
Journal of Computational and Applied Mathematics 235 (2010) 74–81

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Obtaining the Quantum Fourier Transform from the classical FFT with
QR decomposition
F.L. Marquezino a,∗, R. Portugal a, F.D. Sasse b
a Laboratório Nacional de Computação Científica, Rua Getúlio Vargas, 333, Petrópolis, 25651-075, RJ, Brazil
b Universidade do Estado de Santa Catarina, Department of Mathematics, CCT, Joinville, 89223-100, SC, Brazil

a r t i c l e i n f o

Article history:
Received 30 January 2008
Received in revised form 6 December 2009

MSC:
81-08
65T50
68W40

Keywords:
Quantum computing
Quantum Fourier Transform
Quantum circuit design

a b s t r a c t

We present the detailed process of converting the classical Fourier Transform algorithm
into the quantum one by using QR decomposition. This provides an example of a technique
for building quantum algorithms using classical ones. The Quantum Fourier Transform is
one of themost important quantum subroutines knownat present, used inmost algorithms
that have exponential speed-up compared to the classical ones. We briefly review Fast
Fourier Transform and thenmake explicit all the steps that led to the quantum formulation
of the algorithm, generalizing Coppersmith’s work.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For many years the spectral analysis of sampled data over a finite range, referred to as the Discrete Fourier Transform
(DFT)was performed directly on computers, usingO(N2) operations,whereN is the number of data points. A greatmilestone
in Fourier analysis was the paper published in 1965 in [1], where they described the so-called Fast Fourier Transform (FFT)
algorithm, which can compute the DFT with only O(N logN) operations. In the next year, Rudnick presented a computer
program which also required O(N logN) operations [2], being inspired by an earlier method due to [3].
Although the FFT algorithm may seem reasonably fast for classical Computer Science, it turns out that its quantum

version can provide exponentially faster algorithms for someproblems. In 1994, Shor [4] developed a quantumversion of the
Fourier Transformwhen the prime factors ofN are not large (smaller than logN). Motivated by Shor’s work, Coppersmith [5]
developed the quantum version of the FFT when N is a power of two, which required only O(log2 N) operations. In the same
year [6], using a recursive approach, has also shown how to implement the Fourier Transform in quantum computers.1 This
is, with no doubt, the most important quantum subroutine designed so far. Most quantum algorithms with exponential
improvement when compared to the classical counterparts use the Quantum Fourier Transform (QFT) as an essential part.
These algorithms solve instances of the Hidden Subgroup Problem (HSP), which has several important applications. A good
survey on the HSP can be found in [8].
The quantum algorithm for an approximate QFTwas developed in [5], with complexityO(m logN), where 1 ≤ m ≤ logN

is the parameter that defines the degree of approximation, usually taken asO(log logN). Indeed, this approximate algorithm
is the onewith practical applications. The exact transform yields a level of accuracy that, inmost of the cases, cannot even be

∗ Corresponding author.
E-mail addresses: franklin@lncc.br, franklin.marquezino@gmail.com (F.L. Marquezino), portugal@lncc.br (R. Portugal), fsasse@joinville.udesc.br

(F.D. Sasse).
1 Nielsen and Chuang [7] also mention an unpublished work on this subject by David Deutsch.

0377-0427/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2010.05.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82324597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:franklin@lncc.br
mailto:franklin.marquezino@gmail.com
mailto:portugal@lncc.br
mailto:fsasse@joinville.udesc.br
http://dx.doi.org/10.1016/j.cam.2010.05.012

F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81 75

detected by the measuring device. Barenco et al. [9] showed that, in the presence of decoherence, i.e., in realistic situations,
the approximate transform may achieve better results than the exact one. They also showed that the accuracy of the exact
QFT can be achieved by applying the approximate QFT repeatedly O

(
log3 N
m3

)
times.

