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INTRODUCTION

A natural question, in the character theory of finite groups, is which
quasi-primitive characters are actually primitive. A character is said to be
quasi-primitive if it is irreducible and its restriction to every normal sub-
group is homogeneous. If the group is solvable, T. Berger [9, Th. 11.33]
has shown that every quasi-primitive character is actually primitive. If the
group is simple, however, every irreducible character is quasi-primitive and
may or may not be primitive. The character of degree 5 of Alt(5), for exam-
ple, is not primitive. It follows that a generalization of Berger’s Theorem to
non-solvable groups must include some extra hypotheses which become
vacuous when the group is solvable. In this paper we prove the following
such theorem, with hypotheses on the chief factors and the character
degrees.

THEOREM A. Let y be a quasi- primitive irreducible character of a finite
group G. Assume that if C is a chief factor of G the following hold:

(1) If C~8x --- x8 (n factors) where S is some non-Abelian simple
group, S zs the universal cover of S, Y e Irr(S), ¥ # 1, and Y(1)"| x(1), then
(O (1) is not induced from a character of a proper subgroup of S.

(2) If C is an Abelian non-central p-group, |C||x(1)* and
0,(G/Cx(C))= Cs(C) then p is odd and if, furthermore, S is a subnormal
szmple subgroup of G/C,(C), S is the universal covering group of S, and

* Partially supported by NSF Grant DMS-8601744 and by the DFG project
“Darstellungstheorie.”

456
0021-8693/90 $3.00

Copyright ) 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82324564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRIME CHARACTERS AND PRIMITIVITY 457

W #1 is an irreducible character of S of degree a power of p then

p F1Z(S)/ker(p)l.
Then y is primitive.

Theorem A is proved by applying the theory of primitive characters
developed in [3]. When the degree of y is suitably restricted, hypotheses
on the composition factors of G suffice, as demonstrated by the following
corollaries.

COROLLARY B. Assume that y is a quasi- primitive irreducible character
and y(1)= p® where p is a prime and p>'. Suppose that the following
groups are not isomorphic to composition factors of G:

(1) L,(q) when (¢"—1)/(g—1)=p°,
(2) L,(q) when p|(q—1, n),

(3) U.(q) when pl(q+1,n),
(
(

—— N

4) Ay,
5) M, ifp=11

Then y is primitive.

CoroLLARY C. Assume that y is a quasi-primitive character of G of odd
degree and that if S, is a non-Abelian composition factor of G then
So€ {L(q) q odd q>9. L,(2¥) if 2* =8 and 2 + 1| x(1), Sz(2¥) if 2 =32
and (2% + 1)} x(1), M5, Jy, J5, My, HS, He, Ru, Co,, Co,, HN, Ly,
Co,, J;, Suz, ON, Fiy,}. Then y is primitive.

If the product of an admissible set of prime characters is primitive, then
each prime is primitive. However, the converse is not true as shown by the
following example. Let G be the semidirect product of 44 with the central
product E of an extra special group of order 2° with Z,. There is an
admissible set of primes {p,, p,} of G, with p,(1)=p,(1)=4, ker(p,)=E,
p, and p, primitive, but p,p, is induced from a linear character of
Z(E) A,.

1
Most of the notation is standard and is taken from [5,1]. If X is a

group and p a prime, then X, denotes a Sylow p subgroup of X. If ge X,
then g* denotes the set of conjugates of g.
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If ¢ is a quasi-primitive irreducible character of a group X, then F*(¢p),
Z(¢p), and M*(¢) are defined by

ro)_p[ )
ker(g) " Lker(p) |

Z(op) _Z[ X ]
ker(p) | ker(o) |’
F*

M*(@)= Z(((;p))

(F*(X) denotes the generalized Fitting subgroup of a group X.) A non-
linear irreducible quasi-primitive character is said to be a prime character
if M*(¢) is homogeneous and ¢, is irreducible.

A set {¢,..,,} of prime characters of a group X is said to be
admissible if M *(¢;) and M *(¢,) contain no X-isomorphic X-chief factors
for i#j.

A character y is standard if the determinantal order of y divides some
power of x(1).

LemMAa 1. Let G be a finite group and p a prime character of G with
M*(p) an Abelian p-group. Suppose that H is a maximal subgroup of G
which avoids M*(p). If O,(G/F*(p))=F*(p) assume that p is odd and
that for every S a covering group of a non-Abelian composition factor
of F*(G/F*(p))/F*(p) and every Selrr(S) with 6(1)|p(l), we have
pI1Z(S)/ker(d)|. Then p, is not a quasi-primitive irreducible character
of H.

Proof. By replacing p by a Ap for an appropriate linear character 4, we
may assume that p is a standard character of G, and we may further
assume that ker(p)=1. We set K= F*(p)=F*(G), and by [4, Th. 1.11],
Cs(K/Z(G))=K. By [4, Prop. 1.97, p(1) = |K/Z(K)|'* = p*, and since p is
standard, K is a p-group. By the maximality, H " K=Z(G) and HK=G.
We assume that p,, is a quasi-primitive irreducible character of H.

HnO0,(G/K) is a normal subgroup of H such that Hn O, (G/K)/Z(G)
~ 0, (G/K)/K, a p’-group. It follows that there exists a subgroup Q such
that Hn 0 ,(G/K)=Q x Z(G) and therefore Q <o H. Since p, is quasi-
primitive, Q= Z(G)< K, a p-group, and Q=1. Hence Hn O, (G/K)=
Z(G) and O,(G/K) = K. In particular, by hypothesis, p is odd.

Since H is a maximal subgroup, G # K. Let H, be a subgroup of H of
minimal order subject to H, <1 H and H ¢ Z(G). Set R=H, K. Since G is
completely reducible on M*(p), and Co(M*(p))=K, O,(G/K)=K,
whence R/K is not solvable. Hence, the minimality of H, yields H, = H'|,
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Hy=A,---A, where [4;, A;]]=1if i# j, and the A, are isomorphic quasi-
simple groups. It follows that the A; are homomorphic images of S where
S is a universal covering group of 4,/Z(A,) and A4,/Z(A,) is isomorphic to
a non-Abelian composition factor of F*(G/F*(p))/F*(p). Now p, =ed
where delrr(H,), ee Z*, and 6(1) = p® > p. Since p is faithful, Z(H,) is a
p-group, If p||Z(H,)|, then p faithful and H a central product imply that
there is a &, e Irr(S) where 8,(1)]|8(1) and p||Z(S)/ker(d,)|. This contra-
dicts the hypothesis of the lemma so that H, is a direct product of simple
groups.

By [10, Cor.4.4], there is a subgroup U of G such that G =UK,
UnK=L={)>=Z(K), U2C4K), and there is a ¢ € Aut(G) such that
o’ =1, o inverts K/L and U= Cg4(0).

