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Right Ventricular Failure Following
Chronic Pressure Overload Is Associated
With Reduction in Left Ventricular Mass
Evidence for Atrophic Remodeling
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Paul Bresser, MD, PHD,† Hanno L. Tan, MD, PHD*‡

Amsterdam and Utrecht, the Netherlands

Objectives We sought to study whether patients with right ventricular failure (RVF) secondary to chronic thromboembolic
pulmonary hypertension (CTEPH) have reduced left ventricular (LV) mass, and whether LV mass reduction is
caused by atrophy.

Background The LV in patients with CTEPH is underfilled (unloaded). LV unloading may cause atrophic remodeling that is as-
sociated with diastolic and systolic dysfunction.

Methods We studied LV mass using cardiac magnetic resonance imaging (MRI) in 36 consecutive CTEPH patients (be-
fore/after pulmonary endarterectomy [PEA]) and 11 healthy volunteers selected to match age and sex of pa-
tients. We studied whether LV atrophy is present in monocrotaline (MCT)-injected rats with RVF or controls by
measuring myocyte dimensions and performing in situ hybridization.

Results At baseline, CTEPH patients with RVF had significantly lower LV free wall mass indexes than patients without
RVF (35 � 6 g/m2 vs. 44 � 7 g/m2, p � 0.007) or volunteers (42 � 6 g/m2, p � 0.006). After PEA, LV free
wall mass index increased (from 38 � 6 g/m2 to 44 � 9 g/m2, p � 0.001), as right ventricular (RV) ejection
fraction improved (from 31 � 8% to 56 � 12%, p � 0.001). Compared with controls, rats with RVF had reduced
LV free wall mass and smaller LV free wall myocytes. Expression of atrial natriuretic peptide was higher, whereas that
of �-myosin heavy chain and sarcoplasmic reticulum calcium ATPase-2 were lower in RVF than in controls, both in RV
and LV.

Conclusions RVF in patients with CTEPH is associated with reversible reduction in LV free wall mass. In a rat model
of RVF, myocyte shrinkage due to atrophic remodeling contributed to reduction in LV free wall mass.
(J Am Coll Cardiol 2011;57:921–8) © 2011 by the American College of Cardiology Foundation

Published by Elsevier Inc. doi:10.1016/j.jacc.2010.08.648
Right ventricular failure (RVF) secondary to chronic pres-
sure overload determines survival in patients with chronic
thromboembolic pulmonary hypertension (CTEPH) and
other forms of pulmonary arterial hypertension (PAH) (1).
The mechanisms underlying the development of heart
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failure in these patients are not fully understood. Both right
ventricular (RV) and left ventricular (LV) dysfunction occur
in patients with CTEPH (2–4) and other forms of chronic
PAH (5–8). This may be based on the fact that RV and LV
function are closely interdependent (9). In particular, be-
cause diastolic LV peak filling rate relates directly to RV
ejection fraction (7), LV diastolic filling is diminished in
patients with CTEPH (3,10) and other forms of chronic
PAH (6–8). This may cause LV unloading and atrophy. As

See page 929

the diastolic and systolic function of fully (11) or partially

(12,13) unloaded LV is impaired due to atrophic remodel-
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ing (14 –16), we hypothesized
that LV atrophy occurs in pres-
sure overload–associated RVF,
and that it contributes to heart
failure pathophysiology. The aim
of the present study was to pro-
vide evidence for reduction in
LV mass in CTEPH patients with
RVF with the use of cardiac mag-
netic resonance imaging (MRI).
Moreover, we sought to establish
whether reduction in LV mass is
caused by atrophic remodeling by
studying rats in which RVF sec-
ondary to pulmonary hyperten-
sion was induced by monocrota-
line (MCT) injection (17). This
model is suitable to study LV re-
modeling, because we recently
found that underfilled LV of
these rats exhibits electrophysi-

ologic changes (18) that resemble those reported in atrophic
LV (19).