In this paper we build the QFT algorithm from the classical FFT, generalizing Coppersmith’s work. In order to accomplish
this generalization, we use the QR decomposition. This techniquemay provide insight for the development of new quantum
algorithms.
In Section 2 we review the definition of DFT and the classical FFT algorithm. We also fix the notation that will be used in

the generalization of the quantumalgorithm. In Section 3weperform the decomposition of thematrix formof FFT algorithm.
QR decomposition plays an essential role in this task. The resulting unitary matrices can be interpreted as quantum logic
gates. In Section 4 we summarize the results obtained in the previous sections and show how to build the circuit for the
exact QFT.

2. The Discrete Fourier Transform

In this section we address the DFT in a form that will be useful later on. It is important to establish some notations that
will be used throughout this paper. Let n be a positive integer, and let a, c be n-bit integers. The binary representations of a
and c will be denoted, respectively, by

(an−1an−2 . . . a0)2 and (cn−1cn−2 . . . c0)2,
such that,

a =
n−1∑
j=0

aj2j and c =
n−1∑
j=0

cj2j.

Binary representations of numbers may have the subscript (·)2 omitted when context is clear. All logarithms are base
two. Let X and Y be arrays2 of N = 2n complex numbers. The integers a and c defined above will be useful for indexing X
and Y . The notation used in this paper for that indexing is Xa. Let ω ≡ ωN = exp(2π i/N), be the N-root of unity.
Finally, we may define the DFT.

Definition 1 (DFT). The Discrete Fourier Transform takes as input a complex array X , and converts it into a complex array
Y , according to the expression

Yc =
1
√
N

N−1∑
a=0

Xaωac . (1)

This equation may be rewritten by making explicit the binary representation of a and c. We concentrate only on the
sub-term ωac .

ωac = exp

(
2π i
N

∑
0≤j,k≤n−1

ajck2j+k
)
. (2)

Using ω(2
n)
= 1, we can state that

ω(2
j+k)
= ω(2

n)2
j+k−n
= 1, (3)

if j + k ≥ n. Therefore, it is possible to eliminate terms from Eq. (2) when j + k ≥ n, leading us to an equivalent definition
of the DFT,

Yc =
1
√
N

∑
0≤a≤N−1

Xa exp

2π i
N

∑
0≤j,k≤n−1
j+k≤n−1

ajck2j+k

 . (4)

Coppersmith [5] observed that we may define a more general transform by changing the range of j + k in Eq. (4). If we
take n − m ≤ j + k ≤ n − 1, where m is a parameter such that 1 ≤ m ≤ n, we obtain the definition of the Approximate
Fourier Transform.Whenm = n, we recover the definition of the exact DFT.Whenm = 1, we achieve the a slightlymodified
definition of the well-known Hadamard transform—with a different indexing of the elements in the array. The argument in
the exponent of this new transform differs from that in the exponent of DFT just by

iε =
2π i
N

∑
0≤j,k≤n−1
j+k<n−m

ajck2j+k. (5)

2 Some readers may prefer to see X and Y as functions, respectively X : ZN → C, and Y : ZN → C, where N = 2n .

76 F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81

It is not difficult to show that the magnitude |ε| of that error in Eq. (5) is bounded by 2πn2−m. Both the approximate and
the exact Fourier Transforms may be expressed by a matrix operation over the array X . The entries of the corresponding
matrices only differ by a multiplicative factor exp(iε), where |ε| ≤ 2πn2−m. Therefore, the approximate transform is able
to provide results very close to the exact Fourier Transform, even if the parameter m is not so close to n, because the error
decreases exponentially asm increases. The minimumm required to ensure an error not greater than |εmax| is given by

m = log
2π
|εmax|

+ log logN. (6)

Thus, the Approximate Fourier Transform provides results with a fixed tolerance |εmax| by using a parameter m that barely
increases with the size of the input.
We now briefly review the classical FFT [10,11] via Danielson Lanczos lemma. Danielson Lanczos lemma [3] allows the

development of a recursive divide-and-conquer scheme to calculate the DFT. According to this lemma, Eq. (1) can be split
into two parts. These parts of length N/2 can be calculated by employing again Danielson Lanczos lemma, leading to the
calculation of four new Fourier Transforms, of length N/4 each. This process repeats itself n times until hitting arrays of
length one, for which the Fourier Transforms are trivially found—in Eq. (1), when N = 1, we have Y = X . This is the idea
behind Algorithm 1. Here, we denote by X (s) the state of a vector X in a step s of the computation.

