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INTRODUCTION 

A natural question, in the character theory of finite groups, is which 
quasi-primitive characters are actually primitive. A character is said to be 
quasi-primitive if it is irreducible and its restriction to every normal sub- 
group is homogeneous. If the group is solvable, T. Berger [9, Th. 11.331 
has shown that every quasi-primitive character is actually primitive. If the 
group is simple, however, every irreducible character is quasi-primitive and 
may or may not be primitive. The character of degree 5 of Alt(5), for exam- 
ple, is not primitive. It follows that a generalization of Berger’s Theorem to 
non-solvable groups must include some extra hypotheses which become 
vacuous when the group is solvable. In this paper we prove the following 
such theorem, with hypotheses on the chief factors and the character 
degrees. 

THEOREM A. Let x be a quasi-primitive irreducible character of a finite 
group G. Assume that if C is a chief factor of G the following hold: 

(1) IfC-Sx . ..xS( f t ) h n ac ors w ere S is some non-Abelian simple 
group, S is the universal cover of S, $ E Irr(& $ # 1, and $( 1)” 1 x( 1 ), then 
(x( 1 )/II/( 1 ))$ is not induced from a character of a proper subgroup of 3. 

(2) Zf C is an Abelian non-central p-group, ICI 1 am, and 
0,. (G/C,(C)) = C,(C) then p is odd and tf, furthermore, S is a subnormal 
simple subgroup of G/C,(C), S is the universal covering group of S, and 
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$ # 1 is an irreducible character of 3 of degree a power of p then 
P l I-@)lkeWl. 

Then x is primitive. 

Theorem A is proved by applying the theory of primitive characters 
developed in [3]. When the degree of x is suitably restricted, hypotheses 
on the composition factors of G suffice, as demonstrated by the following 
corollaries. 

COROLLARY B. Assume that x is a quasi-primitive irreducible character 
and x( 1) = pa where p is a prime and p > 7. Suppose that the following 
groups are not isomorphic to composition factors of G: 

(1) L,(q) when (q”- l)/(q- l)= pb, 

(2) L,(q) when PI (q- 1, n), 

(3) u,(q) when PI (q+ 1, n), 

(4) Apa, 
(5) M,, lyp=ll. 

Then 1 is primitive. 

COROLLARY C. Assume that x is a quasi-primitive character of G of odd 
degree and that if S, is a non-Abelian composition factor of G then 
S0 E (L,(q) q odd q > 9. L2(2&) if 2k > 8 and 2k + 1 J x(l), SZ(~~) if 2k 2 32 
and (22k + 1) I' x( l), Ml,, J,, Jz, M,,, HS, He, Ru, Co,, Co,, HN, Ly, 
CO,, J,, Suz, ON, Fi,,}. Then x is primitive. 

If the product of an admissible set of prime characters is primitive, then 
each prime is primitive. However, the converse is not true as shown by the 
following example. Let G be the semidirect product of a6 with the central 
product E of an extra special group of order 25 with Z,. There is an 
admissible set of primes (p,, p2) of G, with p,( 1) = p2( 1) = 4, ker(p,) = E, 
p, and p2 primitive, but p, p2 is induced from a linear character of 
Z(E) &. 

Most of the notation is standard and is taken from [S, 11. If X is a 
group and p a prime, then X, denotes a Sylow p subgroup of X. If g E X, 
then gX denotes the set of conjugates of g. 
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If cp is a quasi-primitive irreducible character of a group X, then F*(q), 
Z(q), and M*(q) are defined by 

F*(v) M*(q) = ~ 
Z(v) 

(F*(X) denotes the generalized Fitting subgroup of a group X.) A non- 
linear irreducible quasi-primitive character is said to be a prime character 
if M*(q) is homogeneous and ‘ppecVj is irreducible. 

A set {(p,,..., cp,} of prime characters of a group X is said to be 
admissible if M*(cp;) and M*( cpi) contain no X-isomorphic X-chief factors 
for i#j. 

A character 1 is standard if the determinantal order of x divides some 
power of x( 1). 

LEMMA 1. Let G be a finite group and p a prime character of G with 
M*(p) an Abelian p-group. Suppose that H is a maximal subgroup of G 
which avoids M*(p). Zf O,.(G/F*(p))= F*(p) assume that p is odd and 
that for every S a covering group of a non-Abelian composition factor 
of F*(G/F*(p))/F*(p) and every GEIrr(S) with 6(1)lp(l), we have 
P F Iz(WW~)I. Then pH is not a quasi-primitive irreducible character 
of H. 

Proof: By replacing p by a ;Ip for an appropriate linear character i, we 
may assume that p is a standard character of G, and we may further 
assume that ker(p)= 1. We set K= F*(p)= F*(G), and by [4, Th. 1.111, 
C&K/Z(G)) = K. By [4, Prop. 1.91, p(1) = [K/Z(K)1 l/2 = pa, and since p is 
standard, K is a p-group. By the maximality, H n K = Z(G) and HK = G. 
We assume that pH is a quasi-primitive irreducible character of H. 

H n O,, (G/K) is a normal subgroup of H such that H n O,, (G/K)/Z(G) 
N O,, (G/K)/K, a PI-group. It follows that there exists a subgroup Q such 
that H n O,,(G/K) = Q x Z(G) and therefore Q u H. Since pH is quasi- 
primitive, Q s Z(G) c K, a p-group, and Q = 1. Hence H n 0,. (G/K) = 
Z(G) and 0,. (G/K) = K. In particular, by hypothesis, p is odd. 

Since H is a maximal subgroup, G # K. Let H, be a subgroup of H of 
minimal order subject to H, a H and H ~2 Z(G). Set R = HI K. Since G is 
completely reducible on M*(p), and C&M*(p)) = K, O,(G/K) = K, 
whence R/K is not solvable. Hence, the minimality of H, yields H, = H’, , 
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H, =A, ... A, where [A,, Aj] = 1 if i#j, and the Ai are isomorphic quasi- 
simple groups. It follows that the Ai are homomorphic images of S where 
S is a universal covering group of A ,/Z( A ;) and A ,/Z( A i) is isomorphic to 
a non-Abelian composition factor of F*(G/F*(p))/F*(p). Now pH, = e6 
where 6 E Irr(H,), eE Z+, and 6( 1) = pb > p. Since p is faithful, Z(H,) is a 
p-group, If p 1 lZ(H,)I, then p faithful and H a central product imply that 
there is a 6, ~1rr(S) where 6,(1)16(l) and pi IZ(S)/ker(G,)I. This contra- 
dicts the hypothesis of the lemma so that H, is a direct product of simple 
groups. 

By [ 10, Cor. 4.41, there is a subgroup U of G such that G = UK, 
Un K= L= (0 =Z(K), UzC,(K), and there is a o~Aut(G) such that 
gz = 1, 0 inverts K/L and U = C,(a). 

By [lo, Th. 7.11, pu=$< where II/ is a character of U/Z(G), lt,b(u)12= 
I C,,(u)1 for all u E U, and 5 E Irr( U). In particular, $( 1) = pa whence 5 is 
linear. Since G = UK, and H, is perfect, R = U, K where U, = (R n U)‘. 
Furthermore R n U = U, Z(G) implies U, = U;. If jie Z(G) n U,, then 
U, = U; and < linear imply that Jim ker($) n ker(t) c ker(p) = { 1 }. Thus, 
U,nK=U,n(UnK)sU,nZ(G)=l. 