Methods

Clinical Study

Patients. We retrospectively studied 36 consecutive
CTEPH patients who were referred for pulmonary endar-
terectomy (PEA), and who underwent cardiac MRI at

Abbreviations
and Acronyms

CTEPH � chronic
thromboembolic pulmonary
hypertension

IVS � interventricular
septum

LV � left ventricle/
ventricular

MCT � monocrotaline

MRI � magnetic resonance
imaging

PAH � pulmonary arterial
hypertension

PEA � pulmonary
endarterectomy

RV � right ventricle/
ventricular

RVF � right ventricular
failure

Figure 1 Short-Axis MRI Images at the Level of Papillary Musc

Images from a healthy volunteer at end-diastole (A) and end-systole (B); image fro
ular failure (RVF) at end-diastole (C) and end-systole (D) before pulmonary endarte
and end-systole (F) after PEA. Left ventricular (LV) free wall is measured as the ar
curves and right ventricular (RV)-LV junction in the anterior wall (indicated with blac
preoperative assessment. CTEPH was diagnosed as re-
ported previously (20). PEA was performed using standard-
ized surgical techniques (21). Preoperatively, all patients
underwent pulmonary angiography and RV catheterization.
Coronary angiography was routinely performed in all pa-
tients older than 50 years of age, and in patients older than
40 years of age if they had a history of smoking. Plasma
brain natriuretic peptide levels were measured in all patients,
and 6-min walking distance (22) was determined in 26
patients. All patients who survived PEA were reassessed by
cardiac MRI at 3 to 18 months post-PEA (median, 8 months).
Eleven healthy volunteers served as controls for the RV and
LV volumes and mass. Particular care was taken to match
control subjects for age and sex (mean age 52 � 10 years, 5
males). All subjects included gave written informed consent.
Investigations were approved by the local institutional review
board.
Determination of cardiac volumes and mass by MRI.
RVF was defined as MRI-derived RV ejection fraction
�45% (23). Masses of LV free wall and interventricular
septum (IVS) were assessed from the stack of parallel
short-axis images by manual detection of endocardial and
epicardial borders on each slice; the papillary muscles were
excluded from analysis of masses of LV and free wall (24)
(Fig. 1). The LV free wall extends from the RV-LV junction
in the anterior wall to the RV-LV junction in the inferior wall,
as shown in Figure 1. Cardiac volume and mass were normal-
ized to body surface area. Additionally, the following param-
eters were calculated: RV and LV end-diastolic volume indexes

hronic thromboembolic pulmonary hypertension (CTEPH) patient with right ventric-
y (PEA); images of a CTEPH patient with pre-operative RVF at end-diastole (E)

ountered between manually bordered endocardial (red) and epicardial (green)
ws) to the RV-LV junction in the inferior wall (indicated with white arrows).
les
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(assessment of RV and LV diastolic function); RV and LV
stroke volume indexes and ejection fractions (assessment of
systolic function); and LV peak filling rate (assessment of LV
preload and diastolic function).

Experimental Study

Animal model. The study protocol was approved by the
institutional animal use committee and was in line with
European Union directives on the care and use of experi-
mental animals. Eight-week-old male Wistar rats were
injected intraperitoneally with a single dose of 60 mg/kg
monocrotaline (MCT) (n � 18) to induce heart failure
secondary to PAH (17). The control group (n � 18) was
njected with a comparable amount (3 ml/kg) of the MCT
ehicle. The animals were serially monitored clinically and
y transthoracic echocardiography (17,25). MCT-injected
ats and control animals were sacrificed. The heart, lungs,
nd liver were immediately dissected, blotted dry, and then
eighed. The RV was separated from atria, IVS, and LV

ree wall in 10 MCT-treated animals and 10 controls, and
he RV was weighed separately. Body weight and tibia
ength were measured (26) and used for normalization of
V, IVS, and LV free wall masses (Table 1). Hearts from
CT-injected (n � 13) and control (n � 12) animals were

ither enzymatically dissociated to measure cell dimensions
r fixed in paraffin for in situ hybridization, or used for
uantitative RT-PCR and Western blot analysis.
tatistics. The statistical analysis was performed using
PSS version 16.0 (SPSS Inc., Chicago, Illinois). Assump-
ions of normality and homogeneity of variance for para-
etric testing were assessed using the Shapiro-Wilk test.
ata are mean � SD or median with interquartile range