Algorithm 1 Classical FFT
Require: This algorithm receives as input a vector X ∈ C2

n
.

Ensure: The output is a vector Y ∈ C2
n
which is the DFT of vector X .

1: for all a such that 0 ≤ a ≤ 2n − 1 do {Initialization, step n}
2: let X (n)(an−1an−2...a0)2 ← X(an−1an−2...a0)2 .
3: for s from n− 1 to 0, downward do {Step s}
4: for all 0 ≤ bn−1, . . . , bs, as−1, . . . , a0 ≤ 1 do
5:

X (s)(bn−1...bsas−1...a0)2 ←
1
√
2
X (s+1)(bn−1...bs+10as−1...a0)2

+
1
√
2
ω(bsbs+1...bn−10...0)2X (s+1)(bn−1...bs+11as−1...a0)2

. (7)

6: for all b such that 0 ≤ b ≤ 2n − 1 do {Re-ordering}
7: set Y(bn−1bn−2...b0)2 ← X (0)(b0b1...bn−1)2 .

The complexity of the FFT can be easily computed from the above considerations. If we denote by T2n the approximate
number of steps of a DFT on an array of length 2n, we may write T2n = 2T2n−1 + 2

n, for n ≥ 1, with T1 = 0. Then, T2n = n2n,
which means that the FFT algorithms have complexity O(n2n) or, equivalently, O(N logN).

3. Obtaining QFT from FFT

If we treat X (s) as column vectors, it becomes clear that Algorithm 1 may be expressed as a matrix operation, such that

X (s)j =
∑

0≤k≤N−1

P (s)jk X
(s+1)
k , (8)

where P (s) is a N × N matrix for 0 ≤ s ≤ n− 1. The indices of vectors, as well as the rows and columns of the matrices will
be numbered from 0 to N − 1 in this paper.
By observing Algorithm 1, we see in Eq. (7) that each row of X (s) depends only on two rows of X (s+1). Hence, each row of

the matrices P (s) have only two nonzero entries. They are located on columns k = j− js2s and k = j+ (1− js)2s, where js is
the (s+ 1)-th bit of j (counting from the least to the most significant bit). Thus, each nonzero entry of matrices P (s) will be
placed only in the main diagonal, or in a subdiagonal, depending of the value of the bit js of j.
When k = j, we have the entries of the main diagonal of the matrices. If js = 0, then the first term on the right hand side

of Eq. (7) shows us that these entries are 1
√
2
. If js = 1, then the second term on the right hand side of Eq. (7) shows us that

the entries are 1
√
2
ω(jsjs+1...jn−10...0)2 .

When k = j− 2s, we have the entries of the lower subdiagonal of the matrices. If js = 0, then the entries are 0, according
to Eq. (7). If js = 1, then the first term on the right hand side of Eq. (7) shows us that the entries are 1

√
2
.

When k = j+2s, we have the entries of the upper subdiagonal of thematrices. If js = 0, then the second term on the right
hand side of Eq. (7) shows us that the entries are 1

√
2
ω(jsjs+1...jn−10...0)2 . If js = 1, then the entries are 0, according to Eq. (7).

Before we express these ideas mathematically let us introduce additional notation.
If we define a binary fraction as

0.j ≡ 0.j0j1 · · · jn−1 =
∑

0≤t≤n−1

jt
2t+1

, (9)

we may rewrite ω(jsjs+1...jn−10...0)2 as ω(0.j)2
n+s
.

