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SUMMARY

Pioneer transcription factors (TFs) access silent chro-
matin and initiate cell-fate changes, using diverse
types of DNA binding domains (DBDs). FoxA, the
paradigmpioneer TF, has awinged helix DBD that re-
sembles linker histone and thereby binds its target
sites on nucleosomes and in compacted chromatin.
Herein, we compare the nucleosome and chromatin
targeting activities of Oct4 (POU DBD), Sox2 (HMG
box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH
DBD), which together reprogram somatic cells to plu-
ripotency. Purified Oct4, Sox2, and Klf4 proteins can
bind nucleosomes in vitro, and in vivo they preferen-
tially target silent sites enriched for nucleosomes.
Pioneer activity relates simply to the ability of a given
DBD to target partial motifs displayed on the nucleo-
some surface. Such partial motif recognition can
occur by coordinate binding between factors. Our
findings provide insight into how pioneer factors
can target naive chromatin sites.
INTRODUCTION

Silent chromatin is packed with nucleosomes, acting as a barrier

to targeting by most transcription factors (TFs) (Adams and

Workman, 1995; Mirny, 2010). However, a select group of tran-

scription factors (TFs) known as pioneer factors have the com-

bined ability to access their target sites in silent chromatin and

initiate cell-fate changes (Iwafuchi-Doi and Zaret, 2014; Zaret

and Carroll, 2011). The winged-helix DNA binding domain

(DBD) of the pioneer factor FoxA (Clark et al., 1993), which is

similar to that of linker histone (Ramakrishnan et al., 1993), allows

the protein to bind its DNA motif exposed on a nucleosome and

access to silent chromatin (Cirillo and Zaret, 1999; Cirillo et al.,

1998, 2002). Such activity is necessary for liver induction (Lee

et al., 2005). Other TFs involved in cell reprogramming can target

their sites in silent chromatin (Montserrat et al., 2013; Soufi et al.,
2012; Takahashi andYamanaka, 2006;Wapinski et al., 2013), but

they possess DBDs that differ from that of FoxA. Whether such

reprogramming factors directly bind nucleosomes and how the

structures of their respectiveDBDs relate to nucleosomebinding,

and hence pioneer activity, has not been assessed.

Transcription factors containing major structural classes of

DBDs, including Pit-Oct-Unc (POU), Sry-related High Mobility

Group (HMG), Zinc Fingers (ZF), and basic-helix-loop-helix

(bHLH), represented by O, S, K, and M, respectively, have

been used in the most dramatic example of cellular reprogram-

ming: the conversion of differentiated cells into induced pluripo-

tent stem cells (Takahashi and Yamanaka, 2006). We previously

compared genomic chromatin features of human fibroblasts,

prior to the ectopic expression of OSKM, to where the factors

first bind the genome during their initial expression (Soufi et al.,

2012). This allowed us to assess how OSKM target pre-existing

states in chromatin, as opposed to assessing chromatin states

after the factors are bound. The data showed that Oct4, Sox2,

and Klf4, but not c-Myc, could function as pioneers during re-

programming by virtue of their ability to mostly target ‘‘closed’’

chromatin sites that are DNase I resistant and ‘‘naive’’ by virtue

of lacking evident active histone modifications (Soufi et al.,

2012). Recently, single-molecule imaging analysis using fluores-

cently tagged proteins monitored in living cells proposed that

Sox2 guides Oct4 to its target sites (Chen et al., 2014); the chro-

matin status of the sites was unknown. However, we previously

found that the ectopic Oct4 and Sox2 bind most extensively to

separate sites in chromatin (Soufi et al., 2012), leaving open

how the bulk of chromatin targeting is achieved. While many of

initial binding events were promiscuous and not retained in

pluripotent cells, many others occurred at target genes that are

required for conversion to pluripotency.

Ascl1, Pax7, and Pu.1 have emerged as pioneer transcription

factors based on targeting closed chromatin and their ability to

reprogram cells, though assessments of direct interaction with

nucleosomes has been lacking (Barozzi et al., 2014; Budry et al.,

2012;Wapinski et al., 2013). In light of the bHLH factor c-Myc be-

ing unable to bind closed chromatin on its own (Soufi et al., 2012),

it was surprising that Ascl1, another bHLH factor, can bind closed

chromatin during reprogramming fibroblasts to neuron-like cells
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(Wapinski et al., 2013). Studies that have examined the correlation

between co-existing TF binding and nucleosome occupancy,

without characterizing the ‘‘pre-bound’’ chromatin state, could

not address questions about initial chromatin access.

Generating induced pluripotent stem (iPS) cells, using the

OSKM factors, has proved to be highly valuable for research,

with great potential for regenerative medicine (Robinton and Da-

ley, 2012). In an attempt to increase the efficiency of reprogram-

ming, efforts have focused on explaining how somatic cells

respond to the ectopic expression of OSKM (Buganim et al.,

2013; Papp and Plath, 2013; Soufi, 2014). To gain insights into

the molecular mechanisms that impart OSKM access to closed

chromatin, we measured the fundamental interaction between

the factors and nucleosomes, in vivo and in vitro, by three mutu-

ally supportive approaches: biochemical assays, genomics, and

structural analysis. We find that the inherent ability of DBDs to

recognize one face of DNA on nucleosome, as seen by targeting

a part of their canonical motif on nucleosome-enriched se-

quences in chromatin, is the primary determinant of pioneer fac-

tor activity. These findings can explain the pioneer activity of a

diverse set of reprogramming factors containing different struc-

tural classes of DBDs as well as the synergistic behavior of

pioneer and non-pioneer factors.

