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We consider fermionic dense matter under a magnetic field, where fermions couple minimally to gauge
fields, and calculate anomalous currents at one loop. We find anomalous currents are spontaneously
generated along the magnetic field but fermions only in the lowest Landau level contribute to anomalous
currents. We then show that there are no more corrections to the anomalous currents from two or higher
loops.
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1. Introduction

Fermion numbers are often not conserved, when the back-
ground fields coupled to fermions are topologically nontrivial. One
of such tantalizing effects is the non-conservation of axial fermion
number under instanton backgrounds [1] and another well-known
one is the fermion number breaking in the presence of a mag-
netic monopole [2,3]. Under external background fields the energy
spectrum of fermions changes and undergoes level-crossing, which
results in spontaneous creation (or annihilation) of fermions out
of (or into) Dirac sea. Direct observation of the axial fermion num-
ber non-conservation has not been made yet nonetheless, since the
process, being nonperturbative, is exponentially suppressed. How-
ever, in a recent heavy ion experiment at RHIC it has been claimed
to have observed such effects [4,5], attracting a lot of attentions.
If the collision is peripheral, a huge magnetic field is generated in
the collision center, making the process easy to occur [6].

It is well known that under a constant magnetic field, �B = Bẑ,
the spectrum of charged fermions is quantized by the Landau lev-
els, n = 0,1,2, . . . . At energy lower than the Landau gap, |qB|,
where q is the electric charge of fermions, the fermions move
effectively one-dimensional along the direction of magnetic field.
Each fermion states are therefore characterized by two quantum
numbers, (pz,n); the momentum, �p = pz ẑ, along the field direc-
tion and the Landau level, n. Since three-dimensional dynamics
is reduced to one-dimensional by the magnetic field, the spec-
trum has huge degeneracy, proportional to the Landau gap. Being
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one-dimensional, fermions occupy at finite density up to the Fermi
points rather than Fermi surface as in two or higher dimensions:
the Fermi points are given by pF = ±√

μ2 − 2|qB|n, where μ is
the chemical potential associated with the fermion density. Be-
cause of the Landau level degeneracy, whatever anomalous cur-
rents occur in dense matter, they are amplified by the degeneracy
factor, proportional to the magnetic field, offering a window to ob-
serve directly the topological effect of gauge fields.

In this Letter we carefully analyze the spontaneous generation
of fermion currents in dense matter under external magnetic fields,
which has been intensively studied recently, related to the rela-
tivistic heavy ion collision [6] or magnetars [7].

2. Anomalous currents under external magnetic field

When there are no external background fields coupled to
fermions, the Lorentz invariance requires that the vacuum expec-
tation value of fermion currents, Jμ = ψ̄γ μψ , to vanish. However,
if fermions are coupled to a topologically nontrivial external field,
the currents can be anomalous and the ground state may have
non-vanishing vacuum expectation value of fermion currents. For
instance, when charged planar fermions, confined on a plane, are
under a (possibly position-dependent) magnetic field, B , perpen-
dicular to the plane, the ground state is known to have anomalous
charge density proportional to the magnetic field, since the con-
stant magnetic flux Φ induces fermion zero modes whose number
is given by the (non-negative) integer N for e

4π |Φ| = N + ε with
0 < ε � 1 [8,9];

〈
J 0〉

B = ± e2

B. (1)

4π
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We note that the magnetic field is a spacetime scalar for planar
fermions. Therefore, the anomalous charge density for the ground
state is allowed by the spacetime symmetry. If we write it covari-
antly, the anomalous charge density (1) becomes

〈
Jμ

〉
B = ± e2

8π
εμνρ Fνρ, (2)

which is nothing but the well-known anomalous current due to
the parity anomaly or the Chern–Simons term in (2 + 1) dimen-
sions [10–12]. However, in (3 + 1) dimensions, the external mag-
netic field is a part of two-form tensor fields and thus does not
generate anomalous currents because of the Lorentz symmetry.
But, the situation changes for dense matter, which naturally breaks
the Lorentz symmetry. In deed, it has been shown that dense mat-
ter generates anomalous currents under a magnetic field [6]. Here
we present another derivation, but more general, of anomalous
currents in dense matter under a constant magnetic field, which
can be applied to dense matter with finite fermion number density
and/or finite axial fermion number density. The chiral magnetic ef-
fect has been also derived in the holographic QCD [13].