By [10, Th. 7.1, p,=y¢ where ¥ is a character of U/Z(G), |¢(u)|*=
|Cx,(v)| for all we U, and ¢ € Irr(U). In particular, y(1)= p“ whence ¢ is
linear. Since G= UK, and H, is perfect, R=U,K where U,=(RnU)"
Furthermore RN U=U,Z(G) implies U, =U,. If (/e Z(G)n U,, then
U,= U, and ¢ linear imply that {/eker(y) nker(¢) = ker(p)= {1}. Thus,
UnK=Un(UnK)YScU nZ(G)=1.

H,K=R= U, K yields

H, HK UK U, U
“"HnK K K Unk "

H,

Let 2 be a p’-element of H,; then A — « under the isomorphism of H, and
U, where u is the p'-element of U, such that 2K =uK Now AK=uK and
(hyK={u) K, with h and u p’-elements imply that 4 is conjugate to u by
an element of K. Thus, p(h)=p(u). Let (p,,)* and (p,,)* denote the
Brauer characters for the prime p corresponding to p,, and p,,. The
previous discussion implies that (p, )* corresponds to (py )* under the
isomorphism from U, to H,. Since p, is quasi-primitive, p, =ed where
delrr(H,) and ee Z * implies that all the irreducible Brauer constituents
of (p,,)* lie in the same p-block B. Since p is a faithful character of degree
p“, 6 corresponds to a faithful character of U, of prime power degree and
Z(U;)=1 [3, Lemma4.24] implies that B is not of full defect. U is
isomorphic to a subgroup of G = Sp(2a, p). Moreover, it follows from [ 10,
Th. 4.87 that ¢ is the restriction to U, of a corresponding character § of
G where § =, + §, with § (1) = (p“—1)/2 and J,(1)= (p*+ 1)/2. Since
((p“—=1)/2,(p“+1)/2)=1, there is yelrr(U,) such that 0#(y,¢,,)=
(v, py,) and (y(1), p}=1. Then (p,,)* a sum of irreducible Brauer charac-
ters in the same p block B implies that ye B. Thus, (p, y(1))=1 yields that
B is a block of full defect. This is a contradiction.

Proof of Theorem A. Assume y is a character of a group G of minimal
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degree such that the hypothesis but not the conclusion of the theorem is
satisfied. By [4, Th. A] there is a central extension (G,, n) of G such that
x=T1/_, p; where {p,, .., p,} is an admissible set of prime characters of
G,. Since G, is a central extension of G, G, and y also satisfy the
hypothesis of the theorem, and it is sufficient to prove that y is a primitive
character of G,. Hence, we may replace G by G,/(\/_, ker(p,) and assume
x=T117_, p; where p,elrr(G) and Z(G)= Z(x). We may also assume y and
each p; are standard characters of G.

x={¢ where {elrr(H) and H is a maximal subgroup of G. Thus,
H > Z(G). Suppose there is some K with K A G, K £ Z(G), and K< H.
Choose K of minimal order such that K<1 G, K< H, and K € Z(G); then
¥x=ep where eeZ* and @elrr(K). ¢(1)>1 since Z(x)=Z(G) and
K & Z(G). By [9, Th. 11.17], there is a central extension (I, n) of G; and
viewing y as an irreducible quasi-primitive character of I, y =8 where y,
Oelrr(I), 6(1)=e, and 0,-1«, is a multiple of a linear character. Thus,
xx=ep where @elrr(K) yields v, elrr(n '(K)). Let N=n""(K)n
ker(6); then yy=ey, and y quasi-primitive imply that 7, is homogeneous.
Since n~YK)/N is cyclic, [9, Th.11.22] yields that y, is irreducible.
Ncker(8) and y is irreducible and quasi-primitive, whence [4,
Lemma 1.1] implies that 8 is a quasi-primitive character of I'". Since 6(1) is
a proper divisor of m and I satisfies the hypothesis of Theorem A, 6 is
primitive.

x =7 where { may be viewed as a character of n~'(H), yy=eyy, and
vy €Irr(N) with Nz~ '(H) now imply that {, = by, where be Z *. Since
7 Is irreducible, y,-1€ Irr(r '(H)). Thus, [8, Th. 6.17] yields
(=M., where Aeltr(n '(H)/N). It follows that Oy=y=("=
(4721} = A"y. However, N cker(4) and N A I' imply that N < ker(A").
Now Ncker(f) and [9, Th.6.17] yield 0 =A". This is a contradiction
since 6 is primitive, and such K cannot exist.

Now let K be a normal subgroup of minimal order such that K « Z(G);
then G=HK. Since {p,..p,} is an admissible set of primes [4,
Theorem 1.117, the minimality of K and [9, Th. 11.22] imply that we may
choose notation so that K<ker(y') where y'=11/_,p; and K € ker(p)).
Let p=p,. Suppose K/Kn Z(G) is not an Abelian p-group; then by the
minimality of K, K=4,..4, where [A4,, A;]=1 for i# j, and the A4, are
isomorphic quasi-simple groups. yx=x'(1) px so that {“ =y, G= HK, and
[9, Problem 5.2] yield 3'(1) px= ({)x = ({1~ x)*. Hence, there is a maxi-
mal subgroup K, of K such that HNn K< K, and y'(1) px=({ where
(= (Cynr)®. Since A; £ K, for at least one i, we may assume 4, £ K.
Thus A, K, =K and y'(1) p4, = (Cf)Al = (({()Al = ((Cl)Aan[)Al- Since K is a
central product of the 4, and y, is homogeneous, p, =f5 where
delrr(A4,) and 6(1) ~'| /. Further, 6(1) > 1 since Z(x)=Z(G). Thus, x,,=
X' (1) f6=(({1)4,~x)" This contradicts the hypothesis of the theorem
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since K/Kn Z(G) is a chief factor of G. Thus, the minimality of K implies
that K is p-group for some odd prime p and Kn Z(p)= K n Z(G).

Since KZ(p)/Z(p) is a normal p-subgroup of G/Z(p), K< F*(p).
Thus, F*(p)/Z(p) is Abelian and [F*(p), F*(p)l< Z(p). Now G=HK
yields F*(p)=(HnF*(p))K and [F*(p)nH, K]<[F*(p), F*(p})]1n
KcZ(pyn K Z(G)c HN F*(p). Therefore, F*(p)nH is a normal
subgroup of G so that F*(p)n H=Z(G). It follows that F*(p)=Z(G)K
and that H avoids M*(p). By [4, Prop.19], if [M*(p)|=p***!, then
p(1)= p°, so that M*(p) is a chief factor with |M *(p)||x(1)% and, by [4,
Th. 1.11], C4(M *(p)) = F*(p). Further, [G: H] = p*.