F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81 77

We note also that

js =
1− (−1)
2

⌊
j
2s
⌋
. (10)

The generic matrices P (s) can now be written as,

P (s)jk =
1
√
2



ωjs(0.j)2
n+s
, if k = j

1− (−1)
2

⌊
j
2s

⌋
, if k = j− 2s

1+ (−1)
2

⌊
j
2s

⌋
ω(0.j)2

n+s
, if k = j+ 2s

0, otherwise,

(11)

which represent the operations performed by the steps of Algorithm 1.

Proposition 2. The matrices P (s) are unitary.

Proof. Wemay solve(
P (s)P (s)

Ď
)
jk
=

∑
0≤l≤N−1

P (s)jl P
(s)∗
kl . (12)

When k = j, we have(
P (s)P (s)

Ď
)
jj
= P (s)jj P

(s)∗
jj + P

(s)
j,j−2sP

(s)∗

j,j−2s + P
(s)
j,j+2sP

(s)∗

j,j+2s

=
1
2
+
1
2

1− (−1)
2

⌊
j
2s

⌋2 + 1
2

1+ (−1)
2

⌊
j
2s

⌋2
= 1. (13)

When k = j − 2s or k = j + 2s we may perform analogous calculation and obtain
(
P (s)P (s)

Ď
)
jk
= 0. Therefore,(

P (s)P (s)
Ď
)
jk
= δjk. �

Since thematrices P (s) are unitary, they could in principle be implemented on a quantum computer. It is important, when
developing a quantum algorithm, to express the unitary operators in terms of universal quantum gates, that is, controlled-
NOTs and gates acting on single qubits.
In order to find the universal gates for the quantum version of the FFT algorithm, several decompositions may be applied

to matrices P (s). One method that may be insightful in this process is the QR decomposition [12,11], which factors a generic
matrix into the product of a unitary matrixM – orthogonal, if the matrix to be decomposed is real – and an upper triangular
matrixN . In the case of matrices P (s) wemay apply a slightlymodified version of QR decomposition which yields orthogonal
and diagonal matrices as factors. This can be done because matrices P (s) have the following property: their columns are
either real or multiple of real columns. There are at least three well-known methods for computing the QR decomposition:
Householder reflections, Givens rotations and Gram–Schmidt decomposition. The last one is particularly interesting in this
case because it takes advantage of the property mentioned above.
Observe that any column of matrices P (s) may be obtained by fixing a value of k in Eq. (11) and running j from 0 to N − 1.

We note that the columns of matrices P (s) are already orthonormal. Multiplying each column k by

α
(s)
k ≡ (−1)

⌊
k
2s

⌋
ω2
n
−ks(0.k)2n+s , (14)

for k = j, k = j−2s and k = j+2s, and thenmultiplying the corresponding cases in Eq. (11) by α(s)k , we obtain the orthogonal
matrices

M(s)
jk =

1
√
2



(−1)
⌊
j
2s

⌋
, if k = j

1− (−1)
2

⌊
j
2s

⌋
, if k = j− 2s

1+ (−1)
2

⌊
j
2s

⌋
, if k = j+ 2s

0, otherwise.

(15)

78 F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81

The upper triangular matrices are

N (s)jk =

{
(−1)

⌊
j
2s

⌋
ωjs(0.j)2

n+s
, if k = j

0, otherwise.
(16)

Now we confirm the decomposition.

Proposition 3. For any step s and for any number of bits n we have

P (s) = M(s)N (s), (17)

where the matrices M(s) and N (s) are given by Eqs. (15) and (16), respectively.

Proof. Since matrices N (s) are diagonal we have(
M(s)N (s)

)
jk = M

(s)
jk N

(s)
kk . (18)

When k = j,

M(s)
jj N

(s)
jj =

(−1)
√
2

⌊
j
2s

⌋
(−1)

⌊
j
2s

⌋
ωjs(0.j)2

n+s

= P (s)jj . (19)

When k = j− 2s or k = j+ 2s we may perform analogous calculations, and easily obtain
(
M(s)N (s)

)
jk = P

(s)
jk . �

Let us now analyze the structure of the matricesM(s). Starting withM(0), we note that

M(0)
jk =

1
√
2



(−1)j, if j = k
1− (−1)
2

j

, if k = j− 1

1+ (−1)
2

j

, if k = j+ 1
0, otherwise.