RESULTS

O, S, K, and M Show a Range of Nucleosome Binding
In Vitro
The interaction of full-length O, S, K, and M, as used in reprog-

ramming, with nucleosomes is not known. Therefore, we purified

and refolded the full-length O, S, and K factors, along with c-Myc

and its obligate heterodimerization partner Max from bacterial

cells, representing post-translationally unmodified proteins (Fig-

ure 1A; Figure S1A). We also obtained the full-length O, S, K, and

M expressed in human HEK293 cells and purified under native

conditions, representing post-translationally modified versions

of the proteins (Figure 1A). To quantify the DNA binding activities

of the proteins, the apparent equilibrium dissociation constants

(KD) were determined using two different methods: from the

decrement in the amount of free DNA (total KD) and from the

appearance of the first DNA-bound complex (specific KD), in

electrophoretic mobility shift assays (EMSA). As expected, the

bacterial (bact.) and the mammalian (mamm.) expressed, re-

combinant O, S, K, and M proteins bound to DNA probes con-

taining canonical motifs, as previously reported for the purified

DBDs (Farina et al., 2004; Nakatake et al., 2006; Rodda et al.,

2005) (Figure S1B; Table 1), and bound with much lower affinity

to non-specific DNA sequences of the same length (Figure S1C).

The bact. reconstituted Myc:Max heterodimers formed a com-

plex that migrated more slowly than Max homodimers, and no

protein-DNA complexes with similar mobility to Max homo-

dimers were observed even at the highest concentrations, con-

firming that the c-Myc:Max preparation did not contain Max

homodimers (Figure S1B). The mamm. c-Myc did not show

any specific DNA binding activity in the absence of its partner

Max, as seen previously (Wechsler et al., 1994). These data

demonstrate that the recombinant full-length OSKM proteins

were highly active in specific DNA binding.
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To measure the direct interactions between OSKM and nu-

cleosomes, we identified a nucleosome-enriched site in the

fibroblast genome that is efficiently targeted by OSKM (Soufi

et al., 2012), focusing on the LIN28B locus that is important

for reprogramming and pluripotency (Shyh-Chang et al.,

2013; Yu et al., 2007). RNA sequencing (RNA-seq) data showed

that LIN28B is silent in human fibroblasts and remains silent af-

ter 48 hr OSKM induction, revealing that OSKM binding pre-

cedes LIN28B gene activation (data not shown). We selected

a region downstream of the LIN28B poly(A) site that is strongly

enriched for a nucleosome in pre-induced human fibroblasts,

as measured by MNase sequencing (MNase-seq) (Kelly et al.,

2012) and was targeted by all four factors at 48 hr post-induc-

tion (Figure 1B). We used PCR on human fibroblast DNA

to generate a 162-bp, Cy5-labeled LIN28B-DNA, which was

assembled into nucleosomes (LIN28B-nuc) by salt gradient

dilution with purified recombinant human histones (Figure S1D).

The nucleosomes exhibited protection from low concentra-

tions of DNase I except at the ends of the LIN28B fragment,

compared to free DNA, indicating translational positioning

around the center of the 162-bp LIN28B sequence (Figure 1C,

top two boxes), similar to the observed position of the center

of the MNase-seq peak (Figures 1B and 1C). Ten-fold higher

concentrations of DNase generated an approximately 10-bp

DNase-cleavage repeat pattern on LIN28B-nuc, reflecting rota-

tional positioning of nucleosomes within the population (Fig-

ure 1C, bottom).

It is generally accepted that nucleosomes act as a barrier to

DNA binding by TFs (see Introduction), though exceptions

have been noted (Perlmann and Wrange, 1988). Interestingly,

Oct4, Sox2, and Klf4, but not c-Myc:Max, showed binding to

the LIN28B-nuc (Figure 1D). Remarkably, both mamm. and

bact. Oct4 and Sox2 showed similar or lower apparent KD values

for LIN28B-nuc compared to LIN28B-DNA, indicating similar or

higher affinity to nucleosome than to free DNA (Figure 1D; Table

1). On the other hand, Klf4 was able to bind LIN28B-nuc with a

higher apparent KD value compared to free DNA, indicating sub-

stantial nucleosome binding, but at a lower affinity than to free

DNA (Figure 1D; Table 1). c-Myc:Max did not yield saturated

binding to LIN28B-nuc, even at the highest concentrations of

protein used, and thus the apparent KD must be in the mM range

(Figure 1D; Table 1). In conclusion, both mammalian and bacte-

rial expressed O, S, K, and M exhibit the same relative range of

affinities to LIN28B-nuc, and O, S, and K have an independent

nucleosome binding activity.

Specific and Non-Specific DNA Interactions Contribute
to Nucleosome Binding
It is well recognized that TFs show both sequence-specific and

non-specific interactions with their DNA targets (Biggin, 2011).

To measure the contribution of specificity on OSK binding to

LIN28B nucleosomes, we carried out EMSA in the presence of

increasing amounts of specific and non-specific DNA sequences

that we had already characterized as competitors (Figures S1B

and S1C; Table 1). EMSA competition experiments show that a

40-fold molar excess of non-labeled DNA probes containing

specific binding sites, but not probes containing non-specific se-

quences, can displace LIN28B-DNA complexes with each of the
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Figure 1. O, S, K, and M Display Differential Affinity to Nucleosomes In Vitro

(A) Recombinant purified mammalian and bacterial O, S, K, M, and bacterial Max (X) proteins analyzed by SDS-PAGE and Coomassie staining. The respective

OSKMX bands run at the expected sizes when compared to the sizes of protein standards. The OSKM DNA binding activity and specificity are shown in Figures

S1A–S1C.

(B) O, S, K, and M ChIP-seq profiles (blue, red, orange, and green, respectively) 48 hr post-induction and MNase-seq profile (black) in fibroblasts across the

LIN28B locus within the displayed genomic location.

(C) DNase I footprinting showing the protection of LIN28B-DNA before and after nucleosome reconstitution in vitro. Electropherograms of 50-6FAM end-labeled

LIN28B (top strand) oligonucleotides generated by digesting free DNA (blue) and nucleosomal DNA (red) with DNase I. The amount of DNase I used is indicated on

top of each panel. Shaded boxes represent the DNase-I-protected regions within LIN28B-nuc in the expected �10-bp pattern. See Figure S1D for details about

nucleosome reconstitution.