Now, py'=3=(° yields p“%'(1)=((1)[G:H]={(1)p* so that
p()C(D)=yx'(1). ¥ elrr(G/K), Gallagher’s Theorem [9, (6.17)], and
¥’ (1)< y(1) imply that y’ is a primitive irreducible character of G/K. Thus,
G = HK yields y); a primitive irreducible character of H. By Frobenius
Reciprocity, (®=py yields 1=({, pyx) = ({hr> Xu)- Now {(1) py(1)=
(1) p(1)=y'(1) and y% € Irr(H) imply that {p,, = . Since y), is primitive
and irreducible so is p,. This contradicts Lemma 1.

2

In this section, Corollaries B and C are proved by verifying the
hypothesis of Theorem A. Heavy use of [1] is involved. We will frequently
adopt the notation of [1].

We will consider the following situation. y denotes a quasi-primitive
irreducible character of odd degree of a group G and S, is a non-Abelian
composition factor of G. Suppose (x(1)/6(1))5=pu5 where S is a
homomorphic image of a universal covering group of S,, é is a faithful
irreducible character of S, and u is a character of a maximal subgroup R
of S. If A< S, let 4y denote the image of 4 in S/Z(S). The conditions ¥(1)
odd and R2Z(S) yield [S,: R,1=[S:R] is odd. Further, there is a
¢ € Irr(R) such that (¢, u) #0, ¢° = ad where a and ¢(1) are odd. We note
that

ad(1)=[S: R} o(1)=[So: Ro] o(1). (21)

We recall that if x*~ R={J7_, xX, then

n

S (L('.‘i) >
S = =|C E 2Ty, 22
ad(x)=¢>(x)=|Cs(x)| <i=l 1C ()] (22)

Suppose FA R and (@g, A)#0 for Aelrr(F); then ¢ =60% where
Oelrr((4)) and 0|, is a multiple of A by [9, Th.6.117]. If xSnI(1)=
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U, ™ where y, = x and y,... y,, are representatives of the distinct 1(4)-
conjugacy classes of elements which are S-conjugate to x, then

m 0 '
ad(x) = @%(x) = 0%(x) = | Cs(x)| ( 2 ic (y(; )|>'
i=1 (V5 8 81

Suppose F< K are subgroups of R, F A R, T is a set of representatives
of some different K-conjugacy classes where all elements in T have order ¢,
and there is an element & in K such that wF=kF for all we T. The number
of K-conjugates of w in wF=kF is |Cy,z(kF)| |F|/|Cg(w)|. Thus we obtain,

(2.3)

1 o
LG o) STCrr kB IF

(2.4)

where « is the number of elements of order ¢ in kF.
The following inequality is also useful:

alR| = |R| (6, @) < @(1) (1) + B(IRI - 1) (1), (2.5)
where f=max{|é(g)||ge R* }.

Proof of Corollary B. We first show (x(1)/6(1))J is not induced from
a proper maximal subgroup R of S if S is a covering group of a non-
Abelian composition factor S, of G with 8(1)]x(1). Assume the contrary;
then as in the previous paragraphs ad = ¢° where a and ¢(1) are odd and
pelrr(R), R a maximal subgroup of S. Since S, # L,(q) where
(¢"—1)/(¢g—1)=p’ or A,s, or M,, if p=11, and p > 11, [7, Theorem 2.3]
implies that S,=L,(11), R/Z(S)~As, and p=11, or S;=M,;,
R/Z(8)=M,,, and p=23. In each case, 6(1)= p. However, by [1] S has
no irreducible character of degree 23, if S,= M,;. Thus, S,=L,(11),
p=11, and R/Z(S)~ As. Hence, we may assume S=S, and é =y, of [1,
p. 7]. Thus, [1, p. 2] implies (6 4,, ¢) =1 and ¢(1) =3 or 5. However, (2.1)
now yields 11 =ad(1)=[S: R]@(1)=33 or 55. This is a contradiction.
Thus (x(1)/6(1)) 6 is not induced from a proper subgroup of S.

If p||Z(S)| where S is a universal covering group of S, a non-Abelian
composition factor of G, then [6, pp.302-303] and p= 11 imply that
So=~L,(q) and pl(g—1,n) or So=U,(g) and p|(g+1,n). Both these
cases are not possible by hypothesis so the corollary follows from
Theorem A.

Proof of Corollary C. In order to ease notation and verify the
hypothesis of Theorem A, we may assume S, is a non-Abelian composition
factor of G, § is a faithful irreducible character of S where S is a
homomorphic image of a universal covering group of S,, and §(1){x(1).
The values for 8(1) appear in [8] if Sy=L,(g) or Sz(q) and in [1]
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otherwise. Direct inspection implies there is no § with d(1)= p% p an odd
prime, and p||Z(S)/ker(8)]. Thus, by the discussion preceding the proof of
Corollary B, it is sufficient to show that ad # ¢° where a and ¢(1) are odd
and ¢ elIrr(R) for R a maximal subgroup of S. We assume the contrary.
We repeatedly use the trivial fact that if §(x) # 0 then ad(x) = ¢*(x) implies
that we may assume by conjugation that x € R.

The proof now proceeds as a case by case analysis using the previous
remarks.

(i) Suppose S, = L,{(¢g) where ¢ is odd and ¢ > 9. §(1) odd implies
that we may assume S=S,. By [8, Th. XI 5.6, 5.7] d(1)e {(¢+1)/2,¢q}. If
0(1)=(q+1)/2, then 6 does not vanish on any elements of §, where
g=p™, p a prime. Thus, R contains a Sylow p-subgroup of S. By [12,
Th.6.25], [S:R] is even which is a contradiction. If d(1)=g¢, then
d(x)#0 if x is not conjugate to an element of S 7. Thus, ad = @® implies
that R contains an S-conjugate of any element whose order divides
(g—1)(g +1). Since S contains elements of order (¢+ 1)/2 and (g —1)/2
and ¢>9, R/Z # S,, As, or A,. Now (¢ — 1)/4||R| together with [S: R]
odd and [ 12, Theorem 6.25] now imply that no subgroup R exists.

(ii) Suppose that S,= L,(2*) where 2* + 1} x(1) and k >3; then
S=S,. By [8, Th. XI 5.5] ¢ is an exceptional character belonging to the
Singer cycle of L,(2*) and (1) =2* — 1. Since  does not vanish on involu-
tions or elements of order dividing 2* + 1, R must contain an element of
order 2¥+1 and an element of order 2. Now [12, Theorem 6.25] implies
that R is a dihedral group of order 2-(2* + 1). This contradicts [S: R]
odd.

(ili) Suppose S,=Sz(2*) where (2% +1)}yx(1) and k>5. Set
k=2m+ 1. Then S;=.S and by [8, Theorem XI 5.10], & is an exceptional
character associated with a cyclic group U where (|U],d5(1))e
{(22m+1 +2m+ 1 + 1’ (22m+1 . 1)(22m+l _2m+l + 1))’ (22m+l __2m+1 + 1’
¥+ —1)(2*"* 1+ 2"+ +1))}. 6 does not vanish on any elements of U.
By [13], R=N4U) (up to conjugation). This contradicts [ S: R] odd.

