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Abstract

Intracerebral infection of susceptible strains of mice, e.g. SJL/J, with Theiler’s murine encephalomyelitis virus (TMEV) leads to a persistent
CNS infection accompanied by development of a chronic-progressive inflammatory CNS autoimmune demyelinating disease which is clinically
and pathologically similar to human multiple sclerosis. In contrast, resistant strains of mice, e.g. C57BL/6 (B6), effectively clear TMEV from the
CNS and do not develop demyelinating disease. Although CD8" T cells are crucial for viral clearance in B6 mice, SJL mice also mount potent
CD8" T cell responses against virus, thus the reason for the viral persistence in the CNS in these mice is unclear. Here, we examined innate anti-
viral responses of CNS-resident astrocytes as a potential determinant of viral persistence and disease susceptibility. We demonstrate that B6
astrocytes produce significantly higher levels of cytokines, chemokines and adhesion molecules in response to TMEV infection, or stimulation
with IFN-y and TNF-a or poly I:C than SJL mice. In addition, TMEV more effectively induces MHC I molecules on B6 astrocytes than SJL,
corresponding with an increased ability to activate TMEV-specific CD8" T cells directly ex vivo. These results suggest that enhanced anti-viral
responses of B6 astrocytes contribute to the ability of these mice to clear TMEV from the CNS and therefore to their resistance to the development

of autoimmune demyelinating disease.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Intracerebral infection of susceptible strains of mice with the
BeAn strain of Theiler’s murine encephalomyelitis virus
(TMEV) leads to a persistent central nervous system (CNS)
infection accompanied by development of a chronic-progres-
sive inflammatory demyelinating disease beginning approxi-
mately 30 days post-infection (dpi) (Dal Canto and Lipton,
1975; Lipton, 1975). TMEV-induced demyelinating disease
(TMEV-IDD) is a relevant model for human multiple sclerosis
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(MS) because many of the clinical symptoms and pathologic
correlates are similar, including CD4" T cell and mononuclear
phagocyte infiltration into the CNS, primary demyelination and
spastic hindlimb paralysis (Dal Canto and Lipton, 1975; Hafler,
2004; Lipton, 1975). In contrast, resistant mice are able to
efficiently clear TMEV from the CNS and do not progress to
demyelinating disease (Chamorro et al., 1986).

Resistance to persistent CNS infection by TMEV is con-
trolled by multiple genetic loci, with the strongest linkage to the
class I H-2D major histocompatibility complex (MHC) region
(Brahic et al., 2005; Lipton and Melvold, 1984). Mice which
carry an H-2% & P ™V °" 4 haplotype are susceptible to TMEV-
IDD, while those bearing H-2* ¥ ° ¢ haplotypes are resistant
(Rodriguez and David, 1985). The particular importance of the
H-2D region was demonstrated using hybrid strains which
express H-2K® and H-2DP, which are resistant to TMEV-IDD,
and those expressing H-2K® and H-2D°®, which are susceptible
(Clatch et al.,, 1985). Additionally, H-2° mice which are
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genetically deficient in H-2D are susceptible to TMEV-IDD and
the insertion of an H-2D® gene into a normally susceptible H-24
strain renders them resistant, further supporting a critical role of H-
2D in determining genetic susceptibility to TMEV-IDD (Azoulay
et al., 1994; Azoulay-Cayla et al., 2000; Lipton et al., 1995a).
The strong association of H-2D haplotype with development
of demyelinating disease indicates a role of CD8" T cells in
disease which could be pathologic or protective. Most evidence
points towards a protective role of CD8" T cells via the clear-
ance of TMEV from the CNS, because mice on a resistant
background which are CDS8-depleted via antibody or geneti-
cally deficient in CD8" T cells fail to clear the virus and
develop CNS demyelination and inflammation, although they
develop only mild clinical symptoms (Borrow et al., 1992;
Fiette et al., 1993; Ure and Rodriguez, 2002). Additionally,
TMEV-infected CD8-deficient mice on a susceptible back-
ground exhibit decreased viral clearance, increased CNS

N SJL

inflammation and a more rapid and severe clinical disease
course (Begolka et al., 2001).