Morphometric Parameters of Rats at SacrificeTable 1 Morphometric Parameters of Rats at Sacrifice

Control RVF p Value

Body weight, g 347 � 24 279 � 36 �0.001

Tibia length, cm 4.0 � 0.2 3.9 � 0.2 0.15

Lung weight, g 1.3 � 0.1 2.3 � 0.6 �0.001

Liver weight, g 14.7 � 1.2 10.7 � 1.5 �0.001

Right ventricle

RV weight, g* 0.20 � 0.03 0.42 � 0.04 �0.001

RV/body weight, g/kg* 0.59 � 0.09 1.51 � 0.16 �0.001

RV/tibia length, g/cm* 0.05 � 0.01 0.11 � 0.01 �0.001

Myocyte length, �m† 107 � 13 110 � 8 0.70

Myocyte width, �m† 23 � 2 27 � 2 0.005

Left ventricle

IVS weight, g* 0.37 � 0.04 0.36 � 0.02 0.42

IVS/body weight, g/kg* 1.06 � 0.07 1.29 � 0.16 �0.001

IVS/tibia length, g/cm* 0.09 � 0.01 0.09 � 0.01 0.95

Free wall weight, g* 0.68 � 0.07 0.56 � 0.04 �0.001

Free wall/body weight, g/kg* 1.95 � 0.18 2.05 � 0.34 0.42

Free wall/tibia length, g/cm* 0.17 � 0.02 0.15 � 0.01 0.006

Myocyte length, �m† 117 � 8 106 � 5 0.036

Myocyte width, �m† 25 � 2 24 � 1 0.58

Data are mean � SD. n � 14 (both control and RVF) except for: *n � 6 (control) and n � 5 (RVF),
(
nd †n � 4 (control) and n � 5 (RVF) animals.
IVS � interventricular septum, LV � left ventricle; RV � right ventricle; RVF � right ventricular failure.
unless otherwise indicated. Paired and unpaired Student t
test and nonparametric Mann-Whitney U test were used to
compare means or medians of normally and non-normally
distributed values, respectively. The multiple groups were
compared using 1-way analysis of variance with Bonferroni
post hoc correction or Kruskal-Wallis analysis of variance by
rank. Chi-square test was performed to compare propor-
tions. p � 0.05 was considered statistically significant.

For detailed methods see the Online Appendix, Supple-
mental Methods.

Results

Clinical Study

Baseline patient characteristics. On average, CTEPH
patients with RVF had significantly higher mean pulmonary
artery pressure and total pulmonary resistance, and sig-
nificantly lower cardiac index and 6-min walking distance
than patients with preserved RV systolic function (Table 2).
Patients with RVF also had significantly lower LV peak
filling rate and LV ejection fraction than either patients
without RVF or volunteers (Table 3). No patient had
coronary artery disease at coronary angiography.
LV free wall mass index in CTEPH patients with RVF.
At baseline, CTEPH patients with RVF had lower LV free
wall mass index than patients without RVF or volunteers.
Conversely, their IVS mass index was higher than in
volunteers. LV mass index was not different between the
groups (Table 3). There was no significant difference be-
tween patients without RVF and volunteers with regard to
RV ejection fraction, or mass indexes of LV free wall or IVS
(Table 3). PEA resulted in significant improvement in RV
ejection fraction (from 31 � 8% to 56 � 12%, p � 0.001)
n patients with RVF at baseline (Table 4). In parallel, LV
ree wall mass index increased (from 38 � 6 g/m2 to 44 �

9 g/m2, p � 0.001), whereas IVS mass index declined (from
8 � 8 g/m2 to 22 � 5 g/m2, p � 0.001) compared with
aseline. In contrast, patients without RVF at baseline
xhibited no significant changes in RV ejection fraction
from 54 � 9% to 56 � 20%, p � 0.89) or LV free wall
ass index (from 46 � 10 g/m2 to 50 � 12 g/m2, p � 0.21)

Table 4).