If Sge {M,,,J,,J,, My, HS, He, Ru, Co,, Co,, HN, Ly, Co,}, then the
Schur multiplier of S, is 1 or 2. Thus, we may assume S=S, for these
groups. We adopt the notation of [1]. In particular, we let 6 = y,, where y,,
is one of the characters given in [1].

(iv) Suppose So=M,,; then R=2'"%:5; or 4*:D,,. In par-
ticular, R contains no elements of order 5, 10, or 11. R contains one

conjugacy class of 3-elements. Now [1, p.33] implies no & exists where
6(1) is odd and aé = ¢°.

(v) Assume that S=J;then R=2:7:3 or 2x A5 by [1, p. 36].
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Thus, R contains no e¢lements of order 11, 15, or 19. Direct inspection of
[1, p. 36] yields a contradiction.

(vi) Suppose that S=J,; then by [1, pp.42-43], [S: R] =315
and R=2"'""*: 4, 0r [S:R]=525and R=2%"*:(3x.S,). Neither R con-
tains representatives of all four S-conjugacy classes of 5-clements, or any
element of order 15, or any element of order 7. Hence, it follows from [1,
p.43] that 6 = y,;. x,3 does not vanish on 34 or 3B of [1, pp. 424]. Since
{34 and {3B) are not S-conjugate, R#2'"%:4,. R=2*"%:(3xS,)
and (2.1) imply that @ =3¢(1). There is a normal subgroup F in R where
F=22**1f (84)*nR="_, xR, then xF is an involution and we may
choose notation so that x,F'=(84)Ffor i=2, .., t. Thus, |F| |Cg/-((84)F)|
=6|F|] and applying (24) with K=R and T={x,|i=1,.,n} yields

T 1/|Cr(x)| < ;. Now (2.2) implies that

i=1

h

" 1 8o(1
<o) % i <

This is a contradiction.

(vii) Suppose S=M,;. Then [S:R]=23and R=M,,, [S:R]=
253 and R=1L4(4):2,, and [S:R]1=253 and R=2":4, or [S:R]=
1771 and R=2*:(3x A5) :2. Hence, R contains no elements of order 23
and no R contains elements of order 15 and 7. Thus, 6=y, of [1, p. 71]
and (1) =1035. Since y,; does not vanish on 11-elements, R = M,,. Thus,
(2.1) implies that a=@(1)/45. In particular, 45{¢(1) whence [1, p.40]
implies that ¢(1)=45 and ¢(x) is not real if |{x)>| =7. However, M,, and
M, both have exactly two conjugacy classes of 7-elements. Therefore, (2.2)
yields —a=ay,,(74)=|Cs(74)|(@(TA)/|Cr(74)])=2¢(7A4). This contra-
dicts ¢(74) non-real.

(viii) Suppose that S= HS; then R=4%:L,(2) or 4-2*:S5 by
[1, p. 80]. In particular, R contains no elements of order 15 and at most
one conjugacy class of 5-clements. Examination of character values of
S-elements and 15-elements for irreducible characters of HS of odd degree
yields a contradiction in each case.

(ix) Suppose S= He; then R=2"*°%.L,(2) and [S: R]=187,425
or R=2°:3S, and [S: R]=29,155. 2',7%. L,(2) contains no elements of
order 5, 21, 15, or 17 and only two conjugacy classes of 7-elements.
26:3'S, contains no elements of order 7, 21, or 17. Thus, [1, p. 105]
implies that § = y,5 and 8(1)= 17,493 =17 - 73 - 3. Since y,5 does not vanish
on 5-elements, R=2%:3'S,. Thus, R and S both have exactly one con-
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jugacy class of 5-elements. We choose notation so that 54 € R. It is direct
to compute that |C.(54)| =4-5-3. Thus, (2.2) yields a(—7)=ad(54) =
5¢(54). However, by (2.1), a=5¢(1)/3. Hence, @(54) = ¢(1)(—7)/3 which
is a contradiction.

(x) Suppose S= Ru; then R=23*%:L,(2) and [S: R]=424,125
or R=22%%%:S,and [S: R]=593,775 by [1, p. 126]. Neither R contains
conjugates of both 54 and 5B, and R contains no elements of order 15, 29,
or 13. Now direct inspection using [1, p.127] implies ad# ¢S for
@ elrr(R) and (1) odd.

(xi) Suppose S=Cos; then Re {2'S¢(2), 2% 4g, 27-[27-37]-S;)}
by [1, p. 134]. Hence, R does not contain representatives of both 54 and
5B or any elements of order 11, 23, or 21. Thus, [1, p. 135] implies that
d€{xis, x37}- If 0=yx;s, then x,5(54)#0 yields R=2S((2) or 2*. A4,.
However, é also does not vanish on 94 and 9B, but neither 2'S¢(2) nor
2*. A, contain two conjugacy classes of 9-elements. If 6 = y,, then & does
not vanish on 94 or 9B. Thus R=2%-[27-3%].8,. Let x,=94 and
(9B)* " R=J/_, xk. If F=2%.[27-3%], then notation may be chosen so
that x;€(94)F for i=1,..,n since R/F=S§;. Since |Cx,((9B)F)| |F|=
3|F|, (24) with K=R and T={x,Ji=1,..,n} yield 37_, 1/|Cp(x,)| <3.
By (2.1) a=3%(1) so that (2.2) implies 3*p(1)-2=ad(94)=|C49A4)|
7, o(x;)/|Cr(x)]) <81 -¢(1)/3. This is a contradiction.

(xii) Suppose S= Co,; then R=2'"": M,,:2 and [S: R] =46,575,
R=2'%%:542) and [S:R]=56,925 or R=2*"'":(S,xS,) and
[S:R]=3,586,275 by [1, p. 154].

R contains no elements of order 23. Also R does not contain repre-
sentatives of both 54 and 5B, or representatives of both 154 and 15B.
Hence, 6 € {Xs, X16> X17> X201 X29> X35+ X38> X395 Xass Xa7> Xags Xa9> X565 6o}
(See [1, p. 1557].)

Suppose d=yy Or yxe; then &(114)#0 so R=2'"-M,,:2. Since
xs(154) #0, 6 = y¢o. It follows from (2.2), [1, p. 155], and [1, p. 39] that
a=adé(114)=@(x,)+ ¢(x,) where x, and x, denote representatives of the
R-conjugacy classes of 11-elements. Since |Cg(114)| and ¢(1) are both odd
@ prp, € Irr(M ;). By (2.1), a-5-3>=¢(1). Hence ©my, =13 OF x4 of [1,
p.40]. Thus 1=ad(114)=@(x,)+ @(x,)=2 which is another contra-
diction.