H, K = R = U, K yields 

H, H,K UIK U, ,=f,21-----=-wN 
H,nK- K K -U,nK 

N u,. 

Let h be a p’-element of H, ; then h + u under the isomorphism of H, and 
U, where u is the p/-element of U, such that hK = UK. Now hK = UK and 
(h) K = (u) K, with h and u p’-elements imply that h is conjugate to u by 
an element of K. Thus, p(h) =p(u). Let (pH,)* and (pv,)* denote the 
Brauer characters for the prime p corresponding to pH, and pu,. The 
previous discussion implies that (pu,)* corresponds to (pH,)* under the 
isomorphism from U, to H,. Since pH is quasi-primitive, p,,, = eS where 
GEIrr(H,) and eEZ + implies that all the irreducible Brauer constituents 
of (pu,)* lie in the same p-block B. Since p is a faithful character of degree 
p”, 6 corresponds to a faithful character of U, of prime power degree and 
Z( U,) = 1 [3, Lemma 4.241 implies that B is not of full defect. U is 
isomorphic to a subgroup of G = Sp(2a, p). Moreover, it follows from [ 10, 
Th. 4.8) that $ is the restriction to U, of a corresponding character $ of 
G where $=$,+$z with $,(I)=(p”- 1)/2 and $2(1)=(pa+ 1)/2. Since 
((p”- 1)/2, (p”+ 1)/2)= 1, there is y~Irr(U,) such that O#((y, I//L/1)= 
(Y, Pi,) and (~(1)~ PI= 1. Then (Pi,)* a sum of irreducible Brauer charac- 
ters in the same p block B implies that y E B. Thus, (p, y( 1)) = 1 yields that 
B is a block of full defect. This is a contradiction. 

Proqf of Theorem A. Assume x is a character of a group G of minimal 
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degree such that the hypothesis but not the conclusion of the theorem is 
satisfied. By [4, Th. A] there is a central extension (G,, rc) of G such that 
x = JJr=, pi where {pi, . . . . pn} is an admissible set of prime characters of 
G, . Since G, is a central extension of G, G, and x also satisfy the 
hypothesis of the theorem, and it is sufficient to prove that x is a primitive 
character of G, . Hence, we may replace G by G, /fly=, ker(p,) and assume 
x = nr= i pi where pi E Irr(G) and Z(G) = Z(x). We may also assume x and 
each pi are standard characters of G. 

x = cc where i E Irr(H) and H is a maximal subgroup of G. Thus, 
H 2 Z(G). Suppose there is some K with K a G, K @ Z(G), and KS H. 
Choose K of minimal order such that K 4 G, KE H, and K g Z(G); then 
xK=ecp where eEZ+ and cp E Irr(K). ~(1) > 1 since Z(x) = Z(G) and 
K & Z(G). By [9, Th. 11.171, there is a central extension (r, rc) of G; and 
viewing x as an irreducible quasi-primitive character of r, x = ye where y, 
OE Irr(T), O(1) = e, and On-~cKJ is a multiple of a linear character. Thus, 
xK=ecp where cp E Irr(K) yields ynm L~~)EI~~(v’(K)). Let N=x-‘(K)n 
ker(0); then xN = ey, and x quasi-primitive imply that Y,,, is homogeneous. 
Since rr - ‘( K)/N is cyclic, [9, Th. 11.223 yields that yN is irreducible. 
Ns ker(0) and x is irreducible and quasi-primitive, whence [4, 
Lemma 1.11 implies that 0 is a quasi-primitive character of IY Since e( 1) is 
a proper divisor of m and r satisfies the hypothesis of Theorem A, 8 is 
primitive. 

x = ir where [ may be viewed as a character of n-‘(H), x,,,= ey,, and 
y,~Irr(N) with Ncn-‘(H) now imply that [,,,= by, where beZ+. Since 
yN is irreducible, y,-1~~)~1rr(z-‘(H)). Thus, [8, Th. 6.171 yields 
i = @n-w, where 1. E Irr(rr -‘(H)/N). It follows that By = x = ir = 
(E.Y~~~J= 2%. However, NE ker(J) and N n r imply that NE ker(Ar). 
Now Ns ker(8) and [9, Th. 6.171 yield 8 = ir. This is a contradiction 
since 0 is primitive, and such K cannot exist. 

Now let K be a normal subgroup of minimal order such that K 4: Z(G); 
then G = HK. Since {pi, . . . . p,} is an admissible set of primes [4, 
Theorem 1.111, the minimality of K and [9, Th. 11.221 imply that we may 
choose notation so that KS ker($) where ~‘=nl=~ pi and K s?L ker(p,). 
Let p = pi. Suppose K/Kn Z(G) is not an Abelian p-group; then by the 
minimality of K, K = A i . ..A. where [A,, Aj] = 1 for i # j, and the Ai are 
isomorphic quasi-simple groups. xK = x’( 1) pK so that iG = x, G = HK, and 
[9, Problem 5.21 yield x’( 1) pK= (cc), = ({HnK)K. Hence, there is a maxi- 
mal subgroup K, of K such that H n K E K, and x’( 1) pK = [f where 
il=(iHnK )“I. Since Ai & K, for at least one i, we may assume A, ~2 K,. 
Thus AIKl = K and x’(l) pal = (if),, = ([f)A, = (([l)a,,,K,)A’. Since K is a 
central product of the A, and xK is homogeneous, pA, = fS where 
?i~Irr(A,) and 6(l)‘-‘If: Further, 6(l)> 1 since Z(x)=Z(G). Thus, xa,= 
x’(l)f~=((C,).,nK, )“I. This contradicts the hypothesis of the theorem 
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since K/K A Z(G) is a chief factor of G. Thus, the minimality of K implies 
that K is p-group for some odd prime p and K n Z(p) = K n Z(G). 

Since KZ(p)/Z(p) is a normal p-subgroup of G/Z(p), KcF*(p). 
Thus, F*(p)/Z(p) is Abelian and [F*(p), F*(p)] cZ(p). Now G= HK 
yields F*(p) = (H n F*(p))K and [F*(p) r\ H, K] c [F*(p), F*(p)] n 
KsZ(p)nKsZ(G)cHnF*(p). Therefore, F*(p)nH is a normal 
subgroup of G so that F*(p) n H= Z(G). It follows that F*(p) = Z(G)K 
and that H avoids M*(p). By [4, Prop. 1.93, if IM*(p)[ =p*O+‘, then 
p( 1) = pa, so that M*(p) is a chief factor with [M*(p)1 Ix(l)*, and, by [4, 
Th. 1.111, C&M*(p)) = F*(p). Further, [G : H] = p*“. 

Now, pf = j( = [” yields p”x’( 1) = [( 1 )[G : H] = c( 1) p*” so that 
p(l)[(l) = x’(1). X’E Irr(G/K), Gallagher’s Theorem [9, (6.17)], and 
I’( 1) < x( 1) imply that x’ is a primitive irreducible character of G/K. Thus, 
G = HK yields XL a primitive irreducible character of H. By Frobenius 
Reciprocity, cc = px’ yields 1 = ([, pH&) = ({pH, &). Now [( 1) PH( 1) = 
[( 1) p( 1) = x’( 1) and XX E Irr(H) imply that &iH = x;l. Since XX is primitive 
and irreducible so is PH. This contradicts Lemma 1. 