Despite evidence demonstrating the importance of the CD8"
T cell response in protection from TMEV-IDD, susceptible
strains of mice mount robust CD8" T cell responses against
TMEY, similar in frequency to those in resistant strains (Kang
et al., 2002; Lindsley et al., 1991; Lyman et al., 2004), which
raises the question of why susceptible strains of mice are unable
to completely clear the virus from the CNS. It has recently been
demonstrated using bone marrow chimeras that some genetic
control of susceptibility depends on cells which are not of
hematopoetic origin, suggesting these genes might control
responses in the target organ (Aubagnac et al., 2002). Astrocytes
are neuroectodermally derived cells which are critical for normal
functions of the CNS including synaptic transmission, main-
tenance of the blood-brain barrier, metabolic support of axons,
and ion and neurotransmitter buffering. We and other groups
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Fig. 1. SJL astrocytes are infected with TMEV more efficiently than B6 astrocytes. SIL or B6 astrocytes were mock infected or infected with TMEV (MOI=10).
(A) Mock infected (grey line) and TME V-infected (black line) cultures were harvested at 48 h and stained with anti-TMEV antibody. The percentage of cells falling
within the drawn gate in the TMEV-infected cultures is shown above the gate. Data are representative of 3 separate experiments. (B) The percent of TME V-infected
cells in SJL and B6 cultures was quantified. Data shown are the mean+SEM of 3 separate experiments. *p=0.05, one-tailed Student’s ¢ test (C) Supernatants were
collected at 24, 48 and 72 h post-infection and analyzed for lactate dehydrogenase release as a measure of cell death. Data are expressed as the difference between the
optical density (OD) of the mock infected samples at 24 h and the experimental samples and are the average+SEM of 3 separate experiments. Freeze/thawed samples
were used as a positive control. A two-way ANOVA with repeated measures found significant effects of time (p=0.012) and treatment group (p=0.0014). **OD value
significantly increased compared to control, p<0.01 by Bonferroni post test. *OD value significantly increased compared to mock infected cells at 72 h by one-tailed

Student’s # test, p<0.05.
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Fig. 2. TMEV infection induces similar levels of type I IFNs in SJL and B6
astrocytes. SIL or B6 astrocytes were mock infected or infected with TMEV
(MOI=10). Supernatants were harvested at 72 h post-infection and analyzed for
the production of IFN-a and IFN-3 by ELISA. Data shown are the average+
SEM of 3—4 separate experiments.

have demonstrated that activated astrocytes can also contribute
to immune responses in the CNS through the production of
cytokines, chemokines, anti-microbial molecules and the ability
to activate CD4 " T cells in the presence of interferon-y (IFN-y)
(Bailey et al., 2006; Carpentier et al., 2005, 2007). Although
astrocytes generally express low to undetectable levels of MHC I
molecules under resting conditions (Schnitzer and Schachner,
1981; Traugott, 1987), treatment with cytokines or infection
with virus can upregulate MHC I and increase the ability of
astrocytes to activate or be lysed by CD8" T cells (Lavi et al.,
1988; Liu et al., 1989; Skias et al., 1987; Suzumura et al., 1986;
Wong et al., 1984). The upregulation of MHC 1 is highly variable
between strains of mice and is controlled by genes within the
MHC locus (Massa et al., 1989), suggesting that the expression
of MHC I on astrocytes could account for some of the MHC-
dependent genetic control of TMEV-IDD susceptibility. Astro-
cytes in susceptible mice are activated in response to TMEV in
vivo and harbor viral antigen (Zheng et al., 2001). It has been
suggested that astrocytes are the major source of replicating
virus in vivo, although other groups contend that microglia/
macrophages contribute more to viral load (Lipton et al., 1995b;
Zheng et al., 2001).

Here, we demonstrate that astrocytes derived from TMEV-
IDD resistant C57BL/6 (B6) mice are less efficiently infected by
TMEV in vitro than those from susceptible SJL mice. Addi-
tionally, B6 astrocytes express increased levels of cytokines,
chemokines and adhesion molecules in response to various other
pro-inflammatory stimuli compared to SJL astrocytes. Finally, we
demonstrate that B6 astrocytes infected with TMEV more readily
upregulate MHC I and more efficiently activate CD8" T cells than
SJL astrocytes. We hypothesize that the augmented anti-viral
responses of B6 astrocytes contribute to the enhanced ability of
these mice to clear TMEV from the CNS and therefore contribute
to their resistance to the development of chronic demyelinating
disease.

Results
TMEYV infection of SJL and B6 astrocytes

We have previously observed that astrocytes from TMEV-
IDD susceptible SJL mice can be directly infected with TMEV,
expressing both viral RNA and protein antigens (Carpentier
et al., 2007). To ascertain if there are strain differences in the
astrocytic response to TMEV infection between resistant B6 and
susceptible SJL mice, we first determined if TMEYV infection of
B6 astrocytes differs from SJL astrocytes. Fewer B6 astrocytes
express TMEV antigens at 48 h post-infection, indicating that
they are less efficiently infected than SJL astrocytes (Figs. 1A,
B; p=0.05). Consistent with our previous observations, there
was a small but statistically significant increase in cell death after
72 h of infection with TMEV in both SJIL and B6 cultures. The
amount of cytotoxicity in TMEV-infected cultures is quite small
in comparison to a freeze—thaw positive control. There was no
difference in the amount of cytotoxicity observed between the
mouse strains, indicating that TMEV does not produce a strong
lytic infection in astrocytes from either strain (Fig. 1C).