(D) Representative EMSA showing the affinity of increasing amounts of recombinant O, S, K, andM proteins (bact. top panels andmamm. bottom panels) to Cy5-

labeled LIN28B-DNA (left panels) and LIN28B-nucleosome (right panels). EMSA of O, S, K, andM to DNA probes containing specific and non-specific targets are

shown in Figures S1B and S1C.
OSKM proteins, indicating specific interaction with LIN28B-DNA

(Figure 2A, left panel), similar to OSKM interaction with their

canonical sites (Figure S2A). As expected, bact. and mamm.

O, S, or K in complexes with LIN28B-nuc were displaced in the

presence of a 403 molar excess of unlabeled, specific compet-
itors (Figure 2A, lanes 16, 19, and 22). A 403 or lower (range from

53 to 203) molar excess of non-specific DNA failed to displace

bact. and mamm. Oct4 from the LIN28B-nuc (Figures 2A, lane

17, and S2B, lanes 14–16), demonstrating specific binding by

Oct4 to the nucleosomes in vitro.
Cell 161, 555–568, April 23, 2015 ª2015 Elsevier Inc. 557



Table 1. Recombinant O, S, K, and M Show a Range of Affinities to Nucleosomes

Apparent KD (nM)

Oct4 Sox2 Klf4 c-Myc

bact. mamm. bact. mamm. bact. mamm. bact. mamm.

Total canonical 0.61 0.64 0.37 0.98 2.49 1.46 1.88 ND

Specific canonical 0.76 1.04 0.45 1.50 3.18 1.95 0.77 ND

Total LIN28B DNA 0.75 0.93 0.38 1.46 1.25 0.41 8.28 ND

Specific LIN28B DNA 0.92 2.05 0.68 3.83 2.26 1.12 6.25 ND

Total LIN28B nuc. 1.09 1.34 0.34 1.06 5.96 3.45 ND ND

Specific LIN28B nuc. 1.17 1.84 0.39 1.43 7.21 13.97 ND ND

Apparent dissociation constants (KD) were derived from EMSA to represent the relative affinities of bacterial (bact.) and mammalian (mamm.) O, S, K,

and M to their canonical sites, LIN28B-free DNA, and LIN28B nucleosomes (nuc.). Apparent KD were derived from two separate binding curves

representing two experimental replicates, fitted to the experimental data within R2 values of �0.97, and expressed in nM units. Apparent KD were

quantified from the fractional decrement of free DNA or nuc, designated as ‘‘total’’ binding, or from the first bound-DNA/nuc complexes, representing

‘‘specific’’ binding.

ND, not determined.
By contrast, a 403 excess of non-specific DNA competed

almost all of Sox2 and Klf4 from binding to LIN28B-nuc (Fig-

ure 2A, lanes 20 and 23). Importantly, lower levels of non-specific

competitor, from 53 to 203, did not compete to the same extent

as specific competitor with LIN28B-nuc for binding either Sox2

or Klf4 (Figures S2C and S2D, compare lanes 10 to 11–13 versus

14–16). Thus, both specific and non-specific interactions

contribute to Sox2 and Klf4 binding to nucleosomes in vitro.

DNase footprinting showed that each of theO, S, K, andM fac-

tors protect sequences on LIN28B-free DNA that resemble their

canonical motifs (Figures 2B and 2C, dash boxes). In addition, at

the concentrations used for footprinting, Sox2, Klf4, and c-Myc

also show non-specific protection of the LIN28B-free DNA (Fig-

ure 2B, peaks labeled by asterisks). DNase footprinting of

LIN28B-nuc bound to Oct4 and Sox2 show that the factors pro-

tect part of their canonical motifs, agreeing with the specific

binding to nucleosomes seen with EMSA competition experi-

ments (Figures 2B and 2C). However, Sox2 and Klf4 protect

both specific and non-specific nucleotides on LIN28B-nuc, sup-

porting the non-specific contribution of Sox2 and Klf4 to nucle-

osomes as seen in EMSA competition experiments (Figure 2B).

The Klf4 binding site is close to the predicted nucleosome

dyad axis, where DNase cleavage is minimal, thus precluding

an accurate assessment of specific footprinting. Expectedly, c-

Myc showed minimal protection of LIN28B-nuc, confirming the

weak affinity to nucleosomes. Altogether, the O, S, and K reprog-

ramming factors employ specific and nonspecific nucleosome

interactions to different extents.

Range of Nucleosome Binding In Vitro Is Observed in
Genome Targeting In Vivo
We assessed whether OSKM, 48 hr post-induction, targeted

sites with pre-existing nucleosome enrichment in fibroblast

chromatin. Pooling seven replicates from the MNase-seq data

set (GSM543311) allowed a high-resolutionmap of nucleosomes

with 6.6-fold genome coverage. First, we curated the sites where

O, S, K, or M targeted alone, by identifying O, S, K, or M peaks

that are 500 bp or more apart from each other. The sites were ar-

ranged in rank order by the number of chromatin immunoprecip-

itation sequencing (ChIP-seq) tags in the central 200 bp, from
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high- to low-affinity sites. This analysis confirms that each of

the O, S, K, and M factors is highly enriched at the central

200 bpwithin a 2-kb region (Figure 3A, blue boxes). Interestingly,

Sox2 bound most frequently alone (n = 41,107) compared to

Oct4 (n = 22,495), Klf4 (n = 28,212), and c-Myc (n = 23,885). Sub-

sequently, MNase tags across the respective 2-kb regions were

counted, reflecting local nucleosome enrichment. Read-density

heatmaps showed a range of nucleosome enrichment at the

central 200-bp regions that were targeted by O, S, K, or M fac-

tors alone (Figure 3A, red boxes). Notably, Oct4 targets were

the most highly enriched for nucleosomes, followed by Sox2,

and then Klf4 throughout the respective TF rank-ordered binding

profiles. By contrast, MNase tags in the c-Myc targeted sites

were diminished. Also, we did not observe pre-phased arrays

of nucleosomes at OSKM target sites, indicating that the initial

association with nucleosomes proceeds repositioning, if any.

Remarkably, the extent of nucleosome targeting of O, S, K,

and M in vivo correlates with the relative abilities of the factors

to bind nucleosomes in vitro (Figure 1D; Table 1).