2 

In this section, Corollaries B and C are proved by verifying the 
hypothesis of Theorem A. Heavy use of [l] is involved. We will frequently 
adopt the notation of [ 11. 

We will consider the following situation. x denotes a quasi-primitive 
irreducible character of odd degree of a group G and So is a non-Abelian 
composition factor of G. Suppose (x( 1)/6( 1)) 6 = p’ where S is a 
homomorphic image of a universal covering group of S,, 6 is a faithful 
irreducible character of S, and p is a character of a maximal subgroup R 
of S. If A G S, let A, denote the image of A in S/Z(S). The conditions x( 1) 
odd and R I> Z(S) yield [S, : R,] = [S : R] is odd. Further, there is a 
4 E Irr(R) such that (4, p) # 0, 4” = a6 where a and 4( 1) are odd. We note 
that 

a~(l)=[S:R]cp(l)=[S,:R,]cp(l). (2.1) 

We recall that if xs n R = Ur=, xf, then 

a&x)= cp”(x) = IC,b)l ( ig, &). I (2.2) 

Suppose F a R and ((Pi, A) #O for I E Irr(F); then cp = 6R where 
e~Irr(l(1)) and 81, is a multiple of 2 by [IS, Th.6.111. If xSnZ(A)= 
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Uy=, yj’“’ where y, = x and y,... y, are representatives of the distinct Z(L)- 
conjugacy classes of elements which are S-conjugate to x, then 

~w)=cpS(x)=wx)= ICs(x)l ;g, ,c”“;; ,I>. 
( 

(2.3) 
OfI) 1 

Suppose Fc K are subgroups of R, F n R, T is a set of representatives 
of some different K-conjugacy classes where all elements in T have order t, 
and there is an element k in K such that wF = kF for all w E T. The number 
of K-conjugates of w in wF = kF is 1 C,,(kF)I / Fl/ C,( w)l. Thus we obtain, 

(2.4) 

where a is the number of elements of order t in kF. 
The following inequality is also useful: 

~lRI=IRI(~.,cp)~cp(1)~(1)+B(IRI-1)cp(l), 

where /?=max{16(g)(lgER#}. 

(2.5) 

Proof of Corollary B. We first show (x( 1 )/S( 1)) 6 is not induced from 
a proper maximal subgroup R of S if S is a covering group of a non- 
Abelian composition factor So of G with 6( 1) 1 x( 1). Assume the contrary; 
then as in the previous paragraphs a8 = (ps where a and cp( 1) are odd and 
cp E Irr(R), R a maximal subgroup of S. Since S, & L,(q) where 
(q”- l)/(q- l)=ph, or Aph, or M,, ifp= 11, andpa 11, [7, Theorem2.31 
implies that So = L2( 1 l), R/Z(S) N A,, and p = 11, or S, = M,,, 
R/Z(S) = M,,, and p = 23. In each case, 6( 1) = p. However, by [l] S has 
no irreducible character of degree 23, if S, = M,,. Thus, S, = L2( 1 l), 
p= 11, and R/Z(S)cxA,. Hence, we may assume S=S, and 6=x6 of [l, 
p. 71. Thus, [l, p. 23 implies (6,,, cp)=l and (p(l)=3 or 5. However, (2.1) 
now yields 11 = a& 1) = [S : R] cp( 1) = 33 or 55. This is a contradiction. 
Thus (x( 1)/6( 1)) 6 is not induced from a proper subgroup of S. 

If p 1 lZ( S)l where S is a universal covering group of So a non-Abelian 
composition factor of G, then [6, pp. 302-3031 and p 2 11 imply that 
S,, Y L,(q) and p( (q- 1, n) or So N U,(q) and p 1 (q + 1, n). Both these 
cases are not possible by hypothesis so the corollary follows from 
Theorem A. 

Proof of Corollary C. In order to ease notation and verify the 
hypothesis of Theorem A, we may assume S, is a non-Abelian composition 
factor of G, 6 is a faithful irreducible character of S where S is a 
homomorphic image of a universal covering group of So, and 6(l) ( x(1). 
The values for 6( 1) appear in [S] if S, = L,(q) or Sz(q) and in Cl] 
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otherwise. Direct inspection implies there is no 6 with 6( 1) = p”, p an odd 
prime, and p 1 IZ(S)/ker(G)I. Thus, by the discussion preceding the proof of 
Corollary B, it is sufficient to show that a6 # (ps where a and cp( 1) are odd 
and 50 E Irr(R) for R a maximal subgroup of S. We assume the contrary. 
We repeatedly use the trivial fact that if 6(x) # 0 then a&x) = q”(x) implies 
that we may assume by conjugation that XE R. 

The proof now proceeds as a case by case analysis using the previous 
remarks. 

(i) Suppose S, = L*(q) where q is odd and q > 9. 6( 1) odd implies 
that we may assume S = S,. By [S, Th. XI 5.6, 5.71 6( 1) E ((q + 1)/Z, q}. If 
6( 1) = (q + 1)/2, then 6 does not vanish on any elements of S, where 
q = pm, p a prime. Thus, R contains a Sylow p-subgroup of S. By [ 12, 
Th. 6.251, [S : R] is even which is a contradiction. If 6(l) = q, then 
6(x) # 0 if x is not conjugate to an element of Sr. Thus, a6 = cps implies 
that R contains an S-conjugate of any element whose order divides 
(q - l)(q + 1). Since S contains elements of order (q + 1)/2 and (q - 1)/2 
and q>9, R/Z 74 Sq, A,, or A,. Now (q2- 1)/41 IRI together with [S: R] 
odd and [ 12, Theorem 6.251 now imply that no subgroup R exists. 

(ii) Suppose that S, = L2(2k) where 2k + 1 / I( 1) and k > 3; then 
S= So. By [S, Th. XI 5.51 6 is an exceptional character belonging to the 
Singer cycle of L2(2k) and 6( 1) = 2k - 1. Since 6 does not vanish on involu- 
tions or elements of order dividing 2k + 1, R must contain an element of 
order 2’ + 1 and an element of order 2. Now [ 12, Theorem 6.251 implies 
that R is a dihedral group of order 2. (2’ + 1). This contradicts [S : R] 
odd. 

(iii) Suppose S, = SZ(~~) where (22k + 1) 1 x( 1) and k B 5. Set 
k = 2m + 1. Then So = S and by [S, Theorem XI 5.101, 6 is an exceptional 
character associated with a cyclic group U where (I U], 6( 1)) E 

P2 

2m+l+2m+‘+1, (22m+‘-1)(22m+‘-2~“+‘+1)), (p+‘-y+1+1, 
~2m+1~1)(22m+1+2m+I + 1))). 6 does not vanish on any elements of U. 

By [ 131, R = N,(U) (up to conjugation). This contradicts [S : R] odd. 

If S, E {M,,, J,, J,, M,,, HS, He, Ru, Co,, Co,, HN, Ly, Co, }, then the 
Schur multiplier of S, is 1 or 2. Thus, we may assume S = S, for these 
groups. We adopt the notation of [ 11. In particular, we let 6 = xn where xn 
is one of the characters given in [ 11. 