(20)

It is easy to check that

M(0)
2n×2n = I

⊗(n−1)
⊗ H, (21)

where I is the 2× 2 identity matrix, and H = 1
√
2

(
1 1
1 −1

)
is the Hadamard matrix.

Now, we prove thatM(s)
2n×2n = M

(s−1)
2n−1×2n−1

⊗ I . We use the following formula for a generic matrix A:

(A⊗ I)jk =

{
A⌊ j

2

⌋⌊
k
2

⌋, if k = j (mod 2)

0, otherwise,
(22)

which can be obtained by analyzing the entries of A⊗ I . Replacing A byM(s−1)
2n−1×2n−1

in Eq. (22) and simplifying the result, we
get the right-hand side of Eq. (15). Thus

M(s)
2n×2n = M

(s−1)
2n−1×2n−1

⊗ I. (23)

Proposition 4. The matrices M(s) may be decomposed in tensorial products involving only 2 × 2 identities and a Hadamard
matrix, such that

M(s)
= I⊗(n−s−1) ⊗ H ⊗ I⊗s. (24)

Proof. Using (23) recursively s times and replacing n by n− s in Eq. (21) we get Eq. (24). �

Let us now analyze the structure of the matrices N (s). They are diagonal and the entries are one or±ωc , 0 ≤ c < N . The
first attempt in decomposing them is to write N (s) for a fixed s as a product of diagonal matrices, the entries of which are
one or±ωc for a fixed c. We rewrite Eq. (16) using Eq. (9) and (10) to obtain the form

N (s)jk =

(−1)
js
n−1∏
t=0

ωjsjt2
n+s−t−1

, if k = j,

0, otherwise.
(25)

F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81 79

Since n and s are fixed, the factors we are looking for are obtained by fixing t . So, for given n and s, we define the matrix

R(s,t,u) =
{
ωjsjt2

n−u
, if k = j

0, otherwise,
(26)

where js and jt are given by Eq. (10). Since matrices R(s,t,u) are diagonal for arbitrary s, t and u, they commute. We can now
state the following proposition.

Proposition 5. The matrices N (s) may be written as

N (s) =
n−1∏
t=s+1

R(s,t,u), (27)

with u = t − s+ 1, when s < n− 1. When s = n− 1, N (n−1) = I .

Proof. Using (−1)js = ωjsjs2n−1 , we see that

(−1)js
s∏
t=0

ωjsjt2
n+s−t−1

= 1. (28)

Then, using this result in Eq. (25) we get Eq. (27) when s < n− 1. Replacing s by n− 1 in Eq. (25) we get N (n−1) = I . �

The structure of the matrices R(s,t,u) is the following: they are diagonal; the entries are one when either js or jt is equal
to zero; the entries are ω2

n−u
= exp

(2π i
2u
)
when js and jt are simultaneously equal to one. Therefore, the matrix R(s,t,u) is a

controlled operation

R(u) ≡

1 0

0 exp
(
2π i
2u

)  , (29)

with control on qubit s and target on qubit t (or vice-versa, in this case). This is a generalization of control gates acting on
two qubits in the presence of more qubits.
Summarizing, the QFT can be expressed as

F2n = A(n)
n−1∏
s=0

M(s)N (s), (30)

where the matricesM(s) and N (s) are given by Eqs. (24) and (27) respectively. A(n) is a 2n× 2n matrix implementing the final
swaps of the algorithm.