xperimental Study

orphometric and echocardiographic parameters. Rats
ith RVF had significantly reduced RV contractility (low

ricuspid annular plane systolic excursion), and impaired LV
arly diastolic relaxation and diastolic filling (low LV early
iastolic relaxation velocity E=, LV early diastolic filling
elocity E, LV end-diastolic area, and LV end-diastolic
iameter) (Table 5). These rats also had reduced LV free
all mass (lower LV free wall weight and LV free wall/tibia

ength index) (Table 1). Moreover, they had smaller LV free
all myocytes, as evidenced by diminished cell length
Table 1).
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Regional gene expression pattern, quantitative RT-PCR,
and Western blot analysis. In situ hybridization revealed
an altered gene expression profile: increased expression of
ANP, and reduced expression of �-MHC and SERCA2
(Fig. 2). These changes were present both in RV and LV,
and they were more pronounced in RV. Similarly, SERCA2
mRNA levels appeared to be reduced in RVF ventricular
tissue compared with control, but these differences were not
significant (Fig. 3A). ANP mRNA expression levels showed
an increase in RVF versus control tissue (p � 0.07). These
esults may be consistent with the findings from the in situ
ybridization experiments (Fig. 2), with regional heteroge-
eity of the ANP, �-MHC, and SERCA2 transcripts

Baseline Characteristics of Patients WithChronic Thromboembolic Pulmonary HypertensioTable 2 Baseline Characteristics of Patient
Chronic Thromboembolic Pulmonary

All Patients (n �

Age, yrs 56 � 14

Male, n 13

Systolic arterial pressure, mm Hg 128 � 17

Diastolic arterial pressure, mm Hg 76 �9

Mean arterial pressure, mm Hg 98 � 12

6-min walking distance, m 381 (167) (n � 2

Plasma BNP level, pmol/ml 27.2 (84.9)

NYHA functional class I/II/III/IV, n 0/6/27/3

Duration of symptoms, months 28 (61)

Catheterization

mPAP, mm Hg 48 � 13

TPR, dyne/s/cm5 935 � 416

RAP, mm Hg 11 � 5

PCWP, mm Hg 11 � 4

Cardiac index, l/min/m2 2.2 � 0.4

Data are mean � SD or median (interquartile range). RVF was defined a
BNP � brain natriuretic peptide; mPAP � mean pulmonary arterial

wedge pressure; RAP � right atrial pressure; TPR � total pulmonary

Cardiac MRI Parameters of Chronic Thromboembolic Pulmonary HyTable 3 Cardiac MRI Parameters of Chronic Thromboembolic P

Volunteer (n � 11) No RVF (n � 9)

Heart rate, beats/min 67 � 7 73 � 12

RV

RVEDVI, ml/m2 67 � 12 64 � 18

RVSVI, ml/m2 39 � 7 34 � 9

RV free wall mass index, g/m2 23 � 5 29 � 9

RVEF, % 59�9 55 � 9

LV

LVEDVI, ml/m2 67 � 15 57 � 11

LVSVI, ml/m2 44 � 9 36 � 8

LVPFR, ml/s 512 � 158 466 � 134

LVPFR/LVEDV, s�1 4.3 � 0.6 4.0 � 0.7

LV mass index, g/m2 62 � 10 68 � 13

IVS mass index, g/m2 20 � 4 24 � 6

LV free wall mass index, g/m2 42 � 6 44 � 7

LVEF, % 66 � 7 65 � 8

Data are mean � SD.

LV � left ventricle; LVEDVI � left ventricular end-diastolic volume index; LVEF � left ventricular ejection

RV � right ventricle; RVEDVI � right ventricular end-diastolic volume index; RVEF � right ventricular ejec
within the LV precluding accurate quantification. Western
blot analysis did not show a significant difference in �-MHC
r SERCA2 protein expression levels between control and
VF rats, although there was a tendency towards lower
ERCA2 protein levels in RVF rats (Fig. 3B).