The fermion propagator in dense matter with a chemical poten-
tial μ under a constant external magnetic field �B = Bẑ is given by
the Schwinger formula as, q being the electric charge of fermions,

S(x, y) = S̃(x − y) exp

[
iq

2
(x − y)μ Aext

μ (x + y)

]
, (3)

with the Fourier transform of S̃ ,

S̃(k) = ie−k2⊥/|qB|
∞∑

n=0

(−1)n Dn(qB, k̃)

[(1 + iε)k0 + μ]2 − k2
z − 2|qB|n , (4)

where k⊥ is the 3-momentum perpendicular to the direction of
the external magnetic field, k̃ = k + (μ, �0) and

Dn(qB,k) = 2/̃k
�

[
P−Ln

(
2k2⊥
|qB|

)
− P+Ln−1

(
2k2⊥
|qB|

)]

+ 4/k⊥L1
n−1

(
2k2⊥
|qB|

)
, (5)

where k̃� = (k0 + μ,kz) = k� + (μ, �0). Lα
n are the associated La-

guerre polynomials and P+ (P−) is the projection operator which
projects out the fermions of spin (anti-) parallel to the magnetic
field direction. For �B = Bẑ, 2P± = 1 ± iγ 1γ 2 sign(qB).

For a later purpose we decompose the fermion propagator into
chiral basis:

S̃(k) = 1 + γ 5

2
S̃(k) + 1 − γ 5

2
S̃(k) = S̃(k)L + S̃(k)R . (6)

Now we assume that the chemical potentials for the left-handed
fermions and the right-handed fermions are different, μL �= μR .
The fermion number chemical potential is then μ = (μL + μR)/2
and the axial chemical potential μA = (μL −μR)/2. The anomalous
current for the left-handed fermions is given at one-loop by


α
L (μL) ≡ 〈

ψ̄Lγ
αψL

〉 = −
∫

d4k

(2π)4
Tr

(
γ α S̃(k)L

)
. (7)

The integration (7) is in general ultra-violet (UV) divergent and
needs to be regularized. However the UV divergence is due to the
vacuum contribution and is independent of the chemical potential.
In other words, the matter contribution is finite and can be written
as


α
mat(μL, B) ≡ 
α(μL, B) − 
α(0, B) =

μL∫
0

dμ′ ∂

∂μ′ 

α
(
μ′, B

)
,

(8)
where we have subtracted out the vacuum contribution 
α(0, B).
The integration (8) is finite and explicitly calculable. To this end,

we change the integration variables, which is well defined for a
finite integration:

kα −→ k′α = kα + uαμ, uα = (1, �0) (9)

and rewrite the fermion propagator as

S̃ L(k − uμL;μL)

= ie−k2⊥/|qB|
∞∑

n=0

(−1)n Dn(qB,k)

k2
�
− 2|qB|n + iεk0(k0 − μL)

. (10)

Differentiating with respect to the chemical potential, we get

∂

∂μ
S̃(k − uμ;μ)

= ie−k2⊥/|qB|
∞∑

n=0

(−1)n Dn(qB,k)2π iδ
(
k2

�
− 2|qB|n) · δ(k0 − μ

)
,

(11)

which clearly shows that the momentum integration in (8) has
supports only from the Fermi points and on-shell, rendering the
total integration to be finite. As we can see from the expression (4)
of the propagator of fermions, the fermions in each Landau level
except the lowest Landau level (LLL) have both spins, parallel and
anti-parallel to the external magnetic field.