To assess the contribution of non-specific binding in vivo, we

counted the number of O, S, K, andM peaks at 48 hr post-induc-

tion as function of false discovery rate (FDR) threshold. Remark-

ably, while O, K, andM peak numbers begin to stabilize above an

FDR of 0.5% (used in our study) (slopes of 1.6, 1.5, and 1.3

respectively), the number of Sox2 peaks continues to increase

(slope of 2.1) with higher FDR (Figure S3A). Thus, it appears

that Sox2 employs a measure of non-specific targeting in vivo,

as we observed in vitro.

O, S, K, and/or M Synergistic Targeting of Nucleosomes
In Vivo and In Vitro
It has been previously suggested that transcription factors can

access nucleosomal DNA by cooperative binding in order to

compete with histones (Polach andWidom, 1996). To investigate

the contribution of synergy between O, S, K, and/or M to nucle-

osome targeting, we studied sites that were co-targeted by mul-

tiple factors within a range of 100 bp or less from each other, i.e.,

within one nucleosome. In general, we observed that all possible

O, S, K, and/or M combinations targets were enriched for nucle-

osomes except for KM targets, and the co-bound sites, on



average, weremore enriched for nucleosomes than singly bound

sites (Figures 3B and S3B). Notably, there were more S, K, and/

or M combinations that included Oct4 and showed higher nucle-

osome enrichment at initially targeted sites, compared to binding

combinations lacking Oct4 (Figures 3B and S3, compare C–I to

J–M). For example, c-Myc showed the most nucleosome target-

ing when co-bound with Oct4, followed by with Sox2, while c-

Myc showedweak targeting to nucleosomeswith Klf4 (Figure S3,

compare E to K and M). Interestingly, the KM combination was

the most frequent at nucleosome-depleted promoters, similar

to KM targeting DNase hypersensitive regions (Soufi et al.,

2012) (Figure S3M, red plot). Nevertheless, KM still targeted

nucleosome-enriched sites at TSS-distal regions (Figure S3M,

blue plot).

To further investigate synergistic targeting with Oct4, we as-

sessed binding by each of the bact. Sox2, Klf4, and c-Myc:Max

(1 nM) to the reconstituted LIN28B-nuc (2 nM) in the presence

of low amounts of Oct4 (0.3 nM). EMSA showed that all

the three recombinant proteins are able to bind with Oct4 to

nucleosomal DNA in vitro, forming higher order complexes

(Figure 3C). Notably, c-Myc:Max binding to LIN28B-nuc was

enabled in the presence of Oct4 (Figure 3C, right panel). To

assess the presence of histones in the LIN28B-nuc in the com-

plexes, we transferred the proteins from an EMSA gel to a poly-

vinylidene fluoride (PVDF) membrane and blotted for H3 and

H2B (Figure S4). Though the c-Myc antibody was the weakest,

all LIN28B-nuc-bound complexes showed detectable amounts

of H3, and to a lesser extent H2B, indicating the factors bind

together to nucleosomes. In summary, Oct4, Sox2, and Klf4

enable c-Myc to target nucleosomal sites both in vivo and

in vitro.

O, S, and K Separately Recognize Partial Motifs on
Nucleosomes
To identify DNA motifs that are associated with O, S, and K

alone targeting to nucleosomes in vivo, the respective targeted

sites were rank ordered according to nucleosome enrichment

in the central 200 bp. This allowed us to separate nucleosome-

enriched from nucleosome-depleted regions that were individu-

ally targeted by O, S, or K. By these criteria, 85%, 80%, and

65% of the genomic sites initially targeted by Oct4, Sox2, and

Klf4, respectively, were enriched for nucleosomes (Figures 4A–

4C, red boxes). We used de novo motif analysis, separately

analyzing the targets that were enriched for nucleosomes

(Figures 4A–4C, red boxes, upper portion) from those that

were depleted of nucleosomes, i.e., free DNA targets (Figures

4A–4C, red boxes, lower portion). While O, S, and K primarily

targeted sequences similar to their canonical motifs at nucleo-

some-depleted and nucleosome-enriched sites, motifs occur-

ring at nucleosome-enriched sites showed distinctive features

(Figures 4D–4F).

Strikingly, while Oct4 targeted its canonical octamer sequence

at nucleosome-depleted sites (�49% of n = 3,375), Oct4

targeted hexameric motifs resembling one or another half of

the octamer motif at nucleosome-enriched sites (42% and

28%, respectively, of n = 19,120) (Figure 4D). Sox2 targeted its

canonical HMG box motif at nucleosome-depleted sites (64%

of n = 8,221), while targeting a more degenerate motif lacking
the sixth ‘‘G’’ nucleotide in the nucleosomal motif (�74% out

of n = 32,886) (Figure 4E, arrowhead). Finally, Klf4 alone targeted

its nonameric motif at nucleosome-depleted sites (94% of n =

9,874), whereas Klf4 targeted a hexameric motif that was

missing the three terminal nucleotides at nucleosome-enriched

sites (90% of n = 18,338) (Figure 4F, see dashed lines).

These findings agree with the above DNase footprinting of

LIN28B-nuc bound to the factors (Figure 2B, right panels), with

Oct4 and Sox2 protecting a part of their canonical motifs on

one side of the LIN28B-nuc DNA (Figures 2B and 2C; right). On

free DNA, Klf4 protected the first three nucleotides of its motif

on the upper strand while protecting the remaining six nucleo-

tides of its motif on the bottom strand (Figure S5A). However,

Klf4 did not protect the first three nucleotides on the upper

strand of LIN28B-nuc, as they were not exposed to DNase I

digestion, indicating that Klf4 may be interacting with part of its

motif exposed on the other strand (Figures 2B and 2C).

These data show that the O, S, and K factors can indepen-

dently target nucleosomes using partial or degenerate motifs,

and that each of the factors targets their full canonical motif in

the absence of nucleosomes at a target site. Targeting of partial

motifs at nucleosomal sites by OS or OK together also reveals

partial motifs for each of the factors (data not shown).