Suppose R=2""%:5,(2) and |{x)| = 16, where x € R; then |C(x)| =32
by [1, pp. 154]. Let F=2'"% then [1, p.47] implies that if xSAR=

7.1 x} we may choose notation so that Fx,e {(4E)F, (84)F, (8B)F}
where 4E, 84, 8B are given on [1, p. 47]. The number of R-conjugates of
x;in x,F is
|C gye(x,; F)| _ |Crip(x:F)| F|

|Calx,) 2

|F
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If x,F=(4E)F, then |Cg,;,(4EF)| =32 implies that (4E)F contains only
elements of order 16. Since R is a split extension, (4E)F contains an
element of order 4. Thus, x,Fe(84)F or (8B)F and each of these cosets
contains elements of order 8. The number of R conjugates of x, in (84)F
or (8B)F is 16|F|/|Cg(x;)| =1F}/2 by [1, p.47]. Hence (84)F and (8B)F
contain representatives of only one conjugacy class of 16 elements.
Therefore, if x is either of the two conjugacy classes of elements of order
16in S, xSNn R=x" if x=164 or 16B of [1, p. 1547]. Thus by (2.2)

ad(x) = (x) if x=164 or 16B. (xi1, 1)

Suppose (¢, 1) #0 where Aelre(F) and I(A)# R [R:I(1)]|¢(1) and
[1, p. 46] yield d| (1) where de {63, 135, 315}. Since a is an integer, [1,
pp. 154-155] and (2.1) now yield a>9. However, (xii, 1) yields
9=a|6(164)| <|@(164)| which implies that |Cr(164)|>81. Thus,
I(A)=R. Since ¢(1) is odd and |F/ker(i)| <2, @g, clrr(S¢(2)) and
l@(16A4)| = |@s,2)(g)l where (164)F= gF and ge S4(2). Now |6(164)] =1
by [1, pp. 155-156] and |¢@,)(g)l=1 by [1, p.47] since [{g)|=8.
Hence, by (xii, 1), a=|ad(164)| =|p(164)| =1. Thus, (2.1) now yields
0 =135 OF Y39 and @goy=7y, of [1, p.47], 6=ys6 and @)= x7 Or 5 Of
[1, p.47], or 6 =34 and @g,,= x5 of [1, p. 47].

Suppose & = 4 and @, o, = x3. There is one class of 7-elements in S¢(2)
and no elements of order 14 or 28. Therefore, we may choose notation so
g€ S¢(2) has order 7 and if xe {74, 144, 14B, 14C, 284} of [1, p. 154],
and x5~ R=)7_, x[, then all x, lie in gF. Since |Cg,,)(g)| =7, it is direct
to compute that (7TA%ngF)u (1448 ngF)u (14BR ngF)u (14C¥ ngF)u
(284% N gF)= gF. It follows that x5 R=x® If F & ker(¢), then gF con-
tains an element gf where ¢(gf) is negative. Since gf is S-conjugate to x,
o(x) is negative. However, (2.2), (2.1), x>n R=x"® and [1, p. 155] yield
1 =ad(x)=@(x) which is a contradiction. Therefore, F<ker(¢). Hence,
0(164)=1=06(16B) and (xii, 1) imply that ¢(84) and @(8B)=1 where 84
and 8B represent the conjugacy classes of elements of order 8 in S¢(2). This
contradicts @)= 13- '

If @g542)= %2> X7, OF Xg, then @(y)#0 if y has order 9. However, S and
R both have exactly one conjugacy class of elements of order 9. Thus, by
(2.2), o(y)#0 if |[{y>|=9. This contradicts d€ {ys3, X309, Xs6}- Hence,
R#2'7%:5(2).

If R=2":M,,:2, then § must vanish on at least one conjugacy class of
3-elements. Thus, § = y4 and 6(74)=1. Now (74)n R=xfu x¥ by [1,
p. 40]. Hence, (2.2) yields a=ad(74)=|Cs(TA)N (X2, @(x,)/|Cr(x)]) =
(56/7 - 2*)(@(x,) + @(x,)). Since ¢ does not vanish on 7-elements, [1,
p. 39] implies that /(1) = R if (¢, 1) #0 for A€ Irr(F) where F=2'. Now
(1) odd yields @,,,, € Irr(M,,). By (2.1), a=3¢(1)/55. Since ¢ does not
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vanish on 7-elements, [1, p.40] yields ¢,,,=xs of [1, p.40]. Thus,
@(x,)+ @(x,)= —2 which contradicts ad(74)=a>0.

Thus R=2%*'":(SsxS;). Since R contains no element of order 9
or 7, we may assume &€ {)ig, X39» Xa6s Xa7> Xags Xs6 ). Let F=2°11
Ke{2*%'9:(8,xS;), R}, and let 4 denote the image of the set 4 in K/F.
K/F has classes bF and cF of elements of order 4, and we may choose nota-
tion so that |Cg(b)| =2%.3, |Cx(¢)| =8. Let T, be a set of representatives
of the K-conjugacy classes of 16 elements such that wF=bF for we T,. By
(24), X5, 1/|Cx(w)l < . Let T, be a set of representatives of the K-con-
jugacy classes of 16 elements such that wF=cF for weT,. By (24),
X VICkw) < L. If g has order 16 in K, then g has order 4. Thus, T, U T,
is a set of representatives of the K-conjugacy classes of elements of order
16. Hence, we obtain

—_—

¥ 1

<-. (xii, 2)
o |Cxkw) 6

Suppose that aé = y5 where y € Irr(K). We may choose notation so that
164, 16Be K, (164)°n K= )5 w*, (16B) N K={Js, w* where S, U S, =
T,uT,. Thus, ad(164) =y5(164) = |C(16A4)|(X s, 7(w)/|Cx(w)]), ad(16B)
=7y5(16B) = |C4(16B)|(X s y(w)/|Cx(w)|). Reference [1, p. 1557 now yields
2a=1ad(164)| +|ad(16B)| = [y*(164)| +[y°(16B)| < 32T, [y(w)l/
|C x(w)]). Using (xii, 2) we obtain

2a < Baq, where a =max{|y(w)|we T, uT,}. (xii, 3)

Since a®<max{|Cg(164)| -1, |Cs(16B)| -1}, a<./31. Now letting
K=Ryields a<14. By (2.1) a=9¢(1) if § = x35 or x39. Thus, d € {x4, x47,
xas) and a=27¢(1)/5 or d =y and a=9¢(1)/5. Since a is an integer,
51@(1). Thus, a< 14 yields 6 =y and ¢(1)=75.

If (¢, A)#0 where 4 is not invariant in R and A€ Irr(F), then ¢(1)=5
implies that K=/1(1)=FS,;x S; and ¢ =y® where y(1)=1. Now (xii, 3)
yields 18=2-9¢(1)/5<32/6-1 which is a contradiction. Hence, I(1)= R.
Since ¢(1) is odd and A(1)=1, |o(x)| =|@(g)| where ¢ is an irreducible
character of §5x §; with ¢(1)=5, xe {164, 16B}, and g is an element of
order 4 in S5 x S5. By [1, p. 2], |@(x)| =1 which again contradicts (xii, 3).