(iv) Suppose &=M,,; then R=2y4:S3 or 42:D,2. In par- 
ticular, R contains no elements of order 5, 10, or 11. R contains one 
conjugacy class of 3-elements. Now [ 1, p. 331 implies no 6 exists where 
6( 1) is odd and a6 = (ps. 

(v) Assume that S = J, ; then R = 23 : 7 : 3 or 2 x A, by [ 1, p. 361. 
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Thus, R contains no elements of order 11, 15, or 19. Direct inspection of 
[l, p. 361 yields a contradiction. 

(vi) Suppose that S= J2; then by [l, pp.422431, [S: R] =315 
and R=21f4: A,or [S:R]=525andR=22+4:(3xS,).NeitherRcon- 
tains representatives of all four S-conjugacy classes of j-elements, or any 
element of order 15, or any element of order 7. Hence, it follows from [l, 
p. 431 that 6 =x,~. x,~ does not vanish on 3A or 3B of [l, pp. 4241. Since 
(3A) and (3B) are not S-conjugate, R#2”4:A,. R=22f4:(3xS3) 
and (2.1) imply that a = 3q( 1). There is a normal subgroup F in R where 
F=22+4. If (8A)‘nR=U;=,x~, then xF is an involution and we may 
choose notation so that xiF= (8A)Ffor i=2, . . . . t. Thus, IFI IC,,,((8A)F)I 
=6/F/ and applying (2.4) with K= R and T= (xiii= 1, . . . . n} yields 
Cy=, l/~C,(xi)~ < k. Now (2.2) implies that 

3dl)= l~X13W)I = IC,@A)I 

This is a contradiction. 
(vii) Suppose S = M,,. Then [S:R]=23 and R=M,,, [S:R]= 

253 and R= L,(4) : 2,, and [S: R] = 253 and R = 24 : A, or [S: R] = 
1771 and R = 24 : (3 x A,) : 2. Hence, R contains no elements of order 23 
and no R contains elements of order 15 and 7. Thus, 6 = xi6 of [ 1, p. 711 
and 6( 1) = 1035. Since x16 does not vanish on 1 l-elements, R = M,,. Thus, 
(2.1) implies that a = q( 1)/45. In particular, 45 ( cp( 1) whence [ 1, p. 403 
implies that cp( 1) = 45 and q(x) is not real if ) (x) I = 7. However, M,, and 
M,, both have exactly two conjugacy classes of 7-elements. Therefore, (2.2) 
yields --a = a~,~(7A) = ICs(7A)J((p(7A)/IC,(7A)I) = 2cp(7A). This contra- 
dicts (p(7A) non-real. 

(viii) Suppose that S= HS; then R = 43 : L3(2) or 4. 24 : S, by 
[ 1, p. SO]. In particular, R contains no elements of order 15 and at most 
one conjugacy class of j-elements. Examination of character values of 
j-elements and 15elements for irreducible characters of HS of odd degree 
yields a contradiction in each case. 

(ix) Suppose S= He; then R=2y6.L3(2) and [S: R] = 187,425 
or R = 26 : 3’S, and [S : R] = 29,155. 2:f’. L,(2) contains no elements of 
order 5, 21, 15, or 17 and only two conjugacy classes of 7-elements. 
26 : 3’S, contains no elements of order 7, 21, or 17. Thus, [l, p. 1051 
implies that 6 = x2* and 6( 1) = 17,493 = 17 . 73 ‘3. Since xz8 does not vanish 
on j-elements, R = 26 : 3’S,. Thus, R and S both have exactly one con- 
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jugacy class of 5-elements. We choose notation so that 5A E R. It is direct 
to compute that IC,(SA)I =4.5.3. Thus, (2.2) yields a(-7)=&(5A)= 
5q(5A). However, by (2.1), a = 5q(l)/3. Hence, (p(5A) = q(l)( -7)/3 which 
is a contradiction. 

(x) Suppose S = Ru; then R = 2 3+R : L,(2) and [S : R] = 424,125 
or R=2’24+6: S, and [S : R] = 593,775 by [ 1, p. 1261. Neither R contains 
conjugates of both 5A and 5B, and R contains no elements of order 15, 29, 
or 13. Now direct inspection using [l, p. 1271 implies a8 # qs for 
cp E Irr(R) and cp( 1) odd. 

(xi) Suppose S=Co,; then RE {2’S,(2), 24’A,, 2*.[2’.3*] .S,} 
by [ 1, p. 1341. Hence, R does not contain representatives of both 5A and 
5B or any elements of order 11, 23, or 21. Thus, [l, p. 1351 implies that 
f3E {XlS~X37~. If 6=x15, then x,J5A)#O yields R=2’S6(2) or 24.As. 
However, 6 also does not vanish on 9A and 9B, but neither 2’S,(2) nor 
24. A, contain two conjugacy classes of 9-elements. If 6 = x3’ then 6 does 
not vanish on 9A or 9B. Thus R = 2*. [2’. 3*] . S,. Let xl = 9A and 
(9B)S n R = U:=, XT. If F= 2*. [2’. 3*], then notation may be chosen so 
that X~E (9A)F for i= 1, . . . . n since R/F=S,. Since (C,,,((9B)F)I IFI = 
3/F], (2.4) with K= R and T= {xiii= 1, . . . . H} yield C:=, l/lC,(x,)[ < 4. 
By (2.1) a=3”q(l) so that (2.2) implies 34cp(1).2=ad(9A)= IC,(9A)I 
(EYE, q(x,)/lC,(x)() < 81 . cp( 1)/3. This is a contradiction. 

(xii) Suppose S= Co,; then R = 2” : M,, : 2 and [S : R] = 46,575, 
R=2y8 : S,(2) and [S : R] = 56,925, or R = 24+ lo : (S, x S,) and 
[S : R] = 3,586,275 by [ 1, p. 1541. 

R contains no elements of order 23. Also R does not contain repre- 
sentatives of both 5A and 5B, or representatives of both 15A and 15B. 
Hence, 6~ {x8, x 16, x17, x20, 129, 135, x38, x39, x46, x47, x48, x49, x56, X60 1. 
(See [l, p. 1551.) 

Suppose 6 = xx or x6o; then 6(11A)#O so R=2”.M,,:2. Since 
xs(15A) #O, 6=X6o. It follows from (2.2), [ 1, p. 1551, and [ 1, p. 393 that 
a = u8( 11 A) = cp(xl) + (p(x2) where x1 and x2 denote representatives of the 
R-conjugacy classes of 1 l-elements. Since I C,( 11 A)[ and cp( 1) are both odd 
cp M22~Irr(M22). By (2.1), u.5.3*=cp(l). Hence (P,,,,,~~=x~ or x4 of [l, 
p. 403. Thus 1 = u6( 11A) = cp(x,) + cp(x,) = 2 which is another contra- 
diction. 

