, \) \(I_k \subset [1, n - l + 2] \) (resp. for \(1 \leq h \leq s, J_h \subset [n - l + 3, n]). \)

For \(1 \leq k \leq r - 1, \) \(\max(I_k) \leq \min(I_{k+1}) - 2 \) (resp. for \(1 \leq h \leq s - 1, \) \(\max(J_h) \leq \min(J_{h+1}) - 2 \) with the property:

\[N(x_2) = \left\{ y_j, j \in \left(\bigcup_{k=1}^{r} I_k \right) \cup \left(\bigcup_{h=1}^{s} J_h \right) \right\}. \]

Then:
\[d(x_2) = \sum_{k=1}^{r} |I_k| + \sum_{h=1}^{s} |J_h|. \]

Let \(I_1 = [1, d], \) with \(d \geq 3, \) then for \(2 \leq k \leq r, I_k \subset [d + 2, n - l + 2]. \) We define:
\[T(I_1) = [l, d + l - 2] \quad \text{and for} \quad 2 \leq k \leq r, \]
\[T(I_k) = ((l - 2) + I_k) \cup ((l - 3) + I_k), \quad \text{for} \quad 2 \leq k \leq r. \]
The bipancyclic hamiltonian bipartite graph

where \((l - 2) + I_k\) and \((l - 3) + I_k\) mean translations of the set \(I_k\), then for \(2 \leq k \leq r\):

\[
T(I_k) \subseteq [d + l - 1, n],
\]

\[
|T(I_k)| = |I_k| + 1; \quad \text{and} \quad |T(I_1)| = |I_1| - 1.
\]

If \(s > 0\), let \(\alpha\) and \(\beta\) such that: \(0 \leq \beta \leq \alpha\), and \(J_s = [n - \alpha, n - \beta]\), then for \(1 \leq h \leq s - 1\)

\[
J_h \subset [n - l + 3, n - \alpha - 2].
\]

We define

\[
T(J_s) = [l - \alpha, l - \beta + 1], \quad \text{if} \quad \beta > 1,
\]

\[
T(J_s) = [l - \alpha, l - 1], \quad \text{if} \quad \beta \leq 1 \leq \alpha,
\]

\[
T(J_s) = \emptyset \quad \text{if} \quad \beta = \alpha = 0,
\]

and for \(1 \leq h \leq s - 1\),

\[
T(J_h) = ((l - n) + J_h) \cup ((l - n + 1) + J_h),
\]

then for \(1 \leq h \leq s - 1\):

\[
T(J_h) \subseteq [3, l - \alpha - 1],
\]

\[
|T(J_h)| = |J_h| + 1.
\]

The relations (i), (ii), (iii), (iv) and the property of the non-adjacency of the intervals \(I_k\) (resp. \(J_h\)) allow us to conclude that, for \(1 \leq k \leq r\) and \(1 \leq h \leq s\), the intervals \(T(I_k)\) and \(T(J_h)\) are disjoint. Lemma 3 implies that \(N(x_i)\) is independent of any vertex in the set

\[
\left\{ y_j, j \in \left(\bigcup_{k=1}^{r} T(I_k) \right) \cup \left(\bigcup_{h=1}^{s} T(J_h) \right) \right\}.
\]

Then

\[
n - d(x_1) \geq \sum_{k=1}^{r} |T(I_k)| + \sum_{h=1}^{s} |T(J_h)|.
\]

For \(s = 0\) or \(s = 1\) and \(\beta > 1\): \(d(x_1) + d(x_2) \leq n - (r - 1) - (s - 1)\). The condition \(d(x_1) + d(x_2) \geq n + 1\) implies: \(r = 1, s = 0\).

For \(s \geq 1, \beta = 1\): \(d(x_1) + d(x_2) \leq n + 3 - r - s\) then \(r = 1 = s\).

For \(s \geq 1, \beta = 0\): \(d(x_1) + d(x_2) \leq n + 4 - r - s\) then \(2 \leq r + s \leq 3\), with \(r \geq 1, s \geq 1\).

We will study these three cases.

First case: \(r = 1, s = 0\).

\[
N(x_2) = \{ y_1, y_2, \ldots, y_d \}, \quad \text{with} \quad d \leq n - l + 2.
\]
By Lemma 3: $N(x_1) = \{y_k, k \notin [l, d + l - 2]\}$. As $d \leq l - 1$, then $\delta(x_1, y_k) = 1$ and $(x_1, y_d, \ldots, y_{d+l-1}, x_1)$ is a 2l-cycle.

\textbf{Second case: } $\beta = 1$, $r = s = 1$.

$N(x_2) = \{y_1, \ldots, y_d\} \cup \{y_{n-\alpha}, \ldots, y_{n-1}\}$, with $3 \leq d \leq l - 1, 1 \leq \alpha \leq l - 3$.

By Lemma 3: $N(x_1) = \{y_k, k \notin [l - \alpha, d + l - 2]\}$.

If $d + l - 1 \leq n - l + 1$: $(x_1, y_{n-l+1}, \ldots, y_n, x_1)$ is a 2l-cycle.

If $d + l - 1 > n - l + 1$:

(i) For $n \geq 2l$, $n - l + d - 1 \geq d + l - 1$, then $\delta(x_1, y_{n-l+d-1}) = 1$ or $\delta(x_1, y_{n-l+d-1}, \ldots, y_n, x_1)$ is a 2l-cycle.