Using a normalization condition for the Laguerre polynomials,
∞∫

0

dx e−xLn(2x) = (−1)n, (12)

we integrate over the perpendicular momentum, �k⊥ , to get, after
taking the trace over gamma matrices,


α
mat(μL, B) = |qB|

[
Γ

αβ
L I(0)

β (μL, B) + 2gαβ
�

∑
n=1

I(n)
β (μL, B)

]
,

(13)

where gαβ
�

= diag(1,0,0,−1), Γ
αβ
L = εαβ12 sign(qB)+ gαβ

�
and for

n = 0,1,2, . . .

I(n)β(μ, B) =
μ∫

0

dμ′
∫

d2k�

(2π)2
kβ

�
δ
(
k2

�
− 2|qB|n) · δ(k0 − μ′)

= 1

4π2
p(n)

F (μ, B)δβ0. (14)

The Fermi momentum at the n-th Landau level is given as (see
Fig. 1)

p(n)
F (μ, B) =

{√
μ2 − 2|qB|n, if μ > 2|qB|n;

0, otherwise.
(15)

We see that only the LLL fermions contribute to the third com-
ponent of anomalous current while fermions in the levels up to
n < μ/2|qB| do contribute to the charge density:


3
mat(μL, B) = qB

4π2
μL, (16)


0
mat(μL, B) = |qB|

4π2

[
μL + 2

∑
n=1

p(n)
F (μL, B)

]
, (17)

where the factor 2 in the parenthesis of (17) is the spin degeneracy
of higher Landau levels. Since each Landau level has a degener-
acy factor |qB|/4π , we see that the charge density in Eq. (17)
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Fig. 1. Fermi momenta in different Landau levels.

is precisely the total number density of left-handed fermions,

0

mat(μL, B) = nL .
Now, we note that the vacuum contribution to the anomalous

current (7) is zero for the LLL fermions because of the residual
Lorentz symmetry SO(1,1) along time and the B-field direction;


α
L (0, B) = 2Γ

αβ
L

∫
d4k

(2π)4

k�β

k2
�
+ iε

e−k2⊥/|qB| = 0. (18)

Therefore we find 
α
L (μL, B) = 
α

mat(μL, B), which holds for the
chemical potential larger than the Landau gap |qB| as well. The
anomalous current generated in (chiral) dense matter therefore be-
comes


α
L (μL, B) = δα3 sign(qB)

|qB|
4π2

μL + δα0nL . (19)

Similarly for the right-handed fermions, the anomalous current is
given as


α
R (μR , B) = −δα3 sign(qB)

|qB|
4π2

μR + δα0nR . (20)

Therefore in terms of electric (axial) vector currents we find, agree-
ing with the previous calculation [6],

JαV ≡ q
(

α

L + 
α
R

) = δα3 q2 B

2π2
μA + δα0qn, (21)

JαA ≡ q
(

α

L − 
α
R

) = δα3 q2 B

2π2
μ + δα0qnA, (22)

where the fermion number density n = nL + nR and the axial
fermion number density nA = nL − nR .1

3. No more corrections to anomalous currents

In the previous section we have calculated the one-loop anoma-
lous currents in dense matter. Now, we show that the results are
in fact exact in all orders. Namely the results are not subject to any
higher order corrections. In both results (21) and (22) the second
terms are nothing but the volume inside the Fermi points, namely
the fermion number density, which is not renormalized by inter-
actions and does not get any corrections by the Luttinger theo-
rem [16]. So, we need only to show that the first terms in (21) and
(22) are not subject to higher order corrections. We first consider