Suppose R=2ys: S,(2) and I(x)1 = 16, where XER; then IC,(x)l =32 
by [l, pp. 1541. Let F=2’+‘; then [ 1, p. 471 implies that if x’n R = 
u:=, xf we may choose notation so that Fxje {(4E)F, (8A)F, (XB)F} 
where 4E, 8A, 8B are given on [ 1, p. 471. The number of R-conjugates of 
xi in x,F is 

,FI lC~,AxiF’)l = ICR,F(X~F) I FI 
ICR(X,)l 32 . 
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If xjF= (4E)F, then IC,,,,( 4E)I = 32 implies that (4E)F contains only 
elements of order 16. Since R is a split extension, (4E)F contains an 
element of order 4. Thus, X,FE (8A) F or (8B) F and each of these cosets 
contains elements of order 8. The number of R conjugates of xi in (8A) F 
or (8B)F is 161Fl/lC,(x,)] = IFI/ by [l, p. 471. Hence (8A)F and (8B)F 
contain representatives of only one conjugacy class of 16 elements. 
Therefore, if x is either of the two conjugacy classes of elements of order 
16 in S, xsn R=xR, if x= 16A or 16B of [l, p. 1541. Thus by (2.2) 

ad(x) = Y(X) if x= 16A or 16B. (xii, 1 ) 

Suppose (qF, 12) # 0 where A E Irr(F) and Z(A) # R. [R : Z(A)] 1 q(l) and 
[l, p.461 yield dly(l) where do (63, 135, 315). Since a is an integer, [l, 
pp. 154-1551 and (2.1) now yield a > 9. However, (xii, 1) yields 
9 = a@( 16A)I 6 Iq( 16A)I which implies that IC,(16A)J > 81. Thus, 
Z(A) = R. Since q(l) is odd and ]F/ker(A)l 6 2, c~~,~~,~Irr(S,(2)) and 
Iq(16A)l = Iqsg(z)(g)j where (16A)F= gF and gES,(2). Now ]6(16A)/ = 1 
by [l, pp. 155-1561 and Iqsscz,(g)l=l by [l, p.471 since l(g)l=8. 
Hence, by (xii, l), a= la6(16A)l = lq(16A)I = 1. Thus, (2.1) now yields 
6=X38 or X39 and (Ps6(2)=X2 of cl9 P. 471, 6=X56 and (Ps6(2) = X7 or x8 of 

CL P. 471, or 6 =x49 and (psg(2J = x3 of Cl, p. 471. 
Suppose 6 = x49 and (psg(2J = x3. There is one class of 7-elements in S,(2) 

and no elements of order 14 or 28. Therefore, we may choose notation so 
gES,(2) has order 7 and if XE {7A, 14A, 14B, 14C, 28A) of [l, p. 1541, 
and xs n R = tJr=, xi!, then all x, lie in gF. Since [C,,,,,(g)/ = 7, it is direct 
to compute that (7ARngF)u(14ARngF)u(14BRngF)u(14CRngF)u 
(28AR n gF) = gF. It follows that xs n R = xR. If F G ker(q), then gF con- 
tains an element gf where cp( g;f) is negative. Since & is S-conjugate to x, 
q(x) is negative. However, (2.2), (2.1), x’n R = xR, and [l, p. 1551 yield 
1 = ad(x) = q(x) which is a contradiction. Therefore, Fs ker(cp). Hence, 
6( 16A) = 1 = 6( 16B) and (xii, 1) imply that (p(8A) and q(8B) = 1 where 8A 
and 8B represent the conjugacy classes of elements of order 8 in S,(2). This 
contradicts (psgt2, = xX. 

If ‘P&(2) = X2? X7* or x8, then q(y) # 0 if y has order 9. However, S and 
R both have exactly one conjugacy class of elements of order 9. Thus, by 
(2.2), 6(y)#O if I(y)/ =9. This contradicts 6~ (x38, x39, xs6}. Hence, 
R#2y8: S,(2). 

If R = 2” : M,, : 2, then 6 must vanish on at least one conjugacy class of 
3-elements. Thus, 6 =xd9 and 6(7A) = 1. Now (7~i)~n R=xfuxt by [l, 
p. 401. Hence, (2.2) yields a = a6(7A) = lC,(7A)((C2=, cp(x,)/lC,(x,)J) = 
(56/7.2”)((p(x,) + q(x2)). Since 40 does not vanish on 7-elements, [l, 
p. 393 implies that Z(A) = R if (q+, A) # 0 for ;1 E Irr(F) where F= 21°. Now 
cp( 1) odd yields qM2* E Irr(Mz2). By (2.1), a = 3q( 1)/55. Since cp does not 
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vanish on 7-elements, [ 1, p. 401 yields (pMzz = xs of [ 1, p. 401. Thus, 
cp(x,) + (p(xJ = -2 which contradicts a6(7A) = a > 0. 

Thus R=24+‘0: (S, x S,). Since R contains no element of order 9 
or 7, we may aSsume dE (x38, x39, x46,1(47,x48? x56). Let p=24+‘oT 

KE {24+10 : (S, x S,), R}, and let A denote the image of the set A in K/F. 
K/F has classes bF and cF of elements of order 4, and we may choose nota- 
tion so that IC,(8)1 = 23. 3, 1 CR(F)1 = 8. Let T, be a set of representatives 
of the K-conjugacy classes of 16 elements such that wF= bF for w E T, By 
(2.4) I,, l/lC,(w)I d A. Let T, be a set of representatives of the K-con- 
jugacy classes of 16 elements such that wF = cF for w E T,. By (2.4) 
Cr., l/lC,(w)l d $. If g has order 16 in K, then g has order 4. Thus, T, u T, 
is a set of representatives of the K-conjugacy classes of elements of order 
16. Hence, we obtain 

(xii, 2) 

Suppose that a6 = ys where y E Irr(K). We may choose notation so that 
16A, 16BeK, (16A)SnK=U,,wK, (16B)SnK=U.,wKwhere S,uS,= 
T, u T,. Thus, a6(16A)=yS(16A)= IC,(16A)l(& r(w)/lC,(w)l), u&16@ 
=y’(168)= IC,(16B)I(&y(w)/lC,(w)l). Reference [l, p. 1551 now yields 
2a= la416A)I + l41W = l~~(16A)I + bS(lW G 32(C.,,.2 Mw)l/ 
IC,(w)l). Using (xii, 2) we obtain 

2u<36a ‘6 3 wherecr=max{Iy(w)/wET,uT,}. (xii, 3) 

Since c1’ 6 maxi IC,( 16A)I - 1, IC,( 16B)I - 1 }, c1 d a. Now letting 
K=Ryieldsa~14.By(2.l)a=9~(l)if6=x3,or~39.Thus,6~{x46,~47, 
x4*} and a=27cp(l)/5 or 6=xs6 and a = 9q$l)/5. Since a is an integer, 
51q(l). Thus, a614 yields 6=x56 and cp(l)=5. 

If (qF, %) # 0 where 1, is not invariant in R and ;1 E Irr(F), then cp( 1) = 5 
implies that K= Z(n) = FS, x S, and cp = yR where y(l) = 1. Now (xii, 3) 
yields 18 = 2.9q( I)/5 < 32/6 . 1 which is a contradiction. Hence, Z(n) = R. 
Since q(l) is odd and n(l)= 1, Iv(x)1 = l@(g)] where @ is an irreducible 
character of S, x S, with @( 1) = 5, x E { 16A, 16B}, and g is an element of 
order 4 in S, x S,. By [l, p. 21, Iv(x)1 = 1 which again contradicts (xii, 3). 