Innate immune functions of SJL and B6 astrocytes

We next examined the innate immune functions of astrocytes
induced by TMEV infection. We have previously completed
time course experiments with astrocytes infected with TMEV
and observed that production of type I IFNs, cytokines and
chemokines increases through 72 h, and we have therefore
chosen this time to examine these innate immune functions
(Carpentier et al., 2007). There is a trend towards increased
production of type I IFNs in B6 astrocytes after TMEV infection
(Fig. 2), but it did not reach statistical significance (»p=0.19 for
IFN-a and p=0.09 for IFN-R). It therefore appears that type I
IFN production is likely not the mechanism by which B6
astrocytes better control TMEV infection. B6 astrocytes, how-
ever, induce higher levels of a variety of cytokines and
chemokines after TMEV infection and polyinosinic-polycytidylic

Fig. 3. B6 astrocytes produce greater amounts of cytokines and chemokines than SJL astrocytes. SJL or B6 astrocytes were mock infected, treated with IFN-y and
TNF-a (100 and 500 U/ml), poly I:C (100 mg/ml), or infected with TMEV (MOI=10). Supernatants were harvested at 72 h and analyzed for the production of
cytokines and chemokines by Luminex mutiplex bead assay. Data shown are the average+SEM of 5 separate experiments. *Levels significantly increased compared to

SJL astrocytes by paired one-tailed Student’s 7 test, p<0.05.
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acid (poly I:C) treatment (Fig. 3). In response to treatment with
poly I:C, both SJL and B6 astrocytes express similar levels of IL-
6, CCL2, CCL5, CXCLI and CXCL10 (Figs. 3A, C, F-H).
However, B6 astrocytes treated with poly I:C express signifi-
cantly higher levels of tumor necrosis factor-a (TNF-a), CCL3,
and CCL4 than SJL astrocytes (Figs. 3B, D, E; p=0.012 CCL3;
p=0.038 CCL4; p=0.032 TNF-a). In response to TMEV

ICAM-1

A

infection, as we have previously observed (11), SJL astrocytes
express IL-6, CCL2, CCLS5 and CXCL10 (Figs. 3A, C, F, H). B6
astrocytes infected with TMEV produce significantly increased
levels IL-6 and CXCL10 (Figs. 3A, H; p=0.026 IL-6; p=0.013
CXCL10) and also show a trend towards increased production of
TNF-a, CCL2 and CCLS5 (Figs. 3B, C, F). B6 astrocytes infected
with TMEV also induce CCL3 and CCL4, which is significantly
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Fig. 4. B6 astrocytes express higher levels of adhesion molecules than SIL astrocytes. Astrocyte cultures from B6 (gray lines) or SJL (black lines) mice were mock
infected, treated with IFN-y and TNF-a (100 and 500 U/ml) or poly I:C (100 pg/ml), or infected with TMEV (MOI=10). After 48 h, cells were harvested and stained
for ICAM-1 (A-D) and VCAM-1 (F-I) and analyzed by flow cytometry. Plots shown are representative of 3—4 separate experiments. (E, J) The fold increase in the
mean fluorescence shift (A MFS) in the treated samples compared to the control was determined. Data shown are the average+SEM of 3—4 separate experiments.
*Levels significantly increased compared to SJL astrocytes by paired one-tailed Student’s 7 test, p<0.05.
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increased compared to SJL (Figs. 3D, E; p=0.043 CCL3;
p=0.038 CCL4). Combined exposure to IFN-y and TNF-«
induced significant expression of CCL2, CCL5 and CXCL10 in
both strains, and CXCL10 production under this condition was
slightly enhanced in B6 astrocytes (Figs. 3C, F, H; p=0.0406).
CCL3 and CCL4 were also slightly enhanced in B6 IFN-y and
TNF-a treated astrocytes, but the levels remained quite low
compared to the other treatments (Figs. 3D, E; p=0.0058 CCL3;
p=0.028 CCL4). Importantly, many of these chemokines
produced by astrocytes have been demonstrated to be critical
for recruitment of CD8" T cells to sites of viral infection
(Thomsen et al., 2003).

We have also previously demonstrated that stimulation of
astrocytes with TLR ligands or cytokines upregulated their
expression of the adhesion molecules intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) (Carpentier et al., 2005). These adhesion molecules
are crucial for the infiltration of leukocytes into the CNS
(Ransohoff et al., 2003), and it has been proposed that their
expression on astrocytes is particularly crucial for the penetra-
tion of leukocytes deep into the CNS parenchyma (Gimenez et
al., 2004). There is no significant difference in the levels of
adhesion molecules expressed in mock infected SJL or B6
astrocytes (Figs. 4A, F and data not shown). [FN-vy and TNF-a
treatment upregulate I[CAM-1 and VCAM-1 similarly in SJL
and B6 mice (Figs. 4B, G, E, J). Poly I:C more strongly
upregulates ICAM-1 in B6 than SJL (Figs. 4C, E; p=0.04), and
there is a trend towards stronger upregulation of VCAM-I
although it does not reach significance (Figs. 4H, J; p=0.07).
The increased upregulation of adhesion molecules on B6
astrocytes is most marked and consistent with TMEV infection
(Figs. 4D, E, 1, J; p=0.03 ICAM-1, p=0.04 VCAM-1), which
may contribute towards the increased early infiltration of CD8"
T cells into the CNS of B6 mice. This increased expression of
adhesion molecules is not restricted to cells which are actually
infected with TMEV, which is a minority of cells in B6 cultures,
because there is a whole population shift in I[CAM-1 and
VCAM-1 expression.