(xiii) Assume that S=HN; then R=27%:(45xA45)-2 or
R=2%-22.2%.(3x Ls(2)) by [1, p. 166]. Reference [1, p. 164] implies that
0(54)#0. Thus, R=2'""*:(A45+ A;)-2 and we may choose notation so
5A€eR. By [1, p.166], R= N(2B). But 54 € R implies there is an element
of order 10 with 2-part conjugate to 2B and 5-part conjugate to 54. This
contradicts [1, p. 164].

(xiv) Suppose S=Ly; then R=3-McL:2=N(3A)or R=2A4, =
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N(24) by [1, p. 174]. Neither R contains elements of order 31, 37, 67, or
25. 2°A,, contains no elements of order 33. 3McL : 2= N(34) contains no
clements of order 40 since R contains no elements of order 60. Thus,
O € {X14> X3a)-

If 6 =y.4, then 8(74)=4. Both R’s have one class of 7-elements so that
by (2.2) ad=(7-3-8/|Cr(74)|) p(7A4). 1t is direct to check for both R that
|Cr(7A4)|=7-3-2% where a>0. By (2.1) a=¢(1)5%/11 if R=3McL:2
and a=¢(1)5%-3%11 if R=2'4,,. Thus, |p(74)|8>4¢(1)5%/11 which is
a contradiction.

If §=y34, then 6(54)#0, 6(5B)#0, and 6(404)#0. Thus, R=24,,
and a=¢(1)5°-3%7-11. Both R and S have two conjugacy classes
of S-elements. Thus, by (2.2) (¢(1)5%-3%/77)(—=10) = ad(5B) =
(ICs(5B)|/|Cr(5B)| ¢(5B). Now |Cr(5B)| =5%-2 and |C¢(5B)| =5*-3.2.
Thus, @(1)5%-3%.10/77 < (5*-3-2/5%-2) ¢(1) = 5% - 3¢(1) which is another
contradiction.

(xv) Assume that S=Co,; then R=2":M,,, R=2'7%04(2),
R=2"*"12:(44xS;), or R=2%*12(5,%x38). None of the R contain
elements of orders 33, 35, or 39. No R contains both elements of order 9
and elements of order 21. No R contains two non-conjugate 7 subgroups.
If R contains representatives of at least four different S-conjugacy classes of
15-elements, then R contains at most one conjugacy S-classes of elements
of order 5. Only 2", 7% 04 (2) contains elements of order 9. Direct inspection
using [1, pp. 184-186] yields 6 € {¥s6. X635 X50> X57}-

Xe3> Xs7» and xs¢ do not vanish on some 9-element. x5, does not vanish
on 74, 154, 15B, and 15D. Thus, R=2'7%0;(2)=N(24). If 6(154)*#0
then there is an element of order 30 with 2-part conjugate to 24 and
15-part conjugate to 154. This is a contradiction. Thus, J € {¥¢3, x37}-

We assume that 94, 9B, 9Ce R. Suppose that (@35, ) #0 for
Aelrr(F) for F=2'"%. Since I(4) contains an element of order 9 and a
Sylow 2 subgroup of R [1, p. 85] implies that J(1) = R. Since ¢(1) is odd,
it follows that there is a ¢ e Irr(04 (2)) such that @(r) = ¢(r) if r has odd
order. By (2.1), 52-7-a=¢(1)3*if § = y¢; and 52-7-a=3%p(1) if § = y4;.
Hence, 175]{¢(1). Since 6(94)#0, 6(9B)#0, and 6(9C)#0, [1, p. 86]
yields (94)SnR=(94)%, (9B)*~R=(9B)%, and (9C)*~R=(9C)%
Hence, by (2.2) ad(x) = (|Cs(x)/|Cr(x)]) ¢(x) for xe {94, 9B,9C}. Thus,
@ €Irr(04 (2)), ¢ does not vanish on any 9-element, and 175|4(1). By [1,
p-86], ¢=yx, of [1, p.86]. Thus, 27|8(9C)| <a|d(9C)| = |Cs(9C)}/
|Cr(9C)| =2-3%2-.33=9 by (2.2). This is a contradiction.

Thus, we may assume S, € {J5, Suz, O'N, Fi,,}. Since §(1) is odd, S/Z(S)

is odd. Thus, for ease of notation we may assume S= S, or 35,, the triple
cover of S,. If 4= S, then A, denotes the image of 4 in S/Z(S).

(xvi) Assume S,=J;;then Ry=2'"*: A 0r Ra=2%"%:(3x8,). If
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S§=S,, then no R contains elements of order 9, 19, or 17. Hence, by [1,
p. 83], we may assume S =3J;. No R contains elements of order 19 or 17.
Thus, we may assume & = y;, of [1, p.83]. Let x and y, respectively, be
cohort representatives of 54 and 5B with |{(x )| =|{y>|=S5. Since d(x)#0
and 8(y)#0, Ry=2""*: A,. Hence, (2.1) implies that a = 3%¢p(1). Since R
and S both have 2-classes of 5-elements, (2.2) yields 9¢(1)2 =ad(x)=
(JC(xW/ICr(x)]) (x)=(3-30/3-2-5) o(x). This contradicts ¢(x) < @(1).

(xvii) Suppose that S, = Suz; then by [1, p. 131], R, =2*°.U,(2),
29%°:34,, or 2*%: (45 S,). $= Suz or 3Suz and S has no element g of
order 9 with |(gZ(S))>|=3. It now follows from the structure of R, that
R=R,xZ(S) where R, >~ R,. (]Z(S)] =1 is possible.) Hence, R contains
no elements of order 7, 21, 11, 13, or 33. R does not contain two non-con-
jugate subgroups of order 5. If R contains an element of order 9, then
Ry=2'"°.U4(2). Thus, by [1, pp. 128-130], we may assume e {y,|i=7,
8, 13, 14, 17, 18, 19, 28, 100, 101, 106, 113}.

Let x be an element of order 8 in S which is a cohort representative of
8C in Suz (see [ 1, pp. 128-130]). d(x)e { +1} and |Cx(x)| = 32| Z(S)|. We
may assume x € R,. Let u; be cohort representatives of 34, 3B, and 3C,
respectively, in S, where |{u,;>| =3 and d(x,) is real for i=1, 2, 3. (See [1,
pp- 128-130].) Then {u, ), and {u,», are non-conjugate. Each & is non-
vanishing and real on {u,)» and {u,>. We may assume u,e R, for i=1, 2.

Let v be an element of order 15 which is a cohort representative of 15C
in S, (see [1, pp. 128-130]) and let §(v) be real.