4. Building the QFT from the proposed decomposition

Based on the last section we may finally derive a quantum algorithm to compute the DFT. In the beginning of classical
FFT, we have a collection of complex numbers X (n)(an−1an−2···a0). These values now correspond to the quantum state

|ψn〉 =
∑

0≤an−1,an−2,...,a0≤1

X (n)(an−1an−2···a0)|an−1an−2 . . . a0〉. (31)

This preparation of the quantum system corresponds to the initialization of the algorithm. Once the state has been prepared,
we should apply the matrices P (s) given by Eq. (11) in the following order:

|ψ0〉 = P (0)P (1) . . . P (n−1)|ψn〉. (32)
The state |ψ0〉 is

|ψ0〉 =
∑

0≤cn−1···c0≤1

X (0)(c0···cn−1)|cn−1 · · · c0〉, (33)

with the coefficients labelled in the inverse order.
Although thematrices P (s) are, in general, too complex to be directly realized in a physical experiment, it was shown that

each of them can be decomposed into simpler matrices M(s) and N (s), which in turn may be decomposed into gates acting
on one or two qubits.
In each step s, we must first apply the matrix N (s). In step n− 1 we have N (n−1) = I . Eq. (27) shows us that each matrix

N (s) is a product of other simpler matrices. Hence, we must apply the logical gate R(s,t,t−s+1) – gate R(t−s+1) with control on
qubit s and target on qubit t – for each t starting from t = n − 1 and going downward until t = s + 1. Then, we apply the
matrix M(s), which corresponds to a Hadamard gate acting only on qubit s. After running s from n − 1 to 0, we must apply
swaps to correct the order of the output. We compiled these steps in Algorithm 2

80 F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81

Algorithm 2 QFT
Require: This algorithm must receive as input a vector X ∈ C2

n
.

Ensure: The output is a quantum state |ψ〉 whose amplitudes correspond to the elements of Y ∈ C2
n
, given by the DFT

of X .
1: {Initialization, step n}
2: prepare the state of the n-qubit quantum register as

|ψn〉 =

N−1∑
k=0

Xk|k〉.

3: for s from n− 1 to 0, downward do {Step s}
4: for t from n− 1 to s+ 1, downward do
5: apply unitary operation R(s,t,t−s+1)
6: apply a Hadamard gate only on qubit s.
7:
8: for t from 0 to bn/2c − 1 do {Re-ordering}
9: swap qubits t and n− t − 1.

Fig. 1. A circuit for QFT over n = 4 qubits. Note that the qubits are numbered from bottom to top, starting from 0 up to n− 1.

In Fig. 1 we represent the QFT circuit over four qubits in terms of Hadamard, controlled gates R(u) and swap operations.
Note that matrices M(s) and N (s) are also shown on the top. An alternative presentation of the circuit may be obtained by
interchanging some of the gates that do not involve operations on the same qubits.
Now we address the computational complexity of Algorithm 2 We assume that the initialization is done in negligible

time—which is a reasonable assumption, since in most applications known so far the QFT is applied on a state of the
computational basis, or on the output of some earlier step of some algorithm. In the main part of the algorithm (the outer
loop) we have n(n + 1)/2 steps. Therefore, this part of the algorithm is O(n2). The last part of the algorithm consists only
on O(n) swap operations. We conclude that the QFT has complexity O(n2) or, equivalently, O(log2 N), in terms of one and
two qubit operations. It is quite simple to show that this complexity does not change when calculated in terms of universal
gates. One just needs to recall that a controlled gate can be decomposed into two CNOTs and three one-qubit gates, and that
a swap gate can be decomposed into three CNOTs.
As an intermediate step before deducing theApproximateQFT,wemay consider a classical algorithm for theApproximate

FFT. This is quite similar to Algorithm 1, the only difference being that instead of ω(bs...bn−10...0)2 in the second term on the
right hand side of Eq. (7), we haveω(bs...bmin(s+m−1,n−1)0...0)2 . By repeating all the process of finding the genericmatrices P (s) and
decomposing them, we find out that this difference reflects only on Eq. (27)—in the approximate algorithm the productory
ranges from t = s+1 tomin(s+m−1, n−1). Analogously to the exact algorithm, wemay check that the Approximate QFT
has complexity O(mn) or, equivalently, O(m logN). In fact, the approximate version of QFT is not only simpler and faster,
but also leads to more precise results in the presence of decoherence than its exact counterpart [9].