1 The anomalous currents could have additional contributions if the fermions are
not minimally coupled or their propagator takes a non-standard form [14,15].
the anomalous vector currents, setting μA �= 0 but μ = 0 without
loss of generality. The proof for the anomalous axial current fol-
lows immediately, once the proof for the no-more corrections to
the vector current is established, because the diagrams are same
except the one un-contracted photon line is now replaced by an
auxiliary axial U (1) gauge field, which couples to the axial U (1)

current.
We compute the full contributions to the anomalous current by

differentiating the effective action with respect to the photon field;

〈
Jα

〉 = δΓ (A, G;μ)

δAα

∣∣∣∣
A=0=G

, (23)

where Γ is the effective action for photons (A) and gluons (G). The
effective action is obtained by two steps [17]. First we integrate out
the fermions to get the one-loop n-point vertex functions Γ (n) for
photons and gluons. We then contract all the photon (or gluon)
lines with other photon (or gluon) lines, which do not have to end
on the same fermion loop, except one photon line to get a full
photon-tadpole diagram.2 As explained in the previous section the
matter contribution to the anomalous current is finite and can be
written as

〈
Jα

〉
mat = δΓmat(A)

δAα
= δ

δAα

μ∫
0

dμ′ ∂

∂μ′ Γ
(

A;μ′), (24)

where A = A or G are taken to be zero after the differentiation.
For the one-loop n-point vertex function there are n fermion prop-
agators in the fermion loop. If we take a derivative with respect
to the chemical potential, after shifting the momentum as in the
previous section, one of the propagator gives a delta function, en-
forcing the on-shell condition:

∂

∂μ
Tr

[
/A S(k1)/A · · ·/A S(kn)

]

=
n∑

l=1

Tr
[
/A S(k1) · · ·/A/kl�/A · · ·/A S(kn)

]
2π iδ

(
k2

l�

)
δ
(
k0

l − μ
)
, (25)

where we have suppressed the other terms present in the fermion
propagator. Therefore the derivative of the n-point one-loop vertex
function with respect to the chemical potential gives the tree-
level on-shell fermion propagator with n gauge fields attached (see
Fig. 2), whose total momentum gives zero. Now, if we contract
all the photon or gluon lines, which not necessarily end on the
same fermion loop or on the tree-level on-shell fermion propaga-
tor, except one photon line, Γmat(A) gives the full one-point vertex
function at zero momentum with or without wave-function renor-
malizations to the external fermion lines. The un-contracted pho-
ton line can end on either the tree propagator or a fermion loop.3

Since the wave-function renormalization vanishes for the external
lines, which are on-shell, the vertex function obtained by taking
the derivative of the effective action with respect to the chemical
potential gives the full vertex function at zero momentum trans-
fer. Because of the non-renormalization of electric charge or by
the Ademollo–Gatto theorem [19] there should be no vertex cor-
rection at zero momentum from one-loop or higher. Furthermore,

2 Furry’s theorem forbids odd number of photon external lines in a theory with
the charge conjugation symmetry. However, in dense matter the charge conjuga-
tion symmetry is explicitly broken by the chemical potential μ, which is odd under
the charge conjugation. It is therefore obvious that the anomalous current, if non-
vanishing, should be proportional to the chemical potential.

3 When μ = 0, this way of generating vertex correction will miss diagrams where
the external photon line ends on the internal fermion loop because of Furry’s theo-
rem [18]. But, in dense matter it does not apply.
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Fig. 2. One of the vertex correction diagrams before contracting gauge fields.

since the vacuum (μ = 0) contribution to the anomalous current
vanishes because of the residual Lorentz symmetry, the one-loop
result is therefore exact and the anomalous current does not get
any higher loop corrections.

In conclusion, we have found the ground state of dense matter
under a magnetic field has anomalous currents along the magnetic
field direction. Only fermions in the lowest Landau level contribute
to the anomalous currents along the magnetic field, though the
fermions in higher levels do contribute to the total number den-
sity. The fermions in the higher Landau levels do not contribute to
the anomalous currents because of spin degeneracy. Furthermore,
we show that there are no corrections to the anomalous currents
from two or higher loops.
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