Suppose R,=2"'*%U,(2); then R has a normal subgroup F=F, x Z(S)
where F, € R, and F,=2'"° By [1, p. 131], Ry = Ng,(24). Since Suz con-
tains no element of order 6 with 2-part conjugate to 24 and 3-part con-
jugate to 3C, (3C)* N Ry = ¢. Thus, 6 ¢ {X75 X8> X13X1as X17> Xiss K19 Xos -
Xi0s(v) #0 and v5° " R=¢ by [1, p. 26]. Hence 3 € {¥100» X101» X113 }- There-
fore, |Cs(x)|=|Z(S)-32=3-32, and R=R,xZ(S). Now xnR=
U?_ | xF where notation may be chosen so that x,F=(4B)F where (4B)F
is an element of R/F=~U,2) corresponding to 4B of [1, p.27].
|Cuy2)(4B)| =8 and at most |F|/3 of the elements in (4B)F have order 8.
Hence, by (2.2) and (24) a=al|d(x)| <|Cg(x)] (X7, [@(x)|/|Cr(x)]) <
960/24 = 4o where a = max{|e(x,)|, i=1, .., n}, ie,

a<4a. (xvii, 1)

[Cs(x)| =96 and R=R;xZ(S) yield |p(x,)|*< [Crx) —1<31 for
i=1,..,n. Hence, x<./31 and a<22. By (2.1) a=9¢(1)/5 if 6=y, OF
X101 and a=3¢(1)/5 if 6 = y,,5. In particular, (xvii, 1) now yields ¢(1)=5
if 6=x100 OF Y10, and @(1)<35 if =y,,;. Suppose (¢, 1)#0 for
Aelrr(F). Since [R:I(A)] is odd and ¢(1)<35, [1, p.26] yields I(A)=R
or I(A)/F=2*: A,. However, {u,>, and (u,), are non-conjugate which
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implies that I(A)=R. Since R,/F,~U,(2), it follows that there is a
homomorphism ¢ of R— U,(2) such that |¢(r)| =|@(a(r))| where
¢ eIrr(U4(2)). Since o(x;) is conjugate to 4B of [1, p.27] for i=1, .., n,
[1, p.27] implies that a=1. Now a<4a=4 and a an integer yield
0= %113- Since a=3(¢(1)/5) and ¢(1) is odd, ¢ =y, or x5 or [, p. 27]. In
particular, ¢ does not vanish on 9-elements. R and S have the same
number of conjugacy classes of 9-elements so (2.2) yields that y,,; does not
vanish on 9-elements. This is a contradiction. Therefore, R#2'+*U,(2).

x: does not vanish on some 9-element if i =7, 8, 17, 18, 19, 100, and 101,
and R contains elements of order 9 only if Ry =2"'"°-U,(2); thus, d € {x,3,
X1as X28> X106> X113}

Suppose that R,=2%*°:34,; then R contains a normal subgroup
F=F,xZ(S) where F,=2>*% and F,<R,. {u,», and {(u,)», non-con-
jugate together with 5(1) odd and [1, p. 4] imply that I(1) = R if A€ Irr(F)
and (¢, 1) #0. |Fy/ker(4)] <2 and (1) odd yield ¢/, ,, € Irr(34,). Since 6
is non-zero and integer-valued on {u,)» and {u,), ¢|s,, =y, or x; of [1,
p. 51 Hence, 6(g) =0 if [{gZ(S)>| =15. Therefore, d € {25, ¥113}-

Let x" be an element of orders 8 in R, which is a cohort representative
of 8B [1, pp.129-130]. Then |Cg(x,)| =]Z(S)|2° Hence x;Fux,F<
(24)F U (4A4)F where (24)F and (4A)F are elements of order 2 and 4 in
R/F described on [1, p.5]. x*nR=U7,(x)® and (x)*NR=

" (x))R Let T, = {x,, x;| x,F= (24)F or x/F = (24)F} and
T, = {x,,x |x;,F = (A44)F or xjF = (44)F}. |Cg{(24)F)| = 8 and
|Crir((44)F)| =4. Since F= F2><Z(S) (24) yields >, 1/|Cpryl <
1/8|Z(S)| and 3.+ 1/|CR(g)l < 1/41Z(S)I.

Since (pe{xz,x;} of [1, p.5] le(x,)|=1=]e(x/)| for all i, j. Further,
a=3%(1)/5=3if 5=y, and a=3%p(1)/5=3> 1f5 X113 by (2.1). Thus,
(22) and |d(x)]=|6(x")] =1 now imply that 2a=2a|d(x)| =2|Cs(x)|
X1 @(x )/ ICr(x)I] < 2°-1Z(SI(Z- 1/ICR( Jl) and a = alé(x')| =
|Cs(x')] IZ,” i cD( NC (X)) <26|Z(S)|( 1 1/ICr(x))]). Hence, 3°<
3a=2al6(x)| +aldo(x")| <26IZ( W ron 1/|CR(g)i)<26IZ(S)I(3/8IZ(S) )
This is a contradiction.

Hence, R,=2°**:(4sxS,;), and R has a normal subgroup
F=F,xZ(S) where F,=2?*® and F,<R,. If x> R=J7_, x7, then Fx;
has order 2 and |Cg(x;)| <32. Hence, there are 2-elements g,, g, in
Asx Sy with |Cp g F)| =24, |CgA{g.F) =8, and we may assume
Ui, x;Fe g, Fug,F. [d(x)]=1 by [1, pp. 128-130]. Hence, (2.4), (2.2),
and F=F, x Z(S) now yield a = a]é(x)| < [Cs(x)(X7_ | l@(x)I/ICrlx)]) <
(1Z(S)|32/|Z(S)|6)a where a=max{|p(x;)||i=1,..,n}. Since R=R,x
Z(S), |@,;(x)2<|Cs(x)|/1Z(S)| —1 =31 and a<29. By (2.1), a=3%(1) if
S=y13 Of Y14 a=@(1)3%523% if 6=y,5, a=@(1)3* if 5=y, and

=((1)/5)3%if d=yx,,5. Thus, 6 = y06 OF %113-

If (¢, A)#0 for Aelrr(F), then {u, >, and {u,), non-conjugate imply
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that I(A)=R or I(A)/F=A,xS;. If [A)=R, then o¢(1) odd implies
that o|,, . 5 €lrr(4sx S,). Further, |o(x;)|=lo(g)l if x,egF. Thus,
lo(x;)] =1 and a=1. However, 9<a<16/3-a=16/3 is a contradiction.
Hence, I(A)/F= A4 x S;. Further, 0(u;) #0 for i =1, 2 implies that (1) =1
where ¢ = 0% Since y,05(v) 20 and I(1) contains no elements of order 15,
0 =x,,3. Notation may be chosen so that g, F, g, Fe I(1). By using (1,,)"
on [1, p.2], it is direct to see that (g,F)*" n I(1)/F = (g, F)"*'*. 1t follows
that if x*~I(A)=U", y/*, then notation may be chosen so that
Uit yiFs g Fug,F. Since |Cy;) g F)| =|Cr/lg;F)l, the argument
used in previous paragraphs yields > 7| 1/|C,,(y)l < 1/|Z(S)|6 = . By
(24), (2.2), and a=g(1) 35, o(1)3%/5=als(x)| <|C5(x)] (7, 10()I/
|C i py)l) <32-3()60(1)=16/3. This contradicts 5= [R:I(2)]0(1)=¢(1).