(xiii) Assume that S=HN; then R=2vR:(AsxAs).2 or 
R=23.22.26.(3xL3(2)) by [l, p. 1661. Reference [l, p. 1641 implies that 
6(5A)#O. Thus, R=2’+‘: (A 5 + A,). 2 and we may choose notation so 
5A E R. By [ 1, p. 1661, R = N(2B). But 5A E R implies there is an element 
of order 10 with 2-part conjugate to 2B and 5-part conjugate to 5A. This 
contradicts [ 1, p. 1641. 

(xiv) Suppose S=Ly; then R=~.McL:~=N(~A) or R=2’A,,= 
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N(2A) by [l, p. 1741. Neither R contains elements of order 31, 37, 67, or 
25. 2’A,, contains no elements of order 33. 3’McL : 2 = N(3A) contains no 
elements of order 40 since R contains no elements of order 60. Thus, 
bE {XL49 X341. 

If 6 = x,~, then b(7A) = 4. Both R’s have one class of 7-elements so that 
by (2.2) a4 = (7.3.8/IC,(7A)I) (p(7A). It is direct to check for both R that 
IC,(7A)I=7.3.2” where a30. By (2.1) a=cp(1)5*/11 if R=3’McL:2 
and ~=cp(1)5~.3~/11 if R=2’A,,. Thus, lq(7A)I 8 >4q(1)5’/11 which is 
a contradiction. 

If 6=x34, then 6(5A) # 0, 6(5B) # 0, and b(40A) # 0. Thus, R = 2’A,, 
and a= q(l) 53. 33/7. 11. Both R and S have two conjugacy classes 
of 5-elements. Thus, by (2.2) (q(l) 53 .33/77)( -10) = a6(5B) = 
(IC,(5B)I/IC,(5B)I (p(5B). Now JC,(5B)I =5*.2 and IC,(5B)I =54.3.2. 
Thus, q(l) 53.33. lo/77 < (54.3 .2/5*.2) q(l)= 5* .3q(l) which is another 
contradiction. 

(xv) Assume that S=Co,; then R=2” :M,,, R=2:fs’0,+(2), 
R=2*+‘*:(AsxS3), or R=24+12’ (S, x 3S,). None of the R contain 
elements of orders 33, 35, or 39. No R contains both elements of order 9 
and elements of order 21. No R contains two non-conjugate 7 subgroups. 
If R contains representatives of at least four different S-conjugacy classes of 
15-elements, then R contains at most one conjugacy S-classes of elements 
of order 5. Only 2y8’0,+(2) contains elements of order 9. Direct inspection 
using cl, pp. 1841861 yields 6E {xz6, x63r x80, l-h}. 

x63, xR7, and x56 do not vanish on some 9-element. xso does not vanish 
on 7A, 15A, 15B, and 15D. Thus, R=2’~8’0,+(2)=N(2A). If 6(15A)#O 
then there is an element of order 30 with 2-part conjugate to 2A and 
15-part conjugate to 15A. This is a contradiction. Thus, 6 E (x63, x8,}. 

We assume that 9A, 9B, ~C’E R. Suppose that (cp [*:+a, 1) #O for 
AEIrr(F) for F=2y*. Since Z(L) contains an element of order 9 and a 
Sylow 2 subgroup of R [ 1, p. 851 implies that Z(A) = R. Since cp( 1) is odd, 
it follows that there is a @i E Irr(O,+ (2)) such that $(T)=(P(~) if r has odd 
order. By (2.1), 5*.7.~z=cp(l)3~ if 6=x63 and 5*.7,~=3~q(l) if6=Xs7. 
Hence, 175 I e(1). Since 6(9A) #O, 6(9B) #O, and 6(9C) #O, [l, p. 861 
yields (9A)S n R = (9A)R, (9B)S n R = (9B)R, and (9C)‘n R = (9C)R. 
Hence, by (2.2) a&x) = (lC,(x)l/lC,(x)l) G(x) for XE (9A, 9B, SC}. Thus, 
@ E Irr(0,+(2)), @ does not vanish on any 9-element, and 175 I e(1). By [ 1, 
P. 861, 4 = Xl0 of [l, p. 863. Thus, 2716(9C)l <al6(9C)I = lC,(SC)l/ 
lC,(SC)( = 2.3’/2. 33 = 9 by (2.2). This is a contradiction. 

Thus, we may assume So E ( J3, Suz, O’N, Fi,, }. Since 6( 1) is odd, S/Z(S) 
is odd. Thus, for ease of notation we may assume S= So or 3So, the triple 
cover of So. If A G S, then A, denotes the image of A in S/Z(S). 

(xvi) AssumeSo=J3;thenRo=2’+4:AsorRo=22+4:(3xS3).If 
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S = So, then no R contains elements of order 9, 19, or 17. Hence, by [ 1, 
p. 831, we may assume S= 35,. No R contains elements of order 19 or 17. 
Thus, we may assume 6 = x36 of [ 1, p. 831. Let x and y, respectively, be 
cohort representatives of 5A and 5B with 1 (x) 1 = I ( y ) I = 5. Since 6(x) # 0 
and 6(y)#O, R,=2\+4: A,. Hence, (2.1) implies that a = 3’q( 1). Since R 
and S both have 2-classes of 5-elements, (2.2) yields 9q( 1)2 = US(X) = 
(lC,(x)l/lC,(x)l) q(x) = (3 .30/3 .2.5) q(x). This contradicts q(x) < q(l). 

(xvii) Suppose that S,=Suz; then by [l, p. 1311, R,=2L+6.U4(2), 
24f6 : 3A,, or 22+8 : (A, x S,). S= Suz or 3Suz and S has no element g of 
order 9 with I (gZ(S)) I = 3. It now follows from the structure of R, that 
R = R, x Z(S) where R, N R,. (IZ(S)l = 1 is possible.) Hence, R contains 
no elements of order 7, 21, 11, 13, or 33. R does not contain two non-con- 
jugate subgroups of order 5. If R contains an element of order 9, then 
&=2’+6. U,(2). Thus, by [l, pp. 1281301, we may assume SE {xiIi=7, 
8, 13, 14, 17, 18, 19, 28, 100, 101, 106, 113). 

Let x be an element of order 8 in S which is a cohort representative of 
8C in Suz (see [l, pp. 128-1301). ME { f l} and IC,(x)l = 32jZ(S)I. We 
may assume x E R, . Let ui be cohort representatives of 3A, 3B, and 3C, 
respectively, in S, where I( ui) I = 3 and 6(ui) is real for i = 1, 2, 3. (See [ 1, 
pp. 12881301.) Then (u, )0 and (~4~)~ are non-conjugate. Each 6 is non- 
vanishing and real on (ur ) and (u2). We may assume USER, for i= 1,2. 

Let v be an element of order 15 which is a cohort representative of 15C 
in S, (see [l, pp. 128-1301) and let 6(v) be real. 