CDS8" T cell activation by astrocytes

We next examined the ability of astrocytes to directly
activate CD8" T cells, which are crucial to clearance of TMEV
from the CNS (Begolka et al., 2001; Borrow et al., 1992; Fiette
et al., 1993). In order to activate CD8" T cells, a cell must
express the appropriate peptide in the context of MHC class I,
which astrocytes can express in response to virus infection or
cytokine treatment (Fontana et al., 1986; Lavi et al., 1988; Liu
et al., 1989; Suzumura et al., 1986; Wong et al., 1984). We thus
compared the constitutive expression and regulation of MHC 1
molecules H-2K and H-2D in SJL and B6 astrocytes,
respectively. We chose these molecules because all known
TMEYV epitopes are restricted to H-2K in SJL and H-2D in B6
mice (Kang et al., 2002; Lyman et al., 2002). SJL astrocytes
express little or no H-2K® in the unstimulated state (Fig. 5A),
but it is upregulated by treatment with IFN-y and TNF-a or
poly I:C (Figs. 5B, C). In contrast, infection with TMEV is a

relatively poor inducer of H-2K® expression by SJL astrocytes
(Fig. 5D). B6 astrocytes also express low constitutive levels of
H-2D° (Fig. 5E), but upregulate it in response to IFN-y and
TNF-a, poly I:C, or TMEV infection (Figs. 5SF—H). Compared
to SIL, B6 astrocytes upregulate H-2 expression significantly
more in response to IFN-y and TNF-a (»p=0.029) and TMEV
(p=0.049), and there is a trend towards higher upregulation in
response to poly I:C as well (p=0.09).

These differences suggested that SJL astrocytes may be less
able to activate the anti-viral functions of CD8" T cells due to
their relative lack of MHC I expression. However, it is difficult to
directly compare the levels of MHC I on B6 and SJL astrocytes
because they are distinct molecules and analyzed with different
antibodies. Therefore, to further test this hypothesis, we
examined the ability of astrocytes to induce IFN-y production
by TMEV-specific CD8" T cells. CD8" T cells were isolated
from the spleens of naive or TME V-infected mice at 8 dpi using
magnetic cell sorting with anti-CD8a microbeads. Purified
samples averaged approximately 90% CD8a" cells (data not
shown). The majority of CD8a" cells are also positive for CD90,
indicating that they are T cells, although a small subset of CD8a
cells co-express CD11c (data not shown). This is potentially a
concern, because CD8a™ dendritic cells are known for their
potent ability to activate CD8" T cells (Ardavin, 2003). How-
ever, we did not observe any IFN-y production above
background in CD8" T cell cultures from TMEV-infected mice
which did not contain astrocytes, even with specific peptide
added (Fig. 6B). Importantly, virtually none of the sorted cells
was CD90"CD8a ", which represents CD4" T cells and another
potential contaminating source of IFN-vy (data not shown). We
co-cultured CD8a" T cells from TMEV-infected SJL and B6
mice with astrocytes that were mock infected, treated with IFN-y
and TNF-a, or infected with TMEV 48 h prior with or without
the immunodominant CD8-restricted viral peptides, VP359_166
for SJL and VP2,;_;30 for B6 (Kang et al., 2002; Lyman et al.,
2002). Culture supernatants were harvested after 96 h and
analyzed for IFN-vy levels. Neither SJL nor B6 astrocytes in the
absence of CD8" T cells produce significant levels of IFN-y
under any condition (not shown). CD8" T cells isolated from
naive mice also failed to produce significant amounts of [FN-vy
under any condition (Fig. 6A). SJL and B6 astrocytes were able
to induce of IFN-y from TMEV-specific CD8" T cells upon the
addition of specific peptide (Fig. 6B). B6 astrocytes were more
efficient at inducing peptide-specific CD8" T cell activation
when TME V-infected cells were employed (p=0.011 effect of
strain by two-way ANOVA; p<0.05, Bonferonni post test SJL
TMEV to B6 TMEV). Mock infected and especially IFN-vy and
TNF-a treated astrocytes showed a similar ability to activate
CDS8" T cells from TMEV-infected mice, indicating that the
difference between these strains is limited to the astrocytic
response to TMEV infection. This observation correlates well
with the increased levels of MHC 1 expression on TMEV-
infected astrocytes (Fig. 5). Importantly, B6 astrocytes infected
with TMEV were also able to induce IFN-y production from
TMEV-specific CD8" T cells without the addition of exogenous
peptide, indicating that they are able to efficiently process and
present endogenous viral antigen, whereas SJL astrocytes were
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are representative of 3—4 separate experiments (A—H). Numbers in each graph are the mean fluorescence shift (MFS) of the indicated treatment and strain. (I) The fold
increase in the mean fluorescence intensity (A MFI) in the treated samples compared to the control was determined. Data shown are the average+SEM of 3 separate
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not (Fig. 6C; p=0.037 effect of strain by two-way ANOVA,  than a difference in viral antigen levels, since we observe
»<0.01 by Bonferroni post test, B6 TMEV to SIL TMEV). somewhat decreased levels of viral antigen in TMEV-infected
This difference is most likely the result of increased MHC 1 B6 cultures after 48 h (Figs. 1A, B). In order to confirm that there
expression in TMEV-infected B6 astrocytes (Figs. 5D, H) rather ~ are no differences between the frequency or IFN-y producing
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IFN-v in response to the dominant and subdominant viral epitopes from both SJL (D) and B6 (E) mice were analyzed at day 7 pi. Of note the frequency of IFN-y-
producing splenic CD8 T cells specific for the respective immunodominant CTL epitopes did not differ between the two mouse strains. Results are representative of