iscussion

e found that CTEPH patients with RVF had signifi-
antly lower LV free wall mass than either patients with
reserved RV contractility or volunteers. In these patients,
EA restored LV free wall mass to values comparable with

h
ertension

No RVF (n � 9) RVF (n � 27) p Value

54 � 13 57 � 15 1.0

4 9 0.69

138 � 14 125 � 17 0.09

82 � 9 75 � 9 0.25

104 � 13 97 � 12 0.39

502 (80) (n � 5) 376 (137) (n � 21) 0.001

2.9 (9.1) 47.8 (105) �0.001

0/5/4/0 0/1/23/3 0.002

28 (75) 26 (52) 0.58

35 � 9 52 � 12 �0.001

653 � 224 1,037 � 426 0.003

8 � 3 12 � 5 0.08

9 � 3 12 � 5 0.42

2.5 � 0.4 2.2 � 0.4 0.027

etic resonance imaging (MRI)-derived RV ejection fraction �45% (23).
e; NYHA � New York Heart Association; PCWP � pulmonary capillary
ce; other abbreviations as in Table 1.

nsion Patients and Healthy Volunteersnary Hypertension Patients and Healthy Volunteers

(n � 27)

p Value

No RVF vs. Volunteer RVF vs. Volunteer RVF vs. No RVF

7 � 10 0.08 0.03 0.64

5 � 29 0.79 �0.001 0.001

9 � 6 0.31 0.013 0.15

7 � 15 0.03 �0.001 0.005

0 � 10 0.14 �0.001 �0.001

3 � 10 0.074 0.015 0.22

1 � 6 0.16 �0.001 0.043

8 � 86 0.10 �0.001 �0.001

5 � 0.6 0.52 �0.001 �0.001

2 � 13 0.43 0.46 0.21

7 � 7 0.16 0.038 0.16

5 � 6 0.34 0.006 0.007

7 � 9 0.68 0.014 0.051
ns Wit
Hyp
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fraction; LVESVI � left ventricular stroke volume index; LVPFR � left ventricular peak filling rate;
tion fraction; RVSVI � right ventricular stroke volume index; other abbreviations as in Table 1.
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volunteers. Using a rat model of RVF secondary to PAH,
we found that reduction in LV free wall mass can be, at least
in part, explained by myocyte shrinkage due to atrophic
remodeling.
LV mass in RVF due to chronic pressure overload. In
line with previous studies (10), we found that the sum of LV
free wall mass index and IVS mass index was not signifi-
cantly different between patients (either with or without
RVF) and controls (10). However, separate analysis of IVS
and LV free wall masses revealed that LV free wall mass was
significantly reduced, whereas IVS was hypertrophic, in
patients with RVF. We reasoned that LV free wall mass is
a better reflection of LV remodeling than IVS, because IVS

Echocardiographic Parameters of Rats at SacrifiTable 5 Echocardiographic Parameters of R

Right ventricle

Free-wall thickness, mm

End-diastolic diameter, mm

Tricuspid annulus plane systolic excursion, mm

Systolic RV-RA pressure gradient, mm Hg Not me

Left ventricle

IVS thickness, mm

Posterior wall thickness, mm

Diastolic function

End-diastolic diameter, mm

End-diastolic area, cm2

Early diastolic filling velocity (E), m/s

Early diastolic relaxation velocity (E=), m/s

E/E= ratio

Systolic function

End-systolic area, cm2

Fractional area change,%

Ejection fraction, %

Cardiac MRI Parameters of Chronic Thromboembolic Pulmonary HyTable 4 Cardiac MRI Parameters of Chronic Thromboembolic P

No RVF* (n�4)