(ii) For $n \leq 2l - 1$, by Lemma 1, $d + l - 1 \leq n - \alpha - 1$, then $d \leq n - l - \alpha \leq l - \alpha - 1$ and $\delta(x_1, y_d) = 1$. $(x_1, y_d, \ldots, y_{d+l-1}, x_1)$ is a 2l-cycle.

\textbf{Third case: } $\beta = 0$, $2 \leq r + s \leq 3, r \geq 1, s \geq 1$.

(a) $r = s = 1$.

$N(x_2) = \{y_1, \ldots, y_d\} \cup \{y_{n-\alpha}, \ldots, y_n\}$, with $3 \leq d \leq l - 1$ and $\alpha \leq l - 3$.

By Lemma 3: $N(x_1) \subset \{y_k, k \notin [l - \alpha, d + l - 2]\}$, and at most one $y_k, k \notin [l - \alpha, d + l - 2]$ is independent of x_1.

(i) For $n \geq 2l$, $n - l + d - 1 \geq d + l - 1$, then $\delta(x_1, y_{n-l+d-1}) = 1$ or $\delta(x_1, y_{n-l+d-1}, \ldots, y_n, x_1)$ is a 2l-cycle.

(ii) For $n \leq 2l - 2$, by Lemma 1, $d + l - 1 \leq n - \alpha - 1$, then $d \leq n - l - \alpha \leq l - \alpha - 2$. $\delta(x_1, y_d) \cdot \delta(x_1, y_{d+l-1}) = 1$ or $\delta(x_1, y_{d+l-1}) = 1$. Then $(x_1, y_d, \ldots, y_{d+l-1}, x_1)$ is a 2l-cycle.

(iii) For $n = 2l - 1$, $d + l - 1 \leq n - l + d$, if $\delta(x_1, y_{d+l-1}) = 1$: $(x_1, y_{n-l+d}, \ldots, y_n, x_2, y_d, \ldots, y_2, x_1)$ is a 2l-cycle. We suppose $\delta(x_1, y_{d+l-1}) = 0$. If (x_1, y_{d+l-1}) is not a 2l-cycle in G, then $d + 1 \geq l - \alpha$. By Lemma 1: $d \leq n - l - \alpha = l - \alpha - 1$. Then $d = l - \alpha - 1$ and

$N(x_1) = N(x_2) = \{y_1, y_2, \ldots, y_d\} \cup \{y_{r+d}, \ldots, y_{2l-1}\}$, with $3 \leq d \leq l - 1$.

If there is no other edge in G than the edges of the hamiltonian cycle and the edges incident with x_1 or x_2, G contains cycles of every even length but 2l for $l = (n + 1)/2$.

(b) $r = 2, s = 1$.

$N(x_2) = \{y_j: j \in [1, d] \cup [p, q] \cup [n - \alpha, n]\}, \text{ with } 3 \leq d \leq l - 1, d + 2 \leq p \leq q \leq n - l + 2, 0 \leq \alpha \leq l - 3$.

By Lemma 3:

$N(x_1) = \{y_k: k \notin [l - \alpha, d + l - 2] \cup [p + l - 3, q + l - 2]\}$.
By Lemma 1, \(q + l - 1 \leq n - \alpha - 1 \), then \(\delta(x_1, y_{n-\alpha-1}) = 1 \). (\(x_1, y_{n-\alpha-1}, \ldots, y_n, x_2, y_2, \ldots, y_{l-\alpha-1}, x_1 \)) is a 2l-cycle.

(c) \(r = 1, s = 2 \).

\[N(x_2) = \{ y_j : j \in [1, d] \cup [p, q] \cup [n - \alpha, n] \}, \quad \text{with} \]
\[0 \leq d \leq l - 1, n - 1 + 3 \leq p \leq q \leq n - \alpha - 2, 0 \leq \alpha \leq l - 3. \]

\[N(x_1) = \{ y_k : k \notin [l - \alpha, d + l - 2] \cup [p + l - n, q + l - n + 1] \}. \]

(i) For \(n \geq 2l - 1, d + l - 1 \leq n - l + d \), then \(\delta(x_1, y_{n-l+d}) = 1 \), (\(x_1, y_{n-l+d}, \ldots, y_n, x_2, y_d, \ldots, y_2, x_1 \)) is a 2l-cycle.

(ii) For \(n \leq 2l - 2 \): If \(q < n - \alpha - 2 \), \(\delta(x_1, y_{l-\alpha-1}) = 1 \), and by Lemma 1: \(d + l - 1 \leq n - \alpha - 1 \), then \(\delta(x_1, y_{n-\alpha-1}) = 1 \), (\(x_1, y_{n-\alpha-1}, \ldots, y_n, x_2, y_2, \ldots, y_{l-\alpha-1}, x_1 \)) is a 2l-cycle.

If \(q = n - \alpha - 2 \), by Lemma 1: \(d + l - 1 \leq n - \alpha - 1 \), then \(q \geq d + l - 2 \), \(\delta(x_2, y_{d+l-2}) = 0 \), then: \(q \geq p \geq d + l \). For \(1 \leq j \leq p + l - n - 1 \), and \(d + l - 1 \leq k \leq n \): \(\delta(x_1, y_j) = 1 \) and \(\delta(x_1, y_k) = 1 \);

\[(d + l - 1) - (p + l - n - 1) = (d - p) + n \leq -l + 2l - 1 = l - 1. \]

Then there exist \(j, 1 \leq j \leq p + l - n - 1 \), and there exist \(k - j + l - 1 \leq n \), such that: \(\delta(x_1, y_j) \cdot \delta(x_1, y_k) = 1 \).

We obtain a contradiction with Lemma 1.

References