two separate experiments.

ability of SJL and B6 TMEV-specific CD8" T cells which could
potentially account for these results, we performed ELISPOTs
from both strains of mice with the immunodominant and
subdominant TMEV peptides at 7 dpi (Figs. 6D, E). Our results

demonstrate that similar numbers of CD8" T cells capable of
producing IFN-v in response to TMEV-specific peptides exist in
the spleens of B6 and SJL mice acutely after infection, and
further indicate that only the antigen processing and/or
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presentation ability of astrocytes differ between these two
strains. Since astrocytes are infected in vivo with TMEV (Zheng
et al., 2001), their ability to process and present viral antigen to
CD8" T cells could be crucial for CNS virus clearance.

Discussion

These findings demonstrate key functional differences
between astrocytes from TMEV-IDD resistant B6 and suscep-
tible SJIL mice in their ability to mount efficient anti-viral
responses. We first demonstrate that B6 astrocytes are more
resistant to TMEYV infection than SJL astrocytes. Astrocytes are
infected in SJL mice in vivo, although whether astrocytes or
microglia/macrophages are the major source of replicating virus
has been controversial (Lipton et al., 1995b; Zheng et al., 2001).
Our data indicates that astrocytes are less efficiently infected in
resistant B6 mice, which could account for the somewhat
decreased viral loads in B6 compared to SJL brains even early
after infection (Lyman et al., 2004), and could significantly
contribute to the inability to establish a persistent viral infection
and result in demyelinating disease. Our data also demonstrates
decreased innate immune functions and decreased ability to
process and present antigen to CD8" T cells in TME V-infected
SJL astrocytes compared to B6. Together, these data suggest the
possibility that astrocytes, non-hematopoetic cells resident in
the CNS, may significantly contribute to the ability of the
immune system to efficiently clear virus in this target organ. We
are working to confirm these results in an iz vivo system using
GFAP-GFP transgenic mice to allow astrocytes to be sorted
from TMEV-infected brains and compared for expression of
pro-inflammatory molecules and ability to present antigen to
CDS8" and CD4" T cells. We are also pursuing studies in mice
with genetic defects in various astrocyte-related inflammatory
functions to determine which functions are important for
susceptibility to TMEV-IDD in vivo.

The ability to clear TMEV from the CNS is critically
dependent on CD8" T cells (Borrow et al., 1992; Fiette et al.,
1993; Ure and Rodriguez, 2002). Additionally, the strongest
genetic linkage to TMEV susceptibility lies within the H-2D
locus in the MHC region of the genome, further suggesting the
critical importance of CD8" T cells in viral clearance (Brahic
et al., 2005). For this reason, most studies to date examining
strain-dependent susceptibility to TMEV-IDD have focused on
CD8" T cell functions. Surprisingly, however, susceptible mice
mount very strong CD8" T cell responses to TMEV infection,
and the activation, cytokine production and cytolytic functions
of STL CD8" T cells are similar to those seen in resistant B6 mice
(Kang et al., 2002; Lindsley et al., 1991; Lyman et al., 2004).

There is, however, a reported delay in the infiltration of
CDS8" T cells into the CNS of TMEV-infected SJL mice com-
pared to B6 (Lyman et al., 2004). Our results correlate well with
this study, since we observe here that SJL astrocytes express
lower levels of cytokines, chemokines and adhesion molecules,
particularly in response to TMEV infection, which may cause
less efficient recruitment and infiltration of anti-viral CD8" T
cells into the CNS. B6 astrocytes express higher levels of the
cytokines IL-6 and TNF-a after TMEV infection or poly I:C