Baseline Follow-Up

Heart rate, beats/min 68 � 11 79 � 12

RV

RVEDVI, ml/m2 66 � 17 54 � 12

RVSVI, ml/m2 33 � 7 35 � 8

RV free wall mass index, g/m2 34 � 10 23 � 8

RVEF, % 54 � 9 56 � 20

LV

LVEDVI, ml/m2 56 � 15 53 � 10

LVSVI, ml/m2 34 � 9 36 � 9

LVPFR, ml/s 417 � 133 460 � 117

LVPFR/LVEDV, s�1 4.0 � 0.7 4.6 � 0.9

LV mass index, g/m2 72 � 17 74 � 17

IVS mass index, g/m2 26 � 7 25 � 6

LV free wall mass index, g/m2 46 � 10 50 � 12

LVEF, % 61 � 7 68 � 10

Data are mean � SD. *Patients indicated in the table as “no RVF” or “RVF” did not or did have R
Abbreviations as in Tables 1 and 3.
Data are mean � SD.
RV-RA � right ventricle-right atrium; other abbreviations as in Table 1.
is composed of both LV and RV, and IVS hypertrophy may
be largely explained by RV hypertrophy (10). Thus, our
findings support the hypothesis that LV atrophic remodel-
ing occurs in RVF. Accordingly, reduction in LV mass was
also reported in end-stage pulmonary emphysema, another
disorder that is associated with chronic RV pressure over-
load, dysfunction, and altered LV diastolic filling (27,28). In
the present study, reduction in LV free wall volume (mass)
of patients with RVF may have been underestimated be-
cause LV interstitial edema was also present (29). Interest-
ingly, in patients with mitral stenosis (30) and end-stage
pulmonary emphysema (31), disorders that are both associ-
ated with reduced LV pre-load, normalization of RV

t Sacrifice

Control (n � 14) RVF (n � 14) p Value

0.7 � 0.03 0.9 � 0.1 �0.001

4.1 � 0.2 6.4 � 0.9 �0.001

2.2 � 0.2 1.3 � 0.2 �0.001

ble (no tricuspid regurgitation) 69 � 9

1.2 � 0.1 1.2 � 0.2 0.14

1.2 � 0.1 1.3 � 0.1 0.08

7.5 � 0.3 5.6 � 0.3 �0.001

0.67 � 0.03 0.53 � 0.04 �0.001

0.8 � 0.1 0.6 � 0.1 �0.001

0.07 � 0.01 0.04 � 0.01 �0.001

11.9 � 1.5 13.5 � 1.5 0.027

0.24 � 0.02 0.23 � 0.02 0.1

63.7 � 3.0 56.5 � 4.3 �0.001

68.0 � 4.8 64.0 � 6.9 0.15

nsion Patients at Follow-Upnary Hypertension Patients at Follow-Up

p Value

RVF* (n � 16)

p ValueBaseline Follow-Up

0.023 75 � 9 76 � 9 0.39

0.038 100 � 25 69 � 13 �0.001

0.5 30 � 6 37 � 8 0.006

0.026 47 � 12 25 � 5 �0.001

0.89 31 � 8 56 � 12 �0.001

0.60 54 � 10 61 � 10 0.009

0.58 31 � 6 41 � 9 �0.001

0.23 252 � 71 481 � 141 �0.001

0.14 2.3 � 0.8 4.0 � 0.7 �0.001

0.69 66 � 13 66 � 13 0.87

0.46 28 � 8 22 � 5 0.001

0.21 38 � 6 44 � 9 0.001

0.3 58 � 9 66 � 6 0.003

seline.
ceats a

asura
perteulmo
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function and LV diastolic filling after mitral valvuloplasty
and orthotopic single-lung transplantation, respectively, led
to significant increase in LV mass.

In the rat model, absolute LV free wall mass in rats with
RVF was significantly lower than in controls. When we
normalized LV free wall weight to body weight, we found
no significant difference between RVF animals and controls,
in line with several previous studies, using a similar model of
heart failure that described unchanged (32) or augmented

Figure 2 Distribution of ANP, �-MHC, and sSERCA2 in a 4-Cha

In RVF rats (lower panels), expression of ANP mRNA is higher and expression of �

only in the right ventricle (RV), but also in the left ventricle (LV). ANP � atrial natri
SERCA2 � sarcoplasmic reticulum calcium ATPase-2.

Figure 3 mRNA Expression Levels and Western Blot Analysis o

(A) mRNA expression levels of ANP, SERCA2, and �-MHC and (B) Western blot an
in left ventricular tissue of control and RVF; data are mean � SEM; *p � 0.07 ve
(33) LV mass. However, the body weight of MCT rats
declines significantly as early as 3 to 7 days prior to overt
heart failure (17). Accordingly, normalization of LV mass to
tibia length may be a more accurate method to reveal
changes in LV mass in rats (26). This analysis showed that
LV free wall mass in RVF rats was reduced. Similarly,
reduction in absolute LV mass in MCT-treated rats with
heart failure and rats with pulmonary artery banding was
reported by other investigators (34).