The Molecular Basis for O, S, and K Nucleosomal
Targeting
In order to define the molecular basis that govern O, S, and K in-

teractions with nucleosomal DNA, we interrogated the three

dimensional structures of O, S, and K DBDs in complexes with

their canonical motifs that were deposited in the RCSB Protein

Data Bank. Oct4 contains a bipartite POU domain, composed

of an N-terminal POU-specific (POUS) and a C-terminal POU-ho-

meodomain (POUHD), separated by a linker region. The X-ray

structure of Oct4-POU-DNA complex confirms that the POUS

and POUHD each bind one-half of the octameric motif on DNA

(Esch et al., 2013) (Figure 4G, lower panels). The truncated

POUS and POUHD can bind their respective half motif DNA

probes in vitro, independently from each other (Verrijzer et al.,

1992). Interestingly, the isolated DNA-bound state of either

POUS or POUHD accommodates less than half of the DNA sur-

face across the circumference of the double helix (DNA surface

occupied 606 and 718 Å2, respectively), leaving the opposite

DNA surface solvent-exposed and potentially free to interact

with histones in a nucleosome conformation (Figure 4G, red

dashed arrows in upper panels). However, once both POUS

and POUHD are bound to the full motif (1,321 Å2), less than a

quarter of the DNA circumference is solvent-exposed and hence

would be incompatible with nucleosome binding, due to steric

hindrance (Figure 4G, red dashed arrow in lower panel). Thus,

the two POU domains do not target directly adjacent half sites

on nucleosomes, as seen in free DNA, but the exposure of the

separate half sites on nucleosomes is enough for Oct4 initial

targeting.

Sox2 binds DNA through its HMG box, inducing a sharp

bend and widening of the minor groove (Reményi et al., 2003)

(Figure 4H, lower-left panel). Our motif analysis showed that

Sox2 targets a degenerate motif within nucleosomes, missing

one ‘‘G’’ nucleotide at the sixth position (Figure 4E). This ‘‘G’’
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Figure 2. The Contribution of Non-Specific Binding to Nucleosome Targeting In Vitro

(A) Representative EMSA showing the affinity of recombinant O, S, K, and M proteins (bact. top panels and mamm. bottom panels) to LIN28B-DNA (left panels)

and LIN28B-nucleosome (right panels) in the presence of 40-fold molar excess of specific competitor (‘‘s’’ lanes) or non-specific competitor (‘‘n’’ lanes) or

absence of competitor (‘‘-‘‘ lanes). Competition assays showing the specificity of O, S, K, and M to their canonical DNA probes and to LIN28B DNA and

nucleosome under lower titration of competitor are shown in Figure S2.

(legend continued on next page)

560 Cell 161, 555–568, April 23, 2015 ª2015 Elsevier Inc.



nucleotide is positioned at the angle of the induced bend and

makes direct contacts with the N46 residue at the N-terminal

tail of Sox2-HMG (Reményi et al., 2003) (Figures 4E and 4H,

arrowhead). Remarkably, mutation of this one amino acid

(N46Q) within Sox2-HMG results in a significant decrease in

DNA-bending ability without affecting DNA binding (Scaffidi

and Bianchi, 2001). In transient transfection assays, the Sox2-

N46Q mutant displays higher transactivation activity from the

Fgf4 enhancer compared to Sox2 wild-type (Scaffidi and Bian-

chi, 2001). Furthermore, mutation of the ‘‘G’’ nucleotide in the

sixth position of the motif has the unique ability, among all mu-

tations tested, to abolish DNA bending by wild-type Sox2

(Scaffidi and Bianchi, 2001). Together these data indicate that

Sox2 would not induce extensive DNA-distortion when target-

ing the nucleosomal motif, since that motif lacks the ‘‘G’’ nucle-

otide. To further support these observations we superimposed

the 3D structure of DNA bound by wild-type Sox2 and Sox2-

N46Q mutant on nucleosomal DNA and after 1,000 cycles

refinement we calculated the root-mean-square deviation

(RMSD) as a measure of the average distance between the

phosphate backbone for the best fit. These analysis reveal

that the less distorted DNA is more compatible with nucleo-

somal DNA (RMSD = 0.86 Å) compared to the extensively dis-

torted DNA (RMSD = 6.83 Å) (Figure 4H, right panel). In conclu-

sion, our data indicate that Sox2 engages nucleosomes by

recognizing a degenerate motif that involves less DNA distor-

tion, better filling the curvature and widened minor groove of

DNA around the histone octamer.

Klf4 recognizes the nonameric DNA motif using all three

C2H2-type ZFs (three nucleotides per ZF) located at the C

terminus (Schuetz et al., 2011) (Figure 4F). However, we

identified a hexameric motif, lacking the last three nucleotides,

enriched within nucleosomal targets (Figure 4F, 90%). Muta-

genic studies have shown that the hexameric motif represents

the minimal essential binding site for Klf4 (Shields and Yang,

1998). Recently, X-ray crystallography has revealed the struc-

tures of Klf4 bound to the hexameric and nonameric sites

(Schuetz et al., 2011) (Figure 4I). Klf4 uses its two most C-ter-

minal ZFs, out of the three, to recognize the hexameric motif,

occupying one side of the DNA double helix (595 Å2) and leav-

ing more than half of the opposite surface potentially free to

interact with histones in a nucleosome (Figure 4I, red dashed

arrow in upper-right panel). Klf4 bound to the nonameric

motif, with all three ZFs, fills up more than half of the DNA sur-

face (847 Å2) and would hinder binding to nucleosomes (Fig-

ure 4I, red dashed arrow in lower-right panel). This analysis

suggests that Klf4 employs two of its three ZFs to engage

nucleosomes.