treatment, which may damage the blood-brain barrier (BBB)
and contribute to the ability of leukocytes to infiltrate the CNS
(de Vries et al., 1996). B6 astrocytes also express significantly
higher levels of CXCL10, CCL3 and CCL4 than SJL astrocytes
and trend towards higher production of CCL2 and CCLS5. These
chemokines are of particular interest because they are critical for
the recruitment of virus-specific CD8" T cells to sites of
infection throughout the body (Thomsen et al., 2003) and their
induction has been described in the CNS in response to many
viral infections, including TMEV (Glass et al., 2005; Hoffman
et al., 1999; Lane et al., 2000; Nansen et al., 2000; Nuovo and
Alfieri, 1996). Genetic deficiency or blockade of CCL3, CCLS5,
CXCL10 or CCR2 (the obligate receptor for CCL2) during
acute CNS infection generally inhibits the infiltration of T cells
and monocytes/macrophages into the CNS and is associated
with increased viral loads after infection with MHV or TMEV
(Chen et al., 2001; Lane et al., 2000; Liu et al., 2000; Trifilo
etal., 2003; Ure et al., 2005). CXCR3, the receptor for CXCL9-
11, and CCRS, the receptor for CCL3, CCL4, and CCLS5, are
also expressed on many CNS-infiltrating CD4" and CD8" T
cells and likely important for the ability to gain access to the
CNS (Giunti et al., 2003; Kivisakk et al., 2002; Nansen et al.,
2000; Shacklett et al., 2004; Sorensen et al., 1999). Adhesion
molecules expressed at higher levels by B6 astrocytes may also
promote more efficient leukocyte entry, and particularly
promote their ability to invade deep into the CNS parenchyma
(Gimenez et al., 2004).

In addition to being recruited to the CNS, CD8" T cell
cytotoxic functions must be activated in order to clear TMEV
from the CNS, which requires the recognition of virus peptides
in the context of MHC I. Astrocytes are able to express MHC I 'in
response to cytokines and virus (Fontana et al., 1986; Lavi et al.,
1988; Liu et al., 1989; Suzumura et al., 1986; Wong et al., 1984),
but a critical role for astrocytes during CD8" T cell activation in
vivo during CNS infection has yet to be demonstrated. We show
here that astrocytes from resistant B6 mice are able to upregulate
the MHC I molecule H-2D" in response to TMEV infection and
to induce the activation of TMEV-specific CD8" T cells as
indicated by the production of IFN-v. In contrast, upregulation
of H-2K® in TMEV-infected SJL astrocytes is minimal, despite
their high level of infection, and SJL astrocytes are inefficient at
processing and presenting viral antigen to CD8" T cells.
Importantly, the frequency of splenic TMEV-specific CD8" T
cells able to produce IFN-y in response to the respective
immunodominant TMEV CDS epitope in SJL and B6 mice is
similar. Thus, the decrease in the ability of SJL. CNS-resident
cells to efficiently activate CD8" T cells may significantly
contribute to the inability of SJL CD8" T cells to completely
clear the virus from the CNS, despite their ability to efficiently
carry out anti-viral responses in vitro.

CDS8™ Tcells are largely protective in TMEV-IDD because of
their importance in viral clearance, but there are scenarios in
which CD8" T cells can be pathologic as well. Resistant mice
deficient in CD8" T cells or the CD8" T cell cytotoxic mediator
perforin infected with the DA strain of TMEV develop
demyelination, inflammation and persistent virus in the CNS,
but display minimal clinical disease (Murray et al., 1998; Ure



P.A. Carpentier et al. / Virology 375 (2008) 24-36 33

and Rodriguez, 2002). This has led to the hypothesis that CD8"
T cells may mediate axonal damage in TMEV-IDD and in MS,
which is a major pathologic correlate of permanent neurologic
disability (McDole et al., 2006; Trapp et al., 1998). Astrocytes
reportedly express MHC I in MS lesions, and therefore could
contribute to CD8" T cell-mediated axonal damage by either
direct or bystander mechanisms (Hoftberger et al., 2004;
Traugott, 1987). Interestingly, SJL astrocytes exposed to the
pro-inflammatory cytokines IFN-y and TNF-«, as would be the
case in T cell and macrophage rich MS lesions, are able to
upregulate H-2K®, and in this context MHC I expression by
astrocytes may be pathologic. In conclusion, the contribution of
the innate and adaptive immune functions of astrocytes therefore
appears to be crucial to the balance of protective immunity vs.
the development of autoimmune disease after CNS infection.

Materials and methods
Mice

Pregnant (15—17 days) SJL/J (SJL) mice and 5- to 7-week-
old SIL mice were purchased from Harlan Labs (Bethesda,
MD). Pregnant (11-15 days) and 5- to 7-week-old C57BL/6
(B6) mice were purchased from Jackson Laboratories (Bar
Harbor, ME). Mice were housed in the Northwestern University
animal facility in accordance with university and National
Institutes of Health animal care guidelines and afforded access
to food and water ad libitum. Neonatal mice 1- to 3-day-old
were used for the isolation of astrocytes.