Section of Control and RVF Rats

and SERCA2 mRNA is lower than in controls (upper panels). This occurs not
peptide; �-MHC � �-myosin heavy chain; RVF � right ventricular failure;

tein

of SERCA2 and �-MHC with �-tubulin as loading control,
ontrol. Abbreviations as in Figure 2.
mber

-MHC
uretic
f Pro

alysis
rsus c
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Possible mechanisms of reduction in LV free wall mass
during RVF secondary to chronic PAH. Mechanical load
plays a critical role in determining the mass of cardiac
myocytes (35). Accordingly, unloaded LV undergoes atro-
phy (16,36). While doing so, it replicates the fetal gene
expression profile also seen in hypertrophy (15). In the
present study, we did not find LV hypertrophy. In contrast,
LV mass was reduced in rats with RVF. This was associated
with LV myocyte shrinkage, increased ANP mRNA expres-
sion, and diminished �-MHC and SERCA2 mRNA ex-

ression. Such a fetal gene expression profile was previously
bserved in the LV of MCT rats (33,37), and rats that
eveloped RVF after chronic pulmonary artery banding
38). Of note, these changes in expressions of ANP,

�-MHC, and SERCA were not predominant in the LV.
Not surprisingly, they were more prominent in pressure-
overloaded RV, in line with previous studies (33,38). Fur-
thermore, although we found a similar trend in the differ-
ence in gene expression in LV between control and RVF
rats using quantitative reverse transcriptase PCR (RT-
PCR), Western blot analysis did not reveal significant
differences in protein expression levels of �-MHC and

ERCA2. Since, in the present study, LV samples for
uantitative RT-PCR were taken separately from LV sam-
les for Western blot analysis, this discrepancy may be
xplained by regional heterogeneity in the expression of fetal
enes in myocardium of the LV in RVF (38). Taken
ogether, these findings indicate that LV remodeling that
ccurs in RVF due to chronic pulmonary hypertension may
e explained by cardiac myocyte atrophy (14–16,36,39).
imilarly, LV myocyte atrophy was demonstrated in pa-
ients with end-stage pulmonary emphysema (27,28). Of
ote, myocyte atrophy is independent of catecholamines
rom LV tissue and/or systemic circulation, or neural
ctivity (39,40). Although apoptosis and/or other mecha-
isms may also be responsible for the loss of myocardial
ass in unloaded LV, atrophy may be the main mechanism

41). In line with this notion, we did not find enhanced cell
eath in LV free wall of MCT-treated rats with RVF (42).
tudy limitations. Possible limitations of the present study
re as follows. First, the number of patients studied both at
aseline and at postoperative follow-up was limited. Second,
ardiac MRI was performed at different time points of
ollow-up after PEA (ranging from 3 to 18 months with a
edian at 8 months). This may be important because full

estoration of RV and LV systolic function after PEA
equires �12 months (43). However, significant improve-
ents in RV ejection fraction, LV end-diastolic volume,

nd cardiac index were documented as early as at discharge
rom the hospital, with further improvements being re-
orted at 3 and 12 months of follow-up (43). Similarly,
rthotopic single-lung transplantation in patients with end-
tage emphysema resulted in significant improvement in RV
jection fraction and increases in LV end-diastolic volumes,
troke volumes, and LV mass as early as 3 months after

urgery (31). Third, LV myocardial biopsies were not taken
o assess the morphology and confirm atrophic remodeling.
n the other hand, we demonstrated LV remodeling in a

at model of RVF due to chronic RV pressure overload.
lthough the data should be cautiously extrapolated to
uman disease, this experimental model is a generally
ccepted model to study RVF due to chronic pressure
verload (17,32,44).

onclusions

VF in patients with CTEPH is associated with reduction
n LV free wall mass. This reduction is reversible and can be
estored after PEA. Using a rat model of RVF secondary to
AH, we found that reduction in LV free wall mass can be,
t least in part, explained by myocyte shrinkage due to
trophic remodeling.
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APPENDIX

For an expanded Methods section,

please see the online version of this article.
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