Interestingly, the observed adaptability of O, S, and K to

recognize partial motifs correlates with the apparent flexibility

of their respective DBDs that we modeled during their transition

from the DNA-free to the DNA-bound states (Figures S5B–S5G).
(B) DNase I footprinting showing the protection of LIN28B-DNA (left panels) and L

S, K, andM. Electropherograms of 50-6FAM end-labeled LIN28B (top strand) oligo

DNA (0.06 U). Dashed boxes and stars represent specific and non-specific sites

(C) A cartoon representation of the 162-bp LIN28BDNA (left) and nucleosome (righ

green, respectively, as measured by DNase I footprinting. The protected DNA se
c-Myc Recognizes a Partial Motif Enriched on
Nucleosomes through Co-Binding with Other Factors
Using the partitioning method in Figures 4A–4C, a subset of c-

Myc targeted sites (33%, n = 5,494) were enriched for nucleo-

somal DNA, while the majority of sites (77%, n = 18,391) did

not exhibit enrichment (Figure 5A). Motif analysis revealed that

c-Myc nucleosomal targets were enriched for an E-box motif

that is missing the two central nucleotides (CANNTG) compared

to the canonical E-box (CACGTG) (Figure 5B, double arrow-

heads in top panel). However, nucleosome-depleted targets

were enriched for a less degenerate E-box motif that we and

others have previously reported to be associated with c-Myc

binding at enhancers (Lin et al., 2012; Nie et al., 2012; Soufi

et al., 2012) (Figure 5B, single arrowhead in bottom panel). Inter-

estingly, c-Myc-alone (i.e., without OSK) nucleosomal targets

were additionally enriched for a homeobox (73%) motif that is

highly similar to the POUHD motif, compared to nucleosome-

depleted sites (48%) (Figure 5C). Likewise, the majority of c-

Myc sites that co-targeted with Oct4 (76%, n = 2,219) that are

enriched for nucleosomes contain centrally a degenerate E-

box motif similar to that identified in nucleosomal c-Myc-alone

targets (Figures 5D and 5E). The separate halves of the POU

motif were also enriched at the OM targeted sites, indicating

that Oct4 uses one or the other DBD while co-binding with c-

Myc (Figure 5F). In conclusion, c-Myc targets nucleosomal sites

either with O, S, K, or with endogenous homeodomain factors,

recognizing a centrally degenerate E-box motif.

The basic region of bHLH domain, not bound to DNA, appears

to be unfolded in solution (Sauvé et al., 2004) (Figure 6A; Fig-

ure S6A). Upon DNA binding, the basic region folds as an exten-

sion of helix-1 and will be referred to as basic-helix-1 (bH) (Nair

and Burley, 2003) (Figures 6D and S6B, blue helices). Notably,

the most conserved four nucleotides of the E-box (CANNTG)

face toward the interaction interface between bHLH and DNA,

while the degenerate central two nucleotides (CANNTG) face

the exterior part of the DNA helix (Figure 6B, see cyan and

magenta arrowheads). The transition between DNA free and

DNA bound by molecular morphing indicates that the bH follows

a gradual folding trajectory across the major groove of DNA (Fig-

ures 6A–6D and S6B). The interaction between a partially folded

bHLH and the CANNTG drives the initial recognition of the E-box

without making contacts with the central nucleotides (NN), re-

sulting in the centrally degenerate E-box motif that we observed

for c-Myc at the nucleosome-enriched sites (Figure 6B).

Importantly, the partially folded c-Myc only occupies one-half

the DNA helix surface, leaving the other half solvent-exposed

and potentially nucleosome compatible (Figure 6B, red dashed

arrow). Apparently, the partially folded c-Myc-DNA complex re-

quires further assistance fromother factors such asOct4 or other

homeodomain-containing proteins to remain associated with

DNA. The interaction between a partially folded bHLH and a

centrally degenerate E-Box motif has been observed by X-ray
IN28B-nuc (right panels) in the absence (blue lines) or presence (red lines) of O,

nucleotides generated by DNase I digestion of DNA (0.006 U) and nucleosomal

protected by O, S, K, and M, respectively.

t) highlighting the binding sites of O, S, K, andM in vitro in blue, red, orange, and

quences are indicated.
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(A) Read density heatmaps (in color scales) showing the intensity of O, S, K, and MChIP-seq signal (blue) and MNase-seq (red) spanning ±1 kb from the center of

the O, S, K, andM peaks where each factor binds alone within 500-bp threshold. The analyzed sequences were organized in rank order, from high to low number

ChIP-seq reads within the central 200 bp (double arrows). The number of targeted sites is indicated.

(B) As in (A), but showing where the OS, OK, and OM factors peaks are within 100 bp or less apart from each other. The full possible OSKM combinations are

shown in Figure S3.

(C) The binding affinity of S, K, andM (1 nM) in the presence of Oct4 (0.3 nM) to LIN28B nucleosomal DNA (lanes 4, 6, and 8, respectively) or absence of Oct4 (lanes

3, 5, and 7). The binding of Oct4 on its own (lane 2) and free LIN28B nucleosomes (lane 1) are indicated. The histone content of the nucleosome bound complexes

is shown in Figure S4.
crystallography for Mitf, which shares 86% sequence homology

across the basic region with c-Myc (Figure S6C) (Pogenberg

et al., 2012). Once fully folded, the c-Myc bHLH adopts a
562 Cell 161, 555–568, April 23, 2015 ª2015 Elsevier Inc.
rigid structure, stabilizing DNA binding and resulting in less-

degenerate E-box motif, which would be incompatible with

nucleosomes (Figure 6D). We conclude that partially unfolded
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c-Myc targets a centrally degenerate E-boxmotif, thereby adapt-

ing to a nucleosome template when assisted by other factors.

Predicting Pioneer Activity among Different bHLH
Factors in Reprogramming
To gain insights on how bHLH proteins may differentially target

nucleosomes in reprogramming, we examined the 3D structures

of a range of bHLH-DNA complexes that have been used in re-

programming experiments (Longo et al., 2008; Ma et al., 1994;

El Omari et al., 2013). Interestingly, the basic helix-1 from the

different bHLHdomains extends across theDNA helix to variable

extents (Figures 6E–6I). Motif analysis was also carried out on

genomic sites bound by these factors from available ChIP-seq

data. Notably, in conjunction with our findings on c-Myc, the

length of the bH a helix negatively correlates with the degeneracy

of the central nucleotides (CANNTG) of the de novo motifs that

we identified for each factor (Figures 6E–6I).