Suppose R, = 2L+6.U4(2); then R has a normal subgroup F= F, x Z(S) 
where F,cR, and F2=21t6. By [ 1, p. 1311, R, = N,(2A). Since Suz con- 
tains no element of order 6 with 2-part conjugate to 2A and 3-part con- 
jugate to 3C, (3C)“n Ro=d. Thus, J$ {x7, x8, x13x14, x17, x18, x19, xzs}. 
x,,,~(u)#O and vSnR=# by [l, p. 261. Hence 6~ (xloo, xlol, x,,~}. There- 
fore, IC,(x)l=IZ(S)I.32=3.32, and R=R,xZ(S). Now xSnR= 
lJy= 1 x: where notation may be chosen so that x;F= (4B)F where (4B)F 
is an element of R/F= U,(2) corresponding to 48 of [l, p. 271. 
IC,,,,(4B)I = 8 and at most IF//3 of the elements in (4B)F have order 8. 
Hence, by (2.2) and (2.4) a = G(x)1 d IC,(x)l CC;=, Icp(x,)l/lC,(~,)l) G 
96cr/24 = 4a where c1= max{ Iq(xi)l, i= 1, . . . . n}, i.e., 

a64a. (xvii, 1) 

/C,(x)1 =96 and R=R,xZ(S) yield Iq(xi)12< IC,,(xi)l -1 631 for 
i = 1, . . . . n. Hence, cr<fi and a<22. By (2.1) a=9q$l)/5 if 6=xloo or 
xlo, and a = 3q( 1)/5 if 6 = x,,~. In particular, (xvii, 1) now yields cp( 1) = 5 
if 6=xloo or xlol and q(l)<35 if d=~r,~. Suppose (qF,A)#O for 
j.E Irr(F). Since [R : Z(A)] is odd and q~( 1) < 35, [ 1, p. 261 yields I(A) = R 
or Z(n)/F=24 : A,. However, (u~)~ and (u~)~ are non-conjugate which 
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implies that Z(i) = R. Since R,/F2 E U,(2), it follows that there is a 
homomorphism r~ of R+ U,(2) such that Iv(r)/ = [@(o(r))1 where 
4 E Trr(UJ2)). Since a(~,) is conjugate to 4B of [l, p. 271 for i= 1, . . . . n, 
[ 1, p. 271 implies that c( = 1. Now a < 4cr = 4 and a an integer yield 
6=x113. Since a= 3((p(1)/5) and q(l) is odd, Q =x2 or x3 or [l, p, 271. In 
particular, 4 does not vanish on 9-elements. R and S have the same 
number of conjugacy classes of 9-elements so (2.2) yields that x,,~ does not 
vanish on 9-elements. This is a contradiction. Therefore, R # 2, + “‘u,(2). 

xi does not vanish on some 9-element if i = 7, 8, 17, 18, 19, 100, and 101, 
and R contains elements of order 9 only if R, = 2 Y+““. U,(2); thus, 6 E { x,~, 
x14, x28? xl063 x,,3}. 

Suppose that R, = 24 + 6 : 3A,; then R contains a normal subgroup 
F= F2 x Z(S) where F, = 22fs and F,sR,. (u,)~ and (u~)~ non-con- 
jugate together with 6( 1) odd and [ 1, p. 43 imply that I(A) = R if 1 E Irr(F) 
and (qc, 1,) # 0. /F2/ker(A)l < 2 and q( 1) odd yield cpI 3Ab E Irr(3A,). Since 6 
is non-zero and integer-valued on (u, ) and (u,), cpI 3A6 = x2 or x3 of [ 1, 
p. 51. Hence, b(g)=0 if I(gZ(S))I = 15. Therefore, 6~ {x~~,x,,~}. 

Let x’ be an element of orders 8 in R, which is a cohort representative 
of 8B [l, pp. 12991301. Then lC,(x,)l = IZ(S)l 26. Hence x;Fux,Fc 
(2A)Fu (4A)F where (2A)F and (4A)F are elements of order 2 and 4 in 
R/F described on [ 1, p. 53. xsn R = l-l:=, (.x~)~ and (x’).‘n R = 
iJ:l, (x,!)R. Let T, = (xi, x/I xiF = (2A)F or x;F = (2A)F) and 
T, = {xi,xJIxiF = (4A)F or x,!F = (4A)F). IC,,,((2A)F)I = 8 and 
lC,,,((4A)F)I =4. Since F= F, x Z(S), (2.4) yields C,, l/lC,,,,I d 
WlZ(S)l and cr, l/icRk)l G 1/41Z(S)I. 

Since (PE (x2, x3} of [l, p. 51 Iq(xi)l = 1 = Icp(.x;)I for all i,j. Further, 
~=3~~(1)/5=3~ if 6=x28 and ~=3~~(1)/5=3~ if S=X,,~ by (2.1). Thus, 
(2.2) and 16(x)/ = Id( = 1 now imply that 2a = 2al6(x)l = 2lC,(x)( 
ICY= 1 ~(xi)/lcR(xi)l I d z6. IZ(S)l(CY=, l/IcR(xi)l) and u = aId( = 
ICdx’)l 1X:1, c~(x,!)llCR(~j)l I G 261Z(S)lE~1, lllCR(xjl)l)~ Hence, 33 6 
3a=w(x)i +4w aWsm.,,, 1/lc,(g)()~261Z(S)l(3/81Z(S)l). 
This is a contradiction. 

Hence, R,= 22+R : (A, x S,), and R has a normal subgroup 
F = F2 x Z(S) where F, = 22 + 8 and F2 c R,. If xs n R = lJy=, xf, then FXi 
has order 2 and ICR,(xi)l < 32. Hence, there are 2-elements g,, g, in 
A, x S, with lCRIF(g, F)( = 24, ICRIF( g,F)j = 8, and we may assume 
U:=, x;Fs g,Fug,F. 16(x)1 = 1 by [l, pp. 128-1301. Hence, (2.4), (2.2), 
and F= F2 x Z(S) now yield a = ul6(x)l d IC,(x)l(C~, , I~(xi)l/lCR(x;)l) d 
(IZ(S)( 32/IZ(S)I 6)~ where a = max{ Iq(x;)l I i= 1, . . . . n}. Since R = R, x 
Z(S), lqi(x)126 IC,(x)l/lZ(S)l- 1 =31 and a<29. BY (2.1), a=3”~(1) if 
6=x13 or x14, ~=cp(1)3~/5>3~ if 6=x2*, ~=cp(1)3~ if 8=x,06, and 
a=(~p(1)/5)3~ if 6=xl13. Thus, 6=x,06 or xI13. 

If (cpF, A) #O for i E Irr(F), then (u, ). and (u~)~, non-conjugate imply 
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that Z(1)= R or I(A)/F=A, x S3. If I(A)= R, then q(l) odd implies 
that cpI ,,,,,~1rr(A,xS,). Further, Ill = Iq(gj)l if x,Eg,F. Thus, 
Iq(xi)l = 1 and CI = 1. However, 9 d a 6 16/3 . c( = 16/3 is a contradiction. 
Hence, Z(A)/F= A, x S,. Further, O(uj) #O for i= 1, 2 implies that 0(l) = 1 
where cp = OR. Since x106(~) #O and Z(A) contains no elements of order 15, 

6=x,13. Notation may be chosen so that g, F, g,FEZ(i). By using (1A4)AS 
on [l, p. 21, it is direct to see that (g,F)RiFn I(L)/F= (giF)‘(i)‘F. It follows 
that if ?n Z(J) = U’?!= y!‘“’ then notation may be chosen so that 
UT=, y,Fc_ g, F”u gzk. Since’ (C,(j.),F(gr F)I = ICRIF(giF)I, the argument 
used in previous paragraphs yields Cy,, l/lC,,j,,(yj)l d l/lZ(S)l6 = A. By 
(2.4), (2.2), and a = ~(1) 33/5, ~(1 )33/5 = al6(x)l G IC.dx)l CX, lo(y 
IC,,,,(y,)l)d32.3(&)8(1)=16/3. Thiscontradicts 5= [R:Z(%)]6(1)=cp(l). 

(xviii) Suppose that S, = O’N. R, = 4,’ L,(4) : 2,) or R, = 43’L3(2) by 
[l, p. 1321. Thus, R does not contain two non-conjugate subgroups of 
order 7. In particular, either xs n R = 4 or ys n R = 4 if x and y have order 
7, x is a cohort representative of 7A, and y is a representative of 7B in S,. 
(See [l, p. 1321.) Further, R contains no elements of order 11, 19, or 31. 
Now direct inspection using [ 1, p. 1321 implies that a6 # ‘ps for 6 E Irr(S). 

(xix) Suppose ‘S, = Fi,, ; then R, = 2” : Mzz, R, = (2 x 2y ’ : 
U,(2)) : 2, or R, = 25+x : (S, x Ab). Thus, R contains no elements g such 
that gZ(S) has order 21, 13, or 30 in R,. If I(gZ(S))/ =22, where 
gZ(S) E (22A)*‘u (22B)‘” of [l, p. 1561, and gZ(S)E R,,, then R,= 
2” : M,,. Hence, (1 R,,)So may be deduced from [ 1, p. 1631, and it is direct 
to compute (1 RO)So (gZ(S)) = 0. Thus, no R contains an element of 
order 22. Hence, 6 E {x 17, XIX, xl93 x20, x45, x59, x121, xl413 x142) Of cl> 

pp. 1561621. 
Suppose R, = 2” : AI,,; then R, contains only one class of 3-elements, 

and no elements of order 9 or 15. Direct inspection using [ 1, pp. 156-1621 
now yields that for none of the 6 is a6 = ‘ps where R, = 21° : AI,,. 

Suppose Ro=(2x2’++‘: UJ2)) : 2, then R, = N,,(2B). Thus 3@ n 
R, = 4, since Fi,, does not contain an element of order 6 with 3 part 30 
and 2 part 2B. Thus, 6 $ {x 45, x17, x18, x19}. R, contains no element of 
order 15 so that 6 #xlzl. Hence, 6 E {I 20, x59, x141, x142). R=R, xZ(W 

where RI E R,. R has a normal subgroup F = 2 x 2 p ’ x Z(S). Let x and 
x’ denote elements of order 16 which are cohort representatives of 16,4 and 
16B of [l, p. 1563; then /C,(x)/ = IZ(S)l 32. Hence, if .xsn R= lJ;= l xf, 
and x” n R = lJ:l, (x,!)~, [ 1, p. 271 implies that there are elements g,, g, 
in U,(2) : 2 corresponding to 4B and 8A of [l, p. 27) such that 
tJ:=, x,F~g,Fug~F, where IC,,,(g,F)I = 16 and ICR,p(g2F)I =8. (Since 
R is a split extension, if g, E U,(2) : 2 where g, has order 4 and corresponds 
to 40 of [ 1, p. 271, then ICRIP( g, F)I = 25. If x: or ,Y~E~, F, then 
the number of R-conjugates of ,u: or x; in g,F would be 
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IC~~Ag~WIC,dxOl = ICR/Ag3F)IIIC~(Xi)l = 251W(2slZ(~)I). However, 
g,F contains at most IFl/lZ(S)l 1 e ements of order a power of 2 and some 
of these elements have order 4. This is a contradiction.) By standard 
arguments X1=, l/IC,(x,)l + Z::l, l/lC,(x:)l d 3/(IZ(S)I 16). Thus, (2.2) 
and Cl, PP. 156-1581 yield a = al&x)1 G (C.dx)l CZ7=, l~(~~)lllC~(~~)l) 
and a = al6(x’)[ 6 IC,(x’)l (C;L, Icp(x()l/lC,(xj)l). Thus 2ad 32. [Z(S)1 
a(3/IZ(S)I16) or ud3a where cr=max{lq(xj)l, Iq$xj)lli= l,...,n, 
j= l,..., n’}. Since IC,(x)l = IC,(x’)l = 32lZ(S)I and R = R, x Z(S), 
a<fi. Hence, ~~16. By (2.1) u=l5q(l) if 6=xz0, u=cp(1)3/5 if 
6 =x59, and ~=(cp(1)/5)3~ if 6=xi4, or x,42, Since a is an odd integer, 
6 #x20 and cp( 1) = 5 or 15. It now follows from [ 1, p. 261 that I(A) = R if 
(qF, A) #O and A E Irr(F). Now cp( 1) odd implies that ‘p~U,c2J :2) E 
Irr(U,(2) : 2) and Iq(xi)l = lcp(gj)l if xiF= g,F. Also Icp(x:)l = Jcp(g,)l if 
xjF= gjF. By [ 1, p. 271, Iq(x,)l = Iq(x,!)l = 1, whence cp( 1)3/5 = a d 3. But 
U,(2) : 2 has no irreducible character of degree 5. 

Thus, Ro=25+8: (S, x A6). Since R, contains no elements of order 9, 
84 {x17, x18, x19, xlzl, x141, x14*). Hence, 6~ {x2o, x45t x59l and S=&. 
Let x= 16A and x’= 16B of [I, p. 1561; then IC,(x)l = IC,(x’)l = 32, and 
R, = R has a normal subgroup F= 25 +*. 

There are 2-elements g,, g2E R such that RIP has two conjugacy 
classes g, F and g,F of elements of order 4 where ICRIF(g, F)( = 24 
and ICRIF(g2 F)I = 8. If xs A R = Uy=, x,! then xiF has order 4, and 
ICRIF(xiF)I d 32 so we may assume x,~g, Fug,F for i= 1, . . . . n. A similar 
argument yields if x” n R = U 11, xl R, then we may assume U1 1 xl F c 
g,Fug,F. It follows from (2.4) that (Cy=i l/IC,(x,)l +CI, 
l/lC,(xj)l)<&,+ $= i. Now by (2.2) and [l, pp. 1561581, a=ul6(x)) d 
ICdx)l CC= I I~(xi)l/lC~(x~)l) and a=al&x’)l d ICs(x)l (Ck 1 IdxlNl 
lC,(x,)l). Adding yields 2a 6 32(X1= 1 Idxj)lllCR(xi)l + XI:, Idxl)l/ 
IC,(x,)l) d (32/6)a where CI = max{ Iq(xi)l, lq(xi)l Ii= 1, . . . . n, i= 1, . . . . n’}. 

By (2.1)a=32.5~(1)if6=~2,, ~=3~q(l)/5 if6=Xd5, and~=3~q(1)/5 
if 6=xs9. Since c1< min{&, cp( l)}, a Q f~ which yields 6 =xs9 and 
cp( 1) = 5. Hence, if (qF, J.) # 0 for I E Irr(F), then Z(I) = R. In particular, 
(cp) SjxAg~ Irr(S, x A6) and Irp,(x;)l = Iq(Xi)l = Iq(gk)l if g,F contains Xi or 
x;. Thus, a = 1 whence 9 Q 9q( 1)/S < 4 a final contradiction. 
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