5. Conclusions

The QFT algorithm represents an important improvement in the complexity of the classical algorithm, fromO(N logN) to
O(log2 N). The accelerationprovidedbyApproximateQFT algorithmgoes even further, asO(m logN), wherem is a parameter
that can be taken as O(log logN). A practical difference between the classical and the quantum FFT is that the latter provides
the result of the calculation as a superposition of quantum states,which cannot be directly read according to the postulates of
quantummechanics. However, a remarkable example showing the advantage of the quantum version of FFT is the quantum
algorithm for factorization of large integers [4]. In this algorithm, the quantum FFT subroutine plays an essential role on the
exponential speed-up over the best classical algorithms for integer factorization.
In this paper, the building process of the QFT was exposed in detail, generalizing Coppersmith’s work. We started from

the description of the classical FFT and then obtained generic unitary matrices for each step of the algorithm. In order to get
matrices simple enough to represent feasible quantum operations, those generic matrices were factored according to QR
decomposition and the formulation in terms of one- and two-qubit gates was obtained. The complexity of this particular
algorithm does not change when expressed in terms of universal gates.

F.L. Marquezino et al. / Journal of Computational and Applied Mathematics 235 (2010) 74–81 81

We argued that the Approximate QFT is also reobtained by the method proposed here, with analogous calculations.
Depending on the chosen parameter, the number of matrices generated by the decomposition of the approximate algorithm
can be considerably lower than that of the exact one. This reflects on the complexity of the quantum algorithm.
The deduction of the algorithms addressed in this paper is different from previous works, and we hope it may provide

insight for the development of newefficient quantumalgorithms. As future directions,we are interested in checkingwhether
other classical algorithms can be analyzed according to this technique, starting from its matrix form and then decomposing
it until simpler unitary matrices are obtained.

Acknowledgements

The authors thank J.S.E. Ortiz for helpful discussions. F.L.M. acknowledges financial support fromCNPq, aswell as previous
financial support fromFAPERJ,when this projectwas initiated. R.P. thanks CNPq for financial support, grant no. 306024/2008.
F.D.S. is thankful to LNCC for the hospitality during his stay. He also gratefully acknowledges the financial support of UDESC.

References

[1] J. Cooley, J. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965) 297–301.
[2] P. Rudnick, Note on the calculation of Fourier series, Math. Comp. 20 (1966) 429–430.
[3] G. Danielson, C. Lanczos, Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids, J. Franklin Inst. 233
(1942) 365–380, 435–452.

[4] P.W. Shor, Algorithms for quantumcomputation: discrete logarithms and factoring, in: S. Goldwasser (Ed.), Proceedings of the 35thAnnual Symposium
on the Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 1994, pp. 124–134.

[5] D. Coppersmith, An approximate Fourier transform useful in quantum factoring, Tech. Rep. IBM Research Report 19642 (IBM) (1994).
[6] R. Cleve, A note on computing Fourier transforms by quantum programs, 2004, http://pages.cpsc.ucalgary.ca/~cleve.
[7] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
[8] C. Lomont, The hidden subgroup problem: review and open problems, 2004, quant-ph/0411037.
[9] A. Barenco, A. Ekert, K.-A. Suominen, P. Törmä, Approximate quantum Fourier transform and decoherence, Phys. Rev. A 54 (1996) 139–146.
[10] D.E. Knuth, The Art of Computer Programming, in: Seminumerical Algorithms, vol. 2, Addison-Wesley, 1981.
[11] W. Press, Numerical Recipes in C : The Art of Scientific Computing, 2nd edition, Cambridge University Press, Cambridge, 1992.
[12] G. Golub, C.V. Loan, Matrix Computations, John Hopkins Press, Baltimore, 1996.

http://pages.cpsc.ucalgary.ca/~cleve
http://arxiv.org/quant-ph/0411037

	Obtaining the Quantum Fourier Transform from the classical FFT with QR decomposition
	Introduction
	The Discrete Fourier Transform
	Obtaining QFT from FFT
	Building the QFT from the proposed decomposition
	Conclusions
	Acknowledgements
	References