Reagents

Poly I:C was purchased from Sigma (St. Louis, MO) and
used at 100 pg/ml. Recombinant murine IFN-y was purchased
from Pharmingen (San Diego, CA) and used at 100 U/ml.
Recombinant murine TNF-a was purchased from R&D
Systems (Minneapolis, MN) and used at 500 U/ml. These
doses selected were experimentally determined to elicit optimal
responses (Carpentier et al., 2005). VP3159_14¢ (FNFTAPFI)
and VP2 ,,_;30 (FHAGSLLVGM) were purchased from Genemed
Synthesis Inc (South San Francisco, CA). The amino acid
composition was verified by mass spectrometry and purity
(>95%) was assessed by high-performance liquid chromatography.

Media

Mixed glial and astrocyte cultures were maintained in
Dulbecco’s modified Eagle medium (DMEM)-F12 (Sigma)
supplemented with 10% fetal calf serum (FCS; Sigma), 6 g/l
glucose (Sigma), 2.4 g/l sodium bicarbonate (Sigma), 0.37 g/l L-
glutamine (Life Technologies, Gaithersburg, MD), 100 U/ml
penicillin (Life Technologies) and 100 pg/ml of streptomycin
(Life Technologies; complete DMEM-F12 media). T cell assays
were performed in DMEM with 5% FCS, 0.37 g/l L-glutamine,
100 U/ml penicillin, 100 pg/ml streptomycin, 55 pM 2-
mercaptoethanol (Gibco, Grand Island, NY), and 0.1 mM
nonessential amino acids (Sigma; complete D5 media).

Astrocyte isolation

T75 tissue culture flasks were coated from 3 h to overnight
with 10 pg/ml poly-D-lysine (PDL; Sigma). Intact brains were
removed from 1- to 3-day-old neonatal mice, hindbrains
dissected away, and meninges removed. The cerebral hemi-
spheres were transferred to a nylon mesh bag and gently
dissociated. Cells in suspension were passed through #60 and
#100 stainless steel screens (Sigma) to remove large pieces of
debris and tissue. Cells were seeded at 2—3 brains per flask, and
maintained in complete DMEM-F12 media at 37 °C and 7.5%
CO,. At confluency (generally 14-21 days), microglia and
oligodendrocytes were removed from the astroglial bed layer by
orbital shaking for 24 h at 300 rpm. Astrocytes that adhered to
the flask were removed with 1x trypsin-ethylenediamine-
tetracetic acid (EDTA; 0.05 g/1 trypsin, 0.02 g/l EDTA; Sigma)
and re-plated until experimental use. Cultures prepared in this
manner are >98% pure by staining for glial fibrillary acidic
protein (GFAP), an astrocyte specific intermediate filament
(Carpentier et al., 2005). We also routinely screen cultures for
microglial contamination by flow cytometry for CD45, a marker
of immune lineage cells, and typically find <1% of cells are
CD45" (data not shown).

Treatment/infection of primary astrocytes

At the time of infection, all media were removed from
astrocyte cultures and replaced with a minimal volume of
DMEM. Astrocytes were treated with media alone or stimulated
with IFN-y and TNF-a or poly I:C. TMEV was added at a
multiplicity of infection of 10 (MOI; 10 plaque forming units/
cell). All cultures were left at room temperature for 1 h to allow
the virus to infect. After 1 h, complete F12 media were added to
each culture and poly I:C or cytokine was accordingly added
such that the total concentration remained constant.

Flow cytometry

Cells were incubated with Accutase (BD Biosciences, San
Jose, CA), removed from flasks, and washed in phosphate
buffered saline (PBS) containing 0.5% bovine serum albumin
(BSA; Sigma) and 2 mM EDTA (Sigma). Intracellular staining
with anti-TMEV was performed on cells fixed with Cytofix/
Cytoperm solution containing formaldehyde and saponin for
20 min at 4 °C (Pharmingen). Cells were washed twice in perm/
wash buffer containing saponin (Pharmingen) and nonspecific
staining was blocked with anti-CD16/32 (eBioscience, San
Diego, CA) and 10% normal goat serum (Sigma) for at least
20 min at 4 °C. Cells were washed once and incubated with anti-
TMEV serum generously donated by Dr. Howard Lipton
(Northwestern University, Evanston, IL) for 30 min at 4 °C.
Cells were washed twice more and incubated with goat anti-
rabbit IgG-FITC (Pharmingen) for 20 min at 4 °C. Cells were
washed at least twice with perm/wash buffer and twice with
PBS/BSA/EDTA before flow cytometric analysis. For staining
of cell surface antigens, cells were blocked with 10% mouse and
10% rat serum (Sigma) and 1:100 purified anti-mouse CD16/32
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(eBioscience) in PBS/BSA/EDTA for at least 20 min at 4 °C.
Cells were then incubated with primary antibodies or appro-
priate isotype controls (eBioscience or Pharmingen) for at least
30 min at 4 °C. After primary antibody incubation, astrocytes
were washed three times with PBS/BSA/EDTA and incubated
with secondary antibodies or streptavidin-APC (Pharmingen) as
necessary for 20 min at 4 °C. Cells were washed three more
times with PBS/BSA/EDTA prior to analysis. Flow cytometry
was performed on a BD Biosciences LSR flow cytometer using
FACs Diva acquisition software. Data analysis was performed
using Tree Star FlowJo software. Plots shown are gated on
forward/side scatter and absence of CD45 staining, to avoid
analyzing possible contaminating microglia.