(xviii) Suppose that S, =0'N. Ry =4, L;(4):2,, or R,=4>L4(2) by
[1, p.132]. Thus, R does not contain two non-conjugate subgroups of
order 7. In particular, either x* " R=¢ or y~ R=¢ if x and y have order
7, x is a cohort representative of 74, and y is a representative of 7B in S,,.
(See [1, p. 132].) Further, R contains no elements of order 11, 19, or 31.
Now direct inspection using [ 1, p. 132] implies that ad # ¢ for 6 € Irr(S).

(xix) Suppose “S,=Fiy,; then Ry=2"":M,,, Ry=(2x2.%%:
Uy(2)):2, or Ry=2°"%:(S;x A¢). Thus, R contains no elements g such
that gZ(S) has order 21, 13, or 30 in R,. If |{gZ(S)>| =22, where
8Z(S)e (224)™ U (22B)* of [1, p.156], and gZ(S)eR,, then R,=
2'%: M,,. Hence, (1,,)% may be deduced from [1, p. 163], and it is direct
to compute (IRO)SO (gZ(S))=0. Thus, no R contains an element of
order 22. Hence, 6 € {)17, X1s> Xi9» X205 Xas» 50 Xizi> Xrars X1aa) Of [1
pp. 156-162].

Suppose R,=2'": M,,; then R, contains only one class of 3-elements,
and no elements of order 9 or 15. Direct inspection using [1, pp. 156-162]
now yields that for none of the § is ad = ¢ where R, =2!": M,,.

Suppose R,=(2x2'"%:U,(2)):2, then Ry=Ng(2B). Thus 3D%n
Ry =¢, since Fi,, does not contain an element of order 6 with 3 part 3D
and 2 part 2B. Thus, 6¢ {345, x17, X1s» X190} Ro contains no element of
order 15 so that 0 # y,,,. Hence, 0 € {¥20, Xs0» X1415 X142} R= R, x Z(S)
where R; ~ R,. R has a normal subgroup F=2x2'"*x Z(S). Let x and
x’ denote elements of order 16 which are cohort representatives of 164 and
168 of [1, p. 156]; then |Cg(x)| =|Z(S)| 32. Hence, if x*n R={)"_, x&,
and x" N R={)7_, (x/)% [1, p.27] implies that there are clements g,, g,
in Uy(2):2 corresponding to 4B and 84 of [1, p.27] such that

i1 xiFs g Fug,F, where |Cp,r(g,F)l =16 and |Cg (g, F)| = 8. (Since
R is a split extension, if g; € U,(2) : 2 where g; has order 4 and corresponds
to 4D of [1, p.27], then |Cg,(g:F)=2% If x] or x,eg,F, then

the number of R-conjugates of x; or x;, in g;F would be

i



472 FERGUSON AND TURULL

|C r/r (83 PN/ Cr(x]) = |C gy g3 )/ ICr(x;) = 2°| FI/(2°| Z(S)]). However,
g, F contains at most |F|/|Z(S)| elements of order a power of 2 and some
of these elements have order 4. This is a contradiction.) By standard
arguments >7_, 1/|Cgpl(x,)| + 37, 1/|Cr(x})| <3/(|Z(S)| 16). Thus, (2.2)
and [1, pp.156-158] yield a=a|dé(x)| <(Cs(x)| (X7_; l@(x)/ICr(x;)])
and a=al|o(x")| <|Cs(x") (X7_; l@(x))l/ICr(x})]). Thus 2a<32- IZ(S)I
a(3/1Z(S)[16) or a<3a where a=max{|e(x,)|, |e(x/)|li=1,.
j=1,.,n}. Since |Cg(x)=|Cs(x")|=32|Z(S)| and R R,><Z(S)
a<./31. Hence, a<16. By (2.1), a=15¢(1) if 6=y30, a=e(1)3/5 if
3=ys9, and a=(p(1)/5)3% if d=y,4 Or ¥,4. Since a is an odd integer,
0 # )y and @(1)=35 or 15. It now follows from [1, p. 26] that I(1)=R if
(¢, A)#0 and Aelrr(F). Now ¢(1) odd implies that ¢ ,.,,., €
Irr(Uy(2):2) and |@(x))| = lo(g)| if x,F=gF. Also |o(x))| =lo(g)l if
x;F=g;F. By [1, p. 27], |o(x,)| = |@(x/)| = 1, whence ¢(1)3/5=a < 3. But
U4(2) : 2 has no irreducible character of degree 5.

Thus, R,=2°"%:(S;x A¢). Since R, contains no elements of order 9,
0¢ {X17> X1ss X195 Xi121s X1a1s X1az)- Hence, € {120, Xas» Xso} and S=S,.
Let x=164 and x’ =168 of [1, p. 156]; then |Cy(x)}| = |Cs(x")| =32, and
R, = R has a normal subgroup F=2°"%,

There are 2-elements g,, g, R such that R/F has two conjugacy
classes g,F and g,F of elements of order 4 where |Cg(g,F)l =24
and |Crr(g.F) =8 If xnR=)}_,x} then x,F has order 4, and
|Cr/r(x;F)] <32 so we may assume x,eg,Fug,Fflori=1, .., n A similar
argument yields if X'~ R={J"_, x/R, then we may assume (J’_, x|FC
g Fug,F. It follows from (24) that (7, 1/|Cr(x)+3",
1/]C p(x] )|) L+ Lt=1 Now by (2.2) and [1, pp. 156-158], a-—a|5(x)|<
|Cs(x) (- l@(x)l/ICr(x)]) and  a=a|d(x")] <|Cs(x)] (XF=y [@(x)I/
|Cr(x))]). Adding yields 2a<32(X7_, lo(x)/ICrl(x)+ 272, lo(x;)l/
[Cr(x)]) < (32/6)a where o =max{|o(x;)|, le(x})| li=1,.,n,i=1,.,n"}.

By (2.1) a=3%-5¢(1) if 6 = x5, a=3%p(1)/5 if 6 = y45, and a = 3%@(1)/5
if 6=yso. Since a<min{./31, (1)}, a<% which yields d=ys and
@(1)=S5. Hence, if (¢p, A)#0 for Aelrr(F), then I(A)= R. In particular,
(@) 5,x 4, € IrT(S3 x Ag) and |o,(x7)| = Ico( )l =lo(ge)l if g, F contains x; or
x;. Thus, a =1 whence 9 <9¢(1 /5 < ¥ a final contradiction.
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