To further test this correlation, we examined the recent find-

ings that the bHLH factor Ascl1 can act as a pioneer factor during

reprogramming fibroblasts to neurons (Wapinski et al., 2013).We

measured nucleosome enrichment in pre-induced mouse em-

bryonic fibroblasts (MEF) within Ascl1 initial targets in MEFs after

48 hr induction (Teif et al., 2012; Wapinski et al., 2013). Unlike c-

Myc, the majority of Ascl1 sites (73%, n = 3,019) were enriched

for nucleosomes (Figure S6D). Importantly, the basic helix-1 of

Ascl1 is considerably shorter compared to that of c-Myc, leaving

more of the DNA surface solvent exposed (Figure 6E). Similar to

c-Myc, Ascl1 target nucleosomes were enriched (99.3%) for an
564 Cell 161, 555–568, April 23, 2015 ª2015 Elsevier Inc.
E-box motif with degenerate central two nucleotides (CANNTG)

compared to the E-box seen in 98.7% of sites depleted from nu-

cleosomes (Figure S6E). Ascl1 nucleosomal targets contain an

extra ‘‘G’’ nucleotide at the 30-end of the E-box motif, which is

missing in the nucleosome-depleted sites, resulting in more spe-

cific targeting of nucleosomes despite the centrally degenerate

E-box (Figures 6E and S6E).

Ascl1 and Olig2 exhibited the shortest bH regions, by molec-

ular modeling, compared to X-ray crystals of NeuroD, MyoD,

and Tal1, with longer bHs. To verify that the observed bH lengths

were not due to the methodology, we examined the amino-acid

composition of the basic regions in all bHLH factors (Figure 6J).

The bH-DNA interaction is mainly driven by positively charged

residues (and hence the name basic). Interestingly, the Ascl1

bH ends at the last (N-terminal end) basic residue (arginine),

which is positioned further upstream (toward the C terminus)

compared to the other factors (Figures 6J and 6R, residues in

blue boxes). The last basic residue of Olig2-bH falls in between

Ascl1 and the rest of the factors. In conclusion, the basic helix-

1 of pioneer bHLH factors such as Ascl1 is intrinsically shorter,

allowing the factors to bind nucleosomes more efficiently.

DISCUSSION

The introduction of a defined set of TFs, such as OSKM, into

differentiated cells can result in cell-fate conversion (Takahashi

and Yamanaka, 2006), and yet it has been clear that the different

factors have different contributions or ‘‘strengths’’ in cell-type
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conversion. This provided the basis for our effort to tackle the

long-standing problem of how TFs initially target their sites in

closed chromatin. The pioneer factor theory partly answers this

question by suggesting that a select group of TFs, such as

FoxA, access closed chromatin by a direct interactionwith nucle-

osomal DNA through a DBD that resembles the structure of a

linker histone (Zaret and Carroll, 2011, Iwafuchi-Doi and Zaret,

2014).Wepreviously found that thediverse set of DBDs exhibited

byO,S, K, andM,which are structurally different froma linker his-

tone, have differential abilities to access closed chromatin (Soufi
et al., 2012). Here, we revealed that the relative tendencies of O,

S, K, andM to initially target nucleosomal sites in reprogramming

reflect their inherent ability to bind nucleosomes in vitro and their

ability to recognize partial motifs on nucleosomes in vivo. This is

different from what was observed for FoxA1, which recognizes

the same motif on free DNA and nucleosomes (Cirillo et al.,

1998; Li et al., 2011). Factors that cannot bind nucleosomes on

their own, such as c-Myc, associate with other factors to target

degenerate E-boxes on nucleosomes. Our new approach is in

contrast to the previous predictions of pioneer factors by fitting
Cell 161, 555–568, April 23, 2015 ª2015 Elsevier Inc. 565



fully folded DBDs, in their naked DNA-bound state, on nucleo-

somes through a docking mechanism.

We found that the bipartite POU domain of Oct4 can target

partial motifs exposed on nucleosomes using separate PouS

or PouHD domains. The single motif targeted by each domain

is longer than each half of the octamer motif, thus providing

greater binding specificity than a half motif. In addition, mass

spectroscopy analysis has identified histones as interacting

partners of Oct4 in mouse ES cells (Pardo et al., 2010), indicating

an additional affinity contribution by protein-histone interactions.

The bipartite domain-Pax family of TFs can bind DNA using both

domains and still occupy half of the DNA surface and would

therefore be compatible with nucleosome binding (Garvie

et al., 2001; Xu et al., 1999) (Figure S7, right, compared to POU

TFs). This agrees with the finding that Pax7 is a pioneer factor

that uses full motif recognition during initial targeting (Budry

et al., 2012). Thus, bipartite TFs have to either employ one

DBD or position both DBDs on the same surface of DNA in order

to interact with nucleosomes. Notably, the pioneer activity of a

Zebrafish homolog of an Oct protein was observed during the

maternal-to-zygote transition (Lee et al., 2013; Leichsenring

et al., 2013), suggesting that targeting nucleosomal sites may

be a general method for de novo programming of the genome.

The high affinity of Sox2 for nucleosomes may be due to the

pre-bent conformation of DNA, which widens the DNA minor

groove and favors initial minor groove sensing. While bending

naked DNA by Sox2 requires minimal work (Privalov et al.,

2009), the energy cost would impede Sox2 to further bend

DNA on nucleosomes. We find that Sox2 would not further

bend nucleosomal DNA because it recognizes a partial motif

that diminishes the extreme bending of the full motif. Sox family

members share the recognition of the core motif but display

diverse preferences outside the core in naked DNA (Badis

et al., 2009). Our findings reveal greater flexibility with regard

to Sox2 core motif preferences on nucleosomes than was previ-

ously recognized. In addition, we showed evidence for both

specific and nonspecific binding by Sox2 in vitro and in vivo.

The stable, motif-driven targeting by Sox2 on nucleosomes in

the ChIP-seq data showmuch lower co-binding with Oct4 (Soufi

et al., 2012) than seen in live imaging (Chen et al., 2014), leaving

open whether the latter approach depicts nucleosomal or free

DNA binding during genome scanning.

Klf4 showed higher affinity to free DNA compared to nucleo-

somes in vitro, and its initial targets in vivo were enriched for nu-

cleosomes, though less so than compared to Oct4 and Sox2.

Klf4 targets nucleosomes in vivo using two out of its three zinc

fingers, recognizing a hexameric motif. This explains how the af-

finity of Klf4 to nucleosomes is lower than that to free DNA. The

pioneer factor GATA4 binds nucleosomes modestly in vitro (Ci-

rillo and Zaret, 1999) and targets a hexamericmotif in vivo (Zheng

et al., 2013). Notably, GATA4 only contains two zinc fingers. The

Gils zinc finger family 1 (Gli1) greatly enhances reprogramming

when co-expressed with OSK (Maekawa et al., 2011). Interest-

ingly, despite containing five ZFs, Glis1 only employs two ZFs

(number four and five) to recognize its targets (Pavletich and

Pabo, 1993). The repressor ZFP57/Kap1, which is known to be

associated with closed chromatin, also recognizes a hexameric

motif despite containing an array of seven zinc fingers (Quenne-
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ville et al., 2011). This suggests that zinc finger proteins in general

may use two zinc fingers to initially target hexameric motifs

exposed on nucleosomes. Klf4 also showed non-specific inter-

actions with nucleosomes, suggesting a similar genome search-

ing mechanism as Sox2.

Various examples have been reported on the overexpression of

bHLH factors in cancer, including c-Myc,Tal1, andOlig2 (Lin et al.,

2012; Nie et al., 2012; Palii et al., 2011; Sanda et al., 2012; Suvà

et al., 2014). In all of these cases, the bHLH factors have been

associated with degenerate E-box motifs and co-binding with

other factors. We propose that the extent to which basic helix-1

lays on DNA and co-binds with pioneer factors is reflected in the

recognized motif, predicting bHLH ability to bind nucleosomes

and access closed chromatin. Interestingly, the mutation of

two amino acids within the basic helix-1 that interacts with central

E-box makes the non-myogenic bHLH factor E12 able to convert

fibroblasts to muscle cells (Davis and Weintraub, 1992). The ho-

meodomain factor PBX primesMyoD targets to inducemyogenic

potential (Maves et al., 2007). Furthermore, the hematopoietic

TAL1-E45 heterodimer employs one of the twobHLHdomains us-

ing LMO2 as an adaptor to interact with GATA1 (El Omari et al.,

2013). Hence, in addition to their intrinsic structures, bHLH factors

co-binding with DNA-binding and non-DNA binding proteins

appear to be involved in stabilizing the interaction of the partially

folded bHLH factors to nucleosomes. These features are relevant

to themultitude of bHLH factors functioning in development, can-

cer, and reprogramming experiments.

The differential ability of TFs to recognize their target sites on

nucleosomes supports a hierarchical model where pioneer fac-

tors are the first to gain access to their targets in silent chromatin.

We also observe that the initial targeting can occur for non-

pioneer proteins when they bind in conjunction with pioneer fac-

tors that allow the former to recognize their DBDs to a reduced

motif that is compatible with nucleosome binding. Further

studies are needed to understand the secondary events that

lead to subsequent changes in local chromatin structure and

the formation of large complexes at gene regulatory sequences.

By understanding the mechanistic basis by which certain tran-

scription factors are especially capable of initiating cell-fate

changes, we hope to modulate the process and ultimately con-

trol cell fates at will.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

We made the bacterial expression plasmids pET-28B-huOct4, pET-28B-hu-

Sox2, pET-28B-huKlf4, and pET-28B-huMyc encoding the full-length human

O, S, K, M, respectively, fused to an N-terminal 63 histidine tag. The recombi-

nant proteins were expressed in E. coli Rosetta (DE3) pLysS (Novagen #70956-

3) and purified using a nickel charged column under denaturing conditions

The mammalian expressed human OSKM recombinant proteins were obtained

from OriGene (Oct4 #TP311998, Sox2 #TP300757, Klf4 #TP306691, c-Myc

#TP301611). See Extended Experimental Procedures for more details of this

and following sections.

Nucleosome Reconstitution

The 162-bp LIN28B DNA fragment was created by PCR with end-labeled

primers. The fluorescent-tagged DNA fragments were gel extracted and

further purified using ion-exchange liquid chromatography by MonoQ (GE

Healthcare). The nucleosomes were reconstituted by mixing purified human



H2A/H2B dimers and H3/H4 tetramers with LIN28B-DNA at 1:1 molar ratio of

histone octamer:DNA using a salt-urea gradient.

DNA Binding Reactions

Cy5 end-labeled DNA containing specific or non-specific sites, LIN28B-DNA,

and LIN28B-nucleosomes were incubated with recombinant proteins in

10 mM Tris-HCl (pH 7.5), 1 mM MgCl2, 10 mM ZnCl2, 1 mM DTT, 10 mM

KCl, 0.5 mg/ml BSA, 5% glycerol at room temperature for 60 min. Free and

bound DNA were separated on 4% non-denaturing polyacrylamide gels run

in 0.5 3 Tris borate EDTA and visualized using a PhosphorImager. The inten-

sity of Cy5 fluorescence was quantified using Multi-Gauge software (Fujifilm

Science lab) to generate binding curves for KD analysis.

DNase footprinting was carried out by treating free DNA or nucleosomes,

6FAM 50 end-labeled, with DNase I (Worthington) in the absence or presence

of TFs. The end-labeled digested fragments were separated by capillary elec-

trophoresis in ABI 96-capillary 3730XL Sequencer (Applied Biosystems).

Genomic Data Analysis

The O, S, K, and M ChIP-seq aligned data along with the called peaks (FDR-

controlled at 0.005) were obtained from GEO (GSE36570) (Soufi et al., 2012).

The MNase-seq data (GSM543311) (Kelly et al., 2012) were aligned to build

version NCBI36/HG18 of the human genome, and seven replicates were

pooled together generating 145,546,004 unique reads. The MNase-seq reads

were extended to 150 bp to cover one nucleosome and thus resulting in 6.6-

fold genome coverage.

Motif analysis was carried out using the MEME-ChIP suit v.4.9.1 available at

http://meme.nbcr.net (Machanick and Bailey, 2011).
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