Analysis of cytotoxicity

Astrocytes were seeded at 7.5x 10* cells/ml in PDL coated
48-well plates in complete DMEM-F12 media and allowed to
adhere overnight. Cultures were mock infected or infected with
TMEV (MOI=10). Supernatants were withdrawn at 24, 48 and
72 h and analyzed for lactate dehydrogenase (LDH) release as a
measure of cell death using the Nonradioactive Cytotoxicity
Assay kit (Promega) as per manufacturer’s instructions.

Enzyme-linked immunoassays (ELISAs)

Astrocytes were seeded at 7.5x 10% cells/ml in PDL coated
48-well plates in complete DMEM-F12 media and allowed to
adhere overnight. Cultures were mock infected or infected with
TMEV (MOI=10) and supernatants were withdrawn at 72 h.
IFN-a and IFN-p ELISAs were performed as per kit
instructions (R&D Systems, Minneapolis, MN).

Analysis of astrocyte cytokine and chemokine protein expression

Astrocytes were seeded at 7.5x 10* cells/ml in PDL coated
48-well plates in complete DMEM-F12 media and allowed to
adhere overnight. Cultures were mock infected, treated with IFN-
v (100 U/ml) and TNF-a (500 U/ml), treated with poly I:C
(100 pg/ml) or infected with TMEV (MOI=10) and supernatants
were withdrawn at 72 h. Supernatants were analyzed for cytokine
and chemokine expression by Invitrogen Biosource (Carlsbad,
CA) Mouse Individual Flex Kit for IL-6, TNF-a, CCL2, CCL3,
CCL4, CCL5, CXCLI, and CXCL10. Analysis was performed
on a Luminex IS.100 system (Qiagen, Valencia, CA).

Infection of mice with TMEV

Mice were anesthetized with an inhaled mixture of isoflurane
and oxygen and infected intracerebrally with 3 x10° plaque
forming units (PFU) of the BeAn strain of TMEV. Mice infected
for 8 days were used for CD8" T cell isolation.

CDS8" T cell activation assay

SJL and B6 mice were infected with TMEV at day 0. Atday 5,
SJL or B6 astrocytes were plated at 1 x 10°/well in a PDL coated

96-well plate. At day 6, astrocyte cultures were mock infected,
treated with IFN-y and TNF-a (100 and 500 U/ml) or infected
with TMEV (MOI=10). At day 8, spleens were collected from
naive or TME V-infected mice and homogenized over a #100 wire
mesh screen. Red blood cells were lysed with Tris-ammonium
chloride for 5 min at room temperature and washed in serum-
containing media. Cells were blocked with 10% mouse serum
and 10% rat serum in PBS/BSA/EDTA for at least 30 min at 4 °C
and then incubated with anti-CD8« microbeads (Miltenyi Biotec,
Auburn, CA) for 15 min at 4 °C. Positive cells were collected
using the positive select double sort (posseld) program on an
Automacs system (Miletnyi) and were approximately 90% pure
on average as determined by flow cytometry (data not shown).
Astrocyte cultures were washed twice with complete D5 media
and incubated with 3 x 10°> CD8" T cells plus 0, 10 or 100 uM of
VP3159_166 (SIL) or VP2151_130 (B6) in complete D5 media. At
day 12, culture supernatants were harvested and analyzed for
cytokine expression using the Upstate Mouse Multi-Cytokine
Splex Kit containing beads specific for IFN-y, TNF-a, IL-2, IL-4
and IL-10 as per manufacturer’s instructions.

Enzyme-linked immuno-SPOT (ELISPOT) assays

ELISPOT assays were carried out as previously described
(Getts et al., 2007). Briefly, 5x10° bulk splenocytes were
isolated at 7 dpi and plated at 5x 10> cells per well with 0 or
50 pg of the indicated peptide. The number of spots,
representing [FN-y producing cells, was quantified for each
strain and peptide. All ELISPOT data are presented as mean
number of spots per 5% 10° splenocytes+ SEM.

Statistics

A two-way ANOVA with repeated measures and Bonferroni
post tests were used to compare cytotoxicity over a 72 h time
course and CD8" T cell activation. Freeze—thaw positive controls
were compared to uninfected cultures at 72 h using a one-tailed
Student’s ¢ test. A paired one-tailed Student’s ¢ test was used to
compare means of percentage of infected cells, cytokine and
chemokine production and adhesion molecule expression be-
tween SJL and B6 astrocytes. In all cases, p<0.05 is considered